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Abstract

Matting refers to the problem of accurate foreground estimation in
images and video. It is one of the key techniques in many image editing
and film production applications, thus has been extensively studied
in the literature. With the recent advances of digital cameras, using
matting techniques to create novel composites or facilitate other editing
tasks has gained increasing interest from both professionals as well as
consumers. Consequently, various matting techniques and systems have
been proposed to try to efficiently extract high quality mattes from both
still images and video sequences.

This survey provides a comprehensive review of existing image
and video matting algorithms and systems, with an emphasis on the
advanced techniques that have been recently proposed. The first part
of the survey is focused on image matting. The fundamental techniques
shared by many image matting algorithms, such as color sampling
methods and matting affinities, are first analyzed. Image matting tech-
niques are then classified into three categories based on their underlying
methodologies, and an objective evaluation is conducted to reveal the



advantages and disadvantages of each category. A unique Accuracy vs.
Cost analysis is presented as a practical guidance for readers to prop-
erly choose matting tools that best fit their specific requirements and
constraints.

The second part of the survey is focused on video matting. The dif-
ficulties and challenges of video matting are first analyzed, and various
ways of combining matting algorithms with other video processing tech-
niques for building efficient video matting systems are reviewed. Key
contributions, advantages as well as limitations of important systems
are summarized.

Finally, special matting systems that rely on capturing additional
foreground/background information to automate the matting process
are discussed. A few interesting directions for future matting research
are presented in the conclusion.



1
Introduction

1.1 The Matting Problem

Extracting foreground objects from still images or video sequences plays
an important role in many image and video editing applications, thus
it has been extensively studied for more than 20 years. Accurately sep-
arating a foreground object from the background involves determining
both full and partial pixel coverage, also known as pulling a matte, or
foreground matting. This problem was mathematically established by
Porter and Duff in 1984 [29]. They introduced the alpha channel as
the means to control the linear interpolation of foreground and back-
ground colors for anti-aliasing purposes when rendering a foreground
over an arbitrary background. Mathematically, the observed image Iz
(z = (x,y)) is modeled as a convex combination of a foreground image
Fz and a background image Bz by using the alpha matte αz:

Iz = αzFz + (1 − αz)Bz, (1.1)

where αz can be any value in [0,1]. If αz = 1 or 0, we call pixel z

definite foreground or definite background, respectively. Otherwise we
call pixel z mixed. In most natural images, although the majority of
pixels are either definite foreground or definite background, accurately
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estimating alpha values for mixed pixels is essential for fully separating
the foreground from the background.

Given only a single input image, all three values α, F , and B are
unknown and need to be determined at every pixel location. The known
information we have for a pixel are the three dimensional color vec-
tor Iz (assuming it is represented in some 3D color space), and the
unknown variables are the three dimensional color vectors Fz and Bz,
and the scalar alpha value αz. Matting is thus inherently an under-
constrained problem, since 7 unknown variables need to be estimated
from 3 known values. Most matting approaches rely on user guidance
and prior assumptions on image statistics to constrain the problem
to obtain good estimates of the unknown variables. Once estimated
correctly, the foreground can be seamlessly composed onto a new back-
ground, by simply replacing the original background B with a new
background image B′ in Equation (1.1).

1.2 Binary Segmentation vs. Matting

If we constrain the alpha values to be only 0 or 1 in Equation (1.1),
the matting problem then degrades to another classic problem: binary
image/video segmentation, where each pixel fully belongs to either fore-
ground or background. This problem has been extensively studied since
early 1960s, resulting in a large volume of related literature. Although
matting is modeled as a more general problem than binary segmenta-
tion, which is theoretically harder to solve, most existing matting algo-
rithms avoid the segmentation problem by having a trimap as another
input in addition to the original image. The trimap may be manu-
ally specified by the user, or produced by other binary segmentation
approaches. The trimap reduces the dimension of the solution space
of the matting problem, and leads the matting algorithms to generate
user-desired results.

Although binary segmentation and alpha matting are closely cou-
pled problems, in this survey for image matting we will assume that a
rough foreground segmentation is given, thus we mainly focus on how to
accurately estimate alpha values for truly mixed pixels. We will however
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discuss binary segmentation techniques in the context of video matting
since they play a more central role in recent video matting systems.

1.3 The Trimap

Without any additional constraints, it is obvious that the total number
of valid solutions to Equation (1.1) is infinite. For a trivial solution,
one can set all αzs to be 1 and all Fzs to be identical to Izs, which
simply means the whole image is fully occupied by the foreground. Of
course this solution is probably not consistent with what a human being
will perceive from the input image. To properly extract semantically
meaningful foreground objects, almost all matting approaches start by
having the user segment the input image into three regions: definitely
foreground Rf , definitely background Rb, and unknown Ru. This three-
level pixel map is often referred to as a trimap. The matting problem is
thus reduced to estimating F , B, and α for pixels in the unknown region
based on known foreground and background regions. An example of a
trimap is shown in Figure 1.1.

Instead of requiring a carefully specified trimap, some recently pro-
posed matting approaches allow the user to specify a few foreground
and background scribbles as user input to extract a matte. This intrin-
sically defines a very coarse trimap by marking the majority pixels
(pixels have not been touched by the user) as unknowns.

One of the important factors effecting the performance of a matting
algorithm is how accurate the trimap is. Ideally, the unknown region
in the trimap should only cover truly mixed pixels. In other words,
the unknown region around the foreground boundary should be as thin

Fig. 1.1 A matting example. From left to right: input image; user specified trimap; extracted
matte; estimated foreground colors; a new composite. Results are generated by the Robust
Matting algorithm [49].



102 Introduction

as possible to achieve the best possible matting results. This is some-
what obvious since the more accurate the trimap is, the less number
of unknown variables need to be estimated, and the more known fore-
ground and background information is available to use. However, accu-
rately specifying a trimap requires significant amounts of user effort
and is often undesirable in practice, especially for objects with large
semi-transparent regions or holes. Thus a big challenge for designing a
successful matting algorithm is how to achieve a good trade-off between
the accuracy of the matte and the amount of the user effort required.
As we will see later, different algorithms have totally different charac-
teristics in this accuracy–efficiency space.

It is worth mentioning that the recently proposed Spectral matting
algorithm [22] can automatically extract a matte from an input image
without any user input. However, as the authors agreed, the automatic
approach has a number of limitations including erroneous results for
images with highly textured backgrounds. Thus in practice, user spec-
ified trimaps are typically necessary to achieve high quality matting
results.

1.4 The User Interface

A properly designed user interface is critical to the success of an inter-
active system. Surprisingly, although the matting problem has been
studied for more than two decades, very little research has been done
on exploring good user interfaces for the matting task. Most of the exist-
ing matting systems work in an offline mode, where in the interactive
loop, the user first specifies a trimap, that invokes matting algorithms
to compute a matte. If the result is not satisfactory, the user then
refines the trimap and runs the algorithm again. On the other hand,
recently proposed matting algorithms mainly focus on how to improve
the quality of the matte by introducing more sophisticated analysis
and optimization methods, thus they are generally slow. As a result,
the interactive loop described above can be very time-consuming and
inefficient.

The recently proposed Soft Scissors system [46] demonstrates the
possibility of a realtime matting user interface. In this system, a trimap
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is created incrementally by the user with the aid of a polarized brush
stroke (stroke with foreground/background boundary conditions) with
dynamically updated parameters. Alpha values of pixels inside the
brush stroke are computed in realtime as the user paints along the
foreground edge. The instant feedback allows the user to immediately
see what the foreground will look like over a new background. This
approach opens many new possibilities for creating more efficient and
intelligent matting user interfaces.

Another interesting image matting interface is the “components
picking” interface proposed in [22]. In this approach a set of funda-
mental fuzzy matting components are automatically extracted from
an input image, based on analyzing the smallest eigenvectors of a
suitably defined Laplacian matrix. The user then selects proper com-
ponents to form the foreground object using simply a few mouse
clicks. However, in the case that the automatically computed com-
ponents are not accurate enough, how to fine adjust the resulting
matte on pixel level is unknown. One can imagine combining this
approach with other matting interfaces for generating more accurate
results.

Designing efficient user interfaces for video matting is certainly a
more challenging task. Existing video matting interfaces can be classi-
fied into two categories: keyframe-based and volume-based approaches.
Systems in the first category allow users to provide inputs on manu-
ally or automatically selected keyframes which are sparsely distributed
in the input sequence, then try to automatically propagate them into
intermediate frames to create a full set of constraints. Volume-based
systems treat the video data as a 3D spatio-temporal video cube and
allow users to directly marking pixels on extruded surfaces from the
3D cube. Details of these systems will be discussed in Section 6.

1.5 Matting with Extra Information

In early matting systems, the input image is often captured against
a single or multiple constant-colored background(s), known as blue
screen matting. As shown in these approaches, knowing the background
greatly reduces the difficulty for extracting an accurate matte.
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For better matting results on natural images and video, special
imaging systems have been designed to provide additional informa-
tion or constraints to matting algorithms, such as using flash or non-
flash image pairs [39], camera arrays [20], and multiple synchronized
video streams [26]. Leveraging these additional sources of information,
lower complexity matting algorithms can be designed to achieve fast
and accurate matting. These approaches will be discussed in detail in
Section 7.



2
Color Sampling Methods for Matting

2.1 Motivation

Although the matting problem is ill-posed, the strong correlation
between nearby image pixels can be leveraged to alleviate the diffi-
culties. Statistically, neighboring pixels that have similar colors often
have similar matting parameters (i.e., alpha values). This local corre-
lation has been used in many applications such as image denoising,
superresolution, colorization, segmentation, etc.

In matting, a straightforward way to use the local correlation is
to sample nearby known foreground and background colors for each
unknown pixel, Iz. According to the local smoothness assumption on
the image statistics, it can be assumed that the colors of these samples
are “close” to the true foreground and background colors (Fz and Bz)
of Iz, thus these color samples can be further processed to get a good
estimation of Fz and Bz. Once Fz and Bz are determined, αz can be
easily calculated from the compositing Equation (1.1).

Although the concept sounds simple, implementing such an algo-
rithm that works well for general images is difficult. There are a num-
ber of questions that need to be answered, for instance, how to define
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the “neighborhood” of pixels. In other words, within what distance can
the foreground and background samples be trusted? How many sam-
ples should be collected? How can we reliably estimate Fz and Bz from
these samples? Existing matting approaches deal with these problems
in different ways. Some approaches ignore some of these difficulties by
making ad hoc assumptions, and some try to solve them in mathemat-
ically sound ways. The latter typically results in more accurate and
robust matting systems.

2.2 Parametric Sampling Methods

Once foreground and background samples are collected, parametric
sampling methods usually fit low order parametric statistical models
to them, such as Gaussians. Given an unknown pixel, these models
are then used to measure the unknown pixel’s “distances” to the fore-
ground and background distributions, which directly leads to its alpha
estimation.

2.2.1 Ruzon and Tomasi’s Method

An early parametric sampling algorithm was proposed by Ruzon and
Tomasi in 2000 [34]. In this approach alpha values are measured along a
manifold connecting the “frontiers” of each object’s color distribution.
As shown in Figure 2.1(a), this approach implicitly assumes that the
unknown region is a narrow band around the foreground boundary,
and the skeleton of the unknown region can be represented by a chain
of pixels. The model construction and alpha estimation procedure is
summaried as follows:

(1) Divide the chain of pixels (the skeleton of the unknown
region) into intervals by selected anchor points.

(2) Centered on each anchor point, define a local spatial window
which covers a local unknown region, and a local foreground
and background region.

(3) Foreground and background pixels in the local window are
used to estimate a foreground and background isotropic
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Fig. 2.1 (a) Illustration of the manifold created by Ruzon and Tomasi’s Method [34]. (b)
Model interpolation in [34]. (c) Neighborhood determined by Bayesian matting [9]. (d) MAP
estimation of matte parameters in [9]. The figure is modified from Figure 1 in [9].

(un-oriented) Gaussian distribution, or point mass, respec-
tively, in CIE-Lab color space [52].

(4) Build the manifold by collecting foreground Gaussians with
background Gaussians, while rejecting some connections
according to certain “intersection” and “angle” criteria, as
shown as the lines between point masses in Figure 2.1(a).

(5) The observed color of an unknown pixel is modeled as com-
ing from an intermediate distribution between the foreground
and background distributions. The intermediate distribu-
tion is also defined to be a sum of Gaussians, where each
Gaussian has a linearly interpolated mean and covariance
between a foreground and background Gaussian pair, accord-
ing to an estimated alpha value (as shown in Figure 2.1(b)).
The optimal alpha is the one that yields an intermedi-
ate distribution for which the observed color has maximum
probability.

(6) For an unknown pixel, after its alpha value is estimated, its
foreground color is estimated by interpolating the means of
the foreground and background Gaussian pairs.

From the description above, it is clear that a number of weak
assumptions have been made in this approach. The unknown region
is assumed to be a narrow band which can be created from dilating
a chain a pixels. Selecting anchor points and creating non-overlapping
local windows are rather ad hoc. Within a local window colors are
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modeled by non-oriented Gaussians with diagonal covariance matrices,
which may generate large fitting errors for textured regions. Also, alpha
values are computed independently for unknown pixels, which could
result in discontinuities in the final alpha matte.

2.2.2 Bayesian Matting

Based on Ruzon and Tomasi’s algorithm, Chuang et al. proposed a
Bayesian matting approach in 2001. Similar to Ruzon and Tomasi’s
algorithm, this approach also models foreground and background colors
as mixtures of Gaussians, but with a number of improvements. First,
as shown in Figure 2.1(c), Bayesian matting uses a continuously slid-
ing window for neighborhood definition, which marches inward from the
foreground and background regions. In addition to the use of foreground
and background samples to build color distributions, it also uses nearby
computed F s, Bs, and αs, so that every pixel in the neighborhood will
contribute to the foreground and background Gaussians. Furthermore,
the matting problem is formulated in a well-defined Bayesian frame-
work and the matte is solved using the maximum a posteriori (MAP)
technique.

Mathematically, for an unknown pixel Iz, αz, Fz, and Bz are esti-
mated by

arg max
Fz ,Bz ,αz

P (Fz,Bz,αz|Iz)
= arg max

Fz ,Bz ,αz

L(Iz|Fz,Bz,αz) + L(Fz) + L(Bz) + L(αz), (2.1)

where L(·) is the log likelihood L(·) = logP (·). The first term is mea-
sured as L(Iz|Fz,Bz,αz) = −‖Iz − αzFz − (1 − αz)Bz‖2/σ2

z , where the
color variance σz is measured locally. This is simply the fitting error
according to the compositing Equation (1.1). To estimate L(Fz), fore-
ground colors in the nearby region are first partitioned into groups, and
in each group an oriented Gaussian is estimated by computing the mean
F̄ and covariance ΣF . L(Fz) is then defined as −(Fz − F̄ )TΣ−1

F (Fz −
F̄ )/2. L(Bz) is calculated in the same way by using background sam-
ples. L(α) is treated as a constant.
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Equation (2.1) is solved by iteratively estimating Fz, Bz, and αz
using the following steps:

(1) Fix αz to solve for Fz and Bz as[
Σ−1
F + Iα2

z/σ2
z Iαz(1 − αz)/σ2

z

Iαz(1 − αz)/σ2
z Σ−1

B + I(1 − αz)2/σ2
z

][
F

B

]

=

[
Σ−1
F F̄ + Izαz/σ2

z

Σ−1
B B̄ + Iz(1 − αz)/σ2

z

]
, (2.2)

where I is a 3 × 3 identical matrix.
(2) Fix Fz and Bz to solve for αz as

αz =
(Iz − Bz)(Fz − Bz)

‖F − B‖2 . (2.3)

In terms of multiple foreground and background clusters, this process
is performed for each pair of foreground and background clusters and
the pair which gives the maximum likelihood is chosen.

Bayesian matting can generate accurate mattes when the assump-
tions are satisfied given an input image and a well-specified trimap.
However, once the assumptions are violated, for instance, the input
image contains highly textured regions where using Gaussians is insuf-
ficient to model the high order statistics of color distribution, or the
trimap is coarse so that the correlations between unknown pixels and
foreground and background samples are weak, it tends to generate very
noisy results, as we will see in Section 5.

2.2.3 Global Color Models

Both Zuron and Tomasi’s method and Bayesian matting use local color
models by assuming that the unknown region is a narrow band around
the foreground boundary, thus there are sufficient foreground and back-
ground pixels within a local window centered on any unknown pixel.
This assumption will be violated when the user has only provided a
very rough trimap using a few paint strokes, where for the majority of
unknown pixels, known foreground and background samples are very
far away.
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Recently a number of systems have been developed to try to
estimate good mattes from roughly specified trimaps. To tackle the
sampling problem, some of them employ alternative global sampling
methods. For instance, the iterative matting approach [48] first trains
Gaussian Mixture Models (GMMs) on known foreground and back-
ground colors globally, and for an unknown pixel, samples are drawn
from all the Gaussians to cover all the possibilities that its foreground
color could have. The Geodesic matting approach [3] also uses mixture
of Gaussians to model the global foreground and background color dis-
tributions in Luv space, and fast kernel density estimation methods [53]
are used to reduce the computational complexity of constructing the
foreground and background Probability Density Functions (PDFs).

2.3 Nonparametric Sampling Methods

Fitting low order statistical models to color samples works well for
images containing smooth regions and distinct foreground and back-
ground color distributions. However, it will generate large fitting errors
when color distributions are significantly non-Gaussian. To avoid this
problem, many approaches instead use nonparametric methods to deal
with color samples.

2.3.1 Mishima’s Method

Mishima [27] developed a blue screen matting technique based on
representative foreground and background samples. As shown in
Figure 2.2(a), since the background has only one color cluster (blue),
all background pixels can be covered by a small sphere approximated
by a polyhedra (triangular mesh) in the color space. All foreground
pixels form another polyhedra outside the background one. The alpha
value of an unknown pixel is then estimated by calculating its relative
position to the two polyhedras.

2.3.2 Knockout

The Knockout system [11] first extrapolates foreground and back-
ground colors into the unknown region. For an unknown pixel I, its



2.3 Nonparametric Sampling Methods 111

Background

Foreground

Unknown

(a)

zC

B

F

zα1

zα

Background

Foreground

Unknown

zC

F

B

'B

r

g
gα−1gα

rα−1

rα

(b)

1F1B

2F
2B

zC

11 α−

21 α−

1α

2α

zα0 1

(c)

Fig. 2.2 Illustration of nonparametric sampling methods proposed in (a) Mishima’s
method [27], (b) Knockout [11], and (c) Iterative matting [48]. (a) and (b) are modified
from Figure 1 in [9].

foreground color Fz is computed as a weighted sum of nearby known
foreground colors, and the weights are proportional to their spatial dis-
tances to I. The background color Bz is first calculated in this way as
B′
z, then refined by considering the relative position of I and Fz, as

shown in Figure 2.2(b). Finally, αz is estimated three times, each in a
color channel. For instance, in red channel the alpha is estimated as
(r(Iz) − r(Bz))/(r(Fz) − r(Bz)), where r(·) is the red channel value of
the color. The final αz is then estimated as a weighted sum of these val-
ues, where the weight is proportional to the foreground and background
difference in the corresponding color channel.

2.3.3 Using Histograms

Some matting approaches treat alpha values as random variables, and
use foreground and background samples to estimate their underlying
PDFs. In the iterative matting system [48], the PDF is approximated as
a histogram of discrete alpha levels. The continuous alpha range [0,1] is
discretized into k levels, resulting in k possible alpha values α1, . . . ,αK .
For each foreground and background sample pair, all possible values



112 Color Sampling Methods for Matting

are used to generate synthetic colors. The alpha level which generates
a color that is the closest to the unknown pixel is chosen and its bin in
the histogram will increase by one.

A histogram can be built in this way by iterating through all sample
pairs, for each unknown pixel, as shown in Figure 2.2(c). Mathemati-
cally, the likelihood for alpha level αk is computed as

Lk(z) =
1

N2

N∑
i=1

N∑
j=1

wF
i wB

j · exp
( − dc(Iz, Îz)2/2σk2z

)
, (2.4)

where F z
i and Bz

j are foreground and background samples collected for
Iz, Îz is the synthetic color computed as αkF

z
i + (1 − αk)Bz

j , and dc( )
is the Euclidian distance function in RGB space. The covariance σkz
is computed locally and dynamically as αkσF + (1 − αk)σB, where σF
and σB are covariances of foreground and background samples.

The constructed histograms are then used to support a Belief Prop-
agation algorithm for determining the optimal alpha values that are
locally consistent. A similar sampling method is used in the Easy Mat-
ting system [17].

2.3.4 Selecting Good Samples

Sampling algorithms described in previous sections typically use all the
collected color samplers in a local window. However, when the fore-
ground and background contain complex patterns and/or the input
trimap is coarse, the samples may have large color variances, and it is
often the case that only a small number of samples are valid to esti-
mate the alpha value for an unknown pixel. To discover which samples
from a large sample set are most valid, an optimized color sampling
procedure is proposed in [49], which has been later used in the Soft
Scissors system [46].

In this algorithm, “good” sample pairs are defined as those that
can explain the color of the unknown pixel as convex combinations of
themselves. Specifically, as shown in Figure 2.3(b), for a pair of fore-
ground and background colors F i and Bj , a distance ratio Rd(F i,Bj)
is defined to evaluate this sample pair by examining the ratio of the
distances between (1) the pixel color, Iz, and the color it would have,
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Fig. 2.3 Illustration of the optimized color sampling scheme proposed in [49]. (a) Sparse
sample sets construction. (b) Measuring confidence of sample pairs. (c) A small number of
best sample pairs are finally chosen.

Î, predicted by the linear model in Equation (1.1), and (2) the distance
between the foreground/background pair:

Rd(F i,Bj) =
‖Iz − (α̂zF i + (1 − α̂z)Bj)‖

‖F i − Bj‖ , (2.5)

where α̂z is computed as Equation (2.3). In the example shown in
Figure 2.3(b), the distance ratio will be much higher for pair (F1,B1)
than pair (F2,B2), indicating that the latter is a better choice for esti-
mating the alpha value for Iz.

The distance ratio alone will favor sample pairs that are widely
spread in color space since the denominator ‖F i − Bj‖ will be large.
Since most pixels are expected to be fully foreground or background,
pixels with colors that lie nearby in color space to foreground and
background samples are more likely to be fully foreground or back-
ground themselves. Thus, for each individual sample two more weights
w(F i) and w(Bj) are defined as w(F i) = 1.0 − exp{−‖F i − Iz‖2/D2

F }
and w(Bj) = 1.0 − exp{−‖Bj − Iz‖2/D2

B}, where DF and DB are the
minimum distances between foreground/background sample and the
current pixel, i.e., mini(‖F i − Iz‖) and minj(‖Bj − Iz‖).

Combining these factors, the final confidence value f(F i,Bj) for a
sample pair is defined as

f(F i,Bj) = exp
{
−Rd(F i,Bj)2 · w(F i) · w(Bj)

σ2

}
, (2.6)

where σ is fixed to be 0.1 in the system.
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Every pair of foreground and background samples are examined in
this way and finally, as shown in Figure 2.3(c), a small number of pairs
with the highest confidences are selected to generate the initial guess of
the alpha value for the unknown pixel, which will be further adjusted
by an optimization process, as described in Section 4.6.

Since this sampling scheme can deal with relatively large sample sets
with high color variances, in [49] a relatively large number of foreground
and background pixels are sparsely selected along the boundary of the
unknown region to form the sample set, as shown in Figure 2.3(a).

2.4 Summary

Collecting nearby known foreground and background pixels as sam-
ples and using them to help estimate alpha values for unknown pix-
els is a commonly used approach to take advantage of natural image
statistics for solving the ill-posed matting problem. As shown in mat-
ting approaches described in this section, sampling methods work
well when the input image contain smooth regions and the trimap is
well-defined. In this case, the correlation between the unknown pixels
and known ones are strong and the underlying assumptions of these
approaches hold.

As we will show in Section 5, the performance of different approaches
varies significantly according to how efficient they use the collected sam-
ples. Earlier systems, such as Knockout [11] and Bayesian Matting [9],
tend to use all samples equally without considering their legitimacy,
thus may introduce significant errors when the sample set is not prop-
erly constructed. The recently proposed Robust Matting system [49]
presents a sample selection procedure to re-examine the collected sam-
ples and only pick out a small number of “good” ones to use, thus can
robustly generate more accurate results.



3
Defining Affinities for Matting

3.1 Motivation

As discussed in Section 2, misclassification of color samples in a complex
scene is the fundamental limitation for sampling-based approaches. To
avoid this problem some recently proposed matting approaches have
explored another way of using local image statistics by defining various
affinities between neighboring pixels, which intrinsically models the
matte gradient across the image lattice instead of directly estimating
the alpha value at each single pixel.

Compared with pure sampling-based approaches, affinity-based
approaches have two major advantages. First, affinities are always
defined in a small neighborhood, usually between immediately con-
nected pixels or pixels in a 3 × 3 window. In such a small window, the
pixel correlations are usually strong thus the local smoothness assump-
tion typically holds, even for moderately complex images. On the con-
trary, when the input trimap is coarse, sampling-based approaches are
forced to collect samples which are far from the target pixel, thus
the samples may or may not be useful at all. On the other hand, the
defined affinities regularize the resulting matte to be locally smooth,
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thus fundamentally avoid matte discontinuities which sampling-based
approaches may suffer from.

3.2 Poisson Matting

Poisson matting [38] models the matte gradient by assuming that inten-
sity changes in the foreground and background are locally smooth.
Mathematically, an approximate gradient field of the matte is achieved
by taking the partial derivatives on both sides of the matting
equation (1.1):

∇Iz = (Fz − Bz)∇αz + αz∇Fz + (1 − αz)∇Bz, (3.1)

where ∇ = ( ∂
∂x , ∂∂y ) is the gradient operator. Since Fz and Bz are

assumed to be smooth, thus αz∇Fz + (1 − αz)∇Bz is relatively small
compared with (Fz − Bz)∇αz, and the matte gradient can be approx-
imated as

∇αz =
1

Fz − Bz
∇Iz. (3.2)

The matte gradient is thus proportional to the image gradient. To esti-
mate the absolute gradient value, Fz − Bz needs to be estimated first.
In the system Fz and Bz are simply chosen as the nearest foreground
and background colors for the unknown pixel.

The final matte is then constructed by solving Poisson equations on
the image lattice as:

α∗ = argmin
α

∫ ∫
z∈Ω

∥∥∥∥∇αz − 1
Fz − Bz

∇Iz

∥∥∥∥
2

dz (3.3)

with the Dirichlet boundary condition which is consistent with the user-
provided trimap. Ω is the unknown region in the trimap. Obtaining the
unique solution of Poisson equations is a well studied problem and
the Gauss–Seidel iteration with over-relaxation method is used in the
proposed system.

Formulating the matting problem as solving Poisson equations is
technically sound, however, one major limitation of the proposed sys-
tem is the way Fz − Bzs is estimated. For complex scenes, choosing
the nearest samples for estimating Fz and Bz will not be accurate,
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thus could result in large errors in the final solution. To alleviate this
problem a set of local filters and operations are defined in the proposed
system, which enables the user to manually correct the final matte by
solving local Poisson equations. Although good results can be achieved
in this way, it is often a time-consuming process for the user.

3.3 Random Walk Matting

A classic affinity defined in many spectral image segmentation
approaches [32] is formatted as:

wij = exp
(

−‖Ii − Ij‖2

σ2

)
, (3.4)

where σ is a free parameter which can be either automatically deter-
mined or manually set by the user. This affinity was adopted in the
Random Walk matting system [16], with the modification that color dis-
tances are not measured in the original RGB space, but in the channels
created by using Local Preserving Projections (LPP) techniques [18].
The projections defined by the LPP algorithm are given by the solution
to the following generalized eigenvector problem:

ZLZTx = λZDZTx, (3.5)

where Z is the 3 × N matrix with each Ii as a column, D is the diagonal
matrix defined by Dii = di and L is the graph Laplacian matrix given by

Lij =




di : if i = j,

−Wij : if i and j are neighbors,
0 : otherwise.

(3.6)

Denote the solution to the generalized eigenvector problem of (3.6)
by Q, where each eigenvector is a row of Q. The final affinity then is
defined as

w∗
ij = exp

(
(Ii − Ij)TQTQ(Ii − Ij)

σ2

)
. (3.7)

In this survey it is shown that LPP-projected RGB values work bet-
ter than original RGB values in discriminating foreground boundaries
from backgrounds. This survey also opens a new window to explore
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which color space is optimal for the matting task, since most of exist-
ing approaches apply their analysis in the RGB space.

A random walk algorithm is employed to calculate the final alpha
values based on the affinity. Given an unknown pixel, its alpha value
is set to be the probability that a random walker starting from this
location will reach a pixel in the foreground before striking a pixel in
the background, when biased to avoid crossing the foreground bound-
ary. These probabilities can be calculated exactly by solving a single
system of linear equations. Furthermore, a particularly efficient imple-
mentation via the graphics processing unit (GPU) is proposed, which is
able to solve the matting problem on a 1024 × 1024 image in about 0.5
seconds (with an accurately defined trimap). This is by far the fastest
implementation among existing approaches.

3.4 Geodesic Matting

Instead of calculating the probability that a random walker will reach
the foreground first starting from an unknown pixel, the Geodesic Mat-
ting approach [3] measures the weighted geodesic distance that a ran-
dom walker will travel from its origin to reach the foreground. In this
approach the geodesic distance computation is linear in time and with
minimal memory requirements as well, which allows the system to
achieve fast and high-quality segmentation and matting from a few
user scribbles, when the affinities between pixels are assigned properly.

Mathematically, the geodesic distance d(i,z) is simply the smallest
integral of a weight function over all paths on the image lattice from
pixel Ii to the pixel Iz, defined as

d(i,z) = min
Ci,z

∫ 1

0
|W · Ċi,z(p)|dp, (3.8)

where Ci,z(p) is a path connecting the pixels i, z (for p = 0 and p = 1,
respectively). The weights W are set to be the gradient of the likeli-
hood that a pixel belongs to the foreground (resp. background), i.e.,
W = ∇PF (x). To compute this likelihood, user-specified foreground
and background pixels are used to train Gaussian Mixture Models using
fast kernel density estimation methods [53], resulting in the foreground
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PDF P (x/F ) and background PDF P (x/B), and PF (x) is set to be
P (x|F )

P (x|F )+P (x|B) .
The geodesic distance from an unknown pixel Iz to the foreground is

defined as DF (z) = mini∈ΩF
d(i,z), and its distance to the background

is defined in the similar way.
Finally, the alpha value is estimated as:

αz =
wF (z)

wF (z) + wB(z)
, (3.9)

where wF (z) = DF (z)−r · PF (z), is the locally adjusted foreground
weight. The idea is to combine the geodesic distance DF (z) with the
locally recomputed foreground probability. The parameter r controls
the smoothness of the edges. The background weight wB(z) is com-
puted in the similar way.

The major advantage of this approach is that it is based on weighted
distance functions (geodesics), thereby can be solved as a first-order
geometric Hamilton–Jacobi equation in computationally optimal linear
time. This is particularly favorable for video matting where computa-
tional complexity remains to be a serious issue.

The disadvantage of the proposed system is that the weight w in
Equation (3.8) is set in a rather simple way, and will not work well when
the foreground and background color distributions have large overlaps,
where the PDFs P (x/F ) and P (x/B) cannot be estimated properly.
However, the proposed geodesic-distance-based matting framework is
quite general, so that this step could be potentially improved by using
more sophisticated discriminant models when dealing with complex
scenes.

3.5 Fuzzy Connectedness for Matting

Another matting technique which is similar to the Geodesic matting
approach is the newly proposed FuzzyMatte system [54]. Instead of
computing geodesic distances from an unknown pixel to known fore-
ground and background regions, it computes the fuzzy connectedness
(FC) [43] from the unknown pixel to known ones. FC is a concept that
effectively captures fuzzy “hanging togetherness” (adjacency and simi-
larity) between image elements. Mathematically, for a pair of adjacent
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pixel I1 and I2, the affinity Ao is defined as:

Ao(I1, I2) = λµ(I1, I2) + (1 − λ)µoφ(I1, I2), o ∈ {f,b}, (3.10)

where µ measures the color similarity between the two pixels, and µoφ
measures the pixel-scribble similarity which is defined among the colors
of p1 and p2, and the colors of pixels under the user-specified scribbles.
It is essentially defined in the same way as the W parameter in Equa-
tion (3.8) in the Geodesic matting approach, by using Gaussian Mixture
Models to fit known foreground and background pixels and compute
foreground and background PDEs. λ balances the two similarity mea-
sures and is between 0 and 1.

The fuzzy connectedness between any two pixels Ii and Iz is
defined as:

FCo(i,z) = max
Ci,z

{
min

p=2,...,n
Ao (Ci,z(p − 1),Ci,z(p))

}
, (3.11)

where Ci,z(p) again is a path connecting the pixels Ii and Iz. Intu-
itively, the strength of a path between two pixels is defined as the
weakest link between two neighboring pixels along the path, and the
final fuzzy connectedness is defined as the strength of the strongest
path between the two pixels. Compared with the Geodesic distance
defined in Equation (3.8), the main difference is to use the minimal
link strength within a path instead of integrating all link strengths
over the path. This is sometimes preferable for capturing long skinny
fuzzy structures. Imagine a fractional pixel which is very close to the
known background boundary but far away from the foreground bound-
ary. Using geodesic distance the pixel might be misclassified as back-
ground since the paths to the background boundary are significantly
shorter than the paths to the foreground boundary, leading to a much
smaller geodesic distance to the background. Using fuzzy connectedness
this would not happen, since the absolute path length is not consid-
ered in this approach. However, one can also imagine that the fuzzy
connectedness is more sensitive to image noise, and not as stable as the
geodesic distance for complex images where color PDEs cannot be well
estimated.

Another contribution made in this approach is that the alpha matte
is estimated in an incremental fashion. Whenever a new scribble is
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added by the user, instead of re-computing the fuzzy connectedness for
every unknown pixel, only a small subset of pixels whose fuzzy con-
nectedness need to be updated are selected for re-estimation, thus the
final matte can be updated in nearly realtime. This is in spirit similar
to the update region solver proposed in the Soft Scissors system [46].

3.6 Closed-form Matting

Both Poisson matting and Geodesic matting approaches involve esti-
mating foreground and background colors/distributions to some extent,
which may significantly lower their performance when the estima-
tions are not accurate. The recently proposed Closed-form matting
approach [21] avoids this limitation by explicitly deriving a cost func-
tion from local smoothness assumptions on foreground and background
colors F and B, and show that in the resulting expression it is possi-
ble to analytically eliminate F and B, yielding a quadratic cost func-
tion in α, which can be easily solved as a sparse linear system of
equations.

The underlying assumption made in this approach is that each F

and B is a linear mixture of two colors over a small window (typically
3 × 3 or 5 × 5) around each pixel, which is referred to as the color line
model. It is shown that under this assumption, alpha values in a small
window w can be expressed as

αi =
∑
c

acIci + b,∀i ∈ w, (3.12)

where c refers to color channels, and ac and b are constants in the
window. The matting cost function is then defined as

J(α,a,b) =
∑
j∈I


∑
i∈wj

(
αi −

∑
c

acjI
c
i − bj

)2

+ ε
∑
c

ac2j


 . (3.13)

Furthermore, ac and b can be eliminated from the cost function,
yielding a quadratic cost in the α alone:

J(α) = αTLα, (3.14)
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where L is an N × N matrix, whose (i, j)th element is

∑
k|(i,j)∈wk

(
δij − 1

|wk|

(
1 + (Ii − µk)

(
Σk +

ε

|wk|I3

)−1

(Ij − µk)

))
,

(3.15)
where Σk is a 3 × 3 covariance matrix, µk is a 3 × 1 mean vector of the
colors in a window wk, and I3 is the 3 × 3 identity matrix.

The matrix L, which is called matting Laplacian, is the most impor-
tant analytic result from this approach. The optimal alpha values are
then computed as

α = argminαTLα, s.t. αi = 1 or 0, ∀i ∈ ∂Ω, (3.16)

which is essentially a problem of minimizing a quadratic error score,
thus can be solved by one of the linear system solvers which will be
discussed in Section 4.3.3.

The affinity defined in Equation (3.15) and the one defined in
Equation (3.4) share the same property that nearby pixels with sim-
ilar colors have high affinity values, while nearby pixels with differ-
ent colors have small affinity values. However, the matting affinity in
Equation (3.15) does not have a global scaling parameter σ and instead
uses local estimates of means and variances. As a result, this localized
adaptive setting leads to a significant improvement in performance, as
demonstrated in [21].

3.7 Spectral Matting

Further analysis has been conducted on the proposed matting Lapla-
cian in Equation (3.15), resulting in an automatic matting approach
called Spectral matting [22]. This is the only approach that tries to pull
out a foreground matte in a completely automatic fashion.

In this approach the input image is modeled as a convex combina-
tion of K image layers as

Iz =
K∑
k=1

αkzF
k
z , (3.17)

where F k
z is the kth matting component of the image. The most impor-

tant conclusion from this approach is that the smallest eigenvectors of
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the matting Laplacian L span the individual matting components of the
image, thus recovering the matting components of the image is equiv-
alent to finding a linear transformation of the eigenvectors. Detailed
steps are as follows:

(1) Compute the eigenvectors of L as E = [e1, . . . ,eK ], so E is a
N × K matrix (N is the total number of pixels).

(2) Initialize αk by applying a k-means algorithm on the smallest
eigenvectors, and project the indicator vectors of the result-
ing clusters onto the span of the eigenvectors E:

αk = EETmck . (3.18)

(3) Compute matting components by minimizing an energy func-
tion defined as∑

z,k

|αkz |γ + |1 − αkz |γ , where αk = Eyk; (3.19)

subject to
∑

kαkz = 1, using Newton’s method [12]. γ is cho-
sen to be 0.9 for a robust measure.

(4) Group components into final foreground matte by testing
various combinations of matting components and computing
the corresponding cost as J(α) = αTLα. To do this more
efficiently the correlations between the matting components
via L are pre-computed as

Φ(k, l) = αk
T
Lαl, (3.20)

and the matting cost can be computed as J(α) = bTΦb, where
b is a K-dimensional binary vector indicating the selected
components.

(5) When user’s input is provided, the grouping process can take
advantage of it by solving a graph-labeling problem using the
min-cut algorithm. Details can be found in [23].

The spectral matting approach derives an analogy between hard
spectral image segmentation and image matting, and thus provides a
very interesting theoretical result. This work is a milestone in theo-
retic matting research. However, in practice, this approach is limited
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to images that consist of a modest number of visually distinct com-
ponents, as pointed out by the authors. For these images, many other
approaches can be used to generate higher quality mattes, although
more user input is required. Furthermore, given the fact that the size
of E is N × K, the memory consumption of this approach is extremely
high, and the practical application range of this approach is thus
limited.

3.8 Summary

Defining affinities for matting has been proven to be more robust than
sampling-based approaches when dealing with complex images. The
reason is that affinities are defined only in local windows, thus their
underlying assumptions typically hold even for moderately difficult
images.

Depending on the underlying assumptions and how the affinity is
mathematically defined, the performance of different algorithms varies
dramatically. Poisson matting makes weak assumptions on foreground
and background colors, thus will introduce significant errors when deal-
ing with complex scenes, as shown later in Section 5. The closed-form
matting derives the affinity by conducting very insightful analysis on
the theoretic aspects of the matting problem, thus has significantly
higher performance than other affinity-based approaches.

There are two possible drawbacks of affinity-based approaches.
First, unlike sampling-based approaches, affinity-based techniques
focus on first estimating alpha values, and only then estimate fore-
ground colors for unknown pixels based on pre-computed alphas, rather
than estimating them jointly for an optimal solution. Second, the alpha
matte is estimated in a propagation fashion, from known pixels to
unknown ones, thus small errors could be propagated and accumu-
lated to produce more significant errors. As a result, mattes generated
by affinity-based approaches are sometimes less accurate than those
generated by sampling-based approaches. Detailed comparisons will be
shown in Section 5.



4
Optimization by Combining Sampling

and Affinities

4.1 Motivation

In many optimization-based computer vision and graphics systems [1,
24, 32], the energy functions to be minimized take the form of a “Gibbs”
energy, defined by two terms:

E(l,θ,z) = U(l,θ,z) + V (l,z), (4.1)

where l stands for the “labels” that will be assigned to pixels, and θ is a
model that measures the fitness of l given z. The first term on the right
side is called a data term, or data cost, which represents the semantic
goal of the optimization. In the foreground segmentation problem, this
term might enforce, for example, that pixels whose colors are closer to
the known foreground colors and further away from background colors
to be classified as foreground. The second term is a neighborhood term,
or neighborhood cost, which encourages coherent decisions to be made
within local image regions, reflecting a tendency for the solidity of
objects. Once the energy function is defined, a variety of optimization
tools can be employed to minimize it, analytically or approximately.

This methodology has been recently applied for the matting task.
Intuitively, the sampling techniques discussed in Section 2 are capable
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of analyzing the distances between an unknown pixel to known fore-
ground and background colors, thus they can be used to assign data
costs to pixels as the semantic constraint. The affinities defined in Sec-
tion 3 represent the relationships between nearby pixels, thus they can
be employed to set neighborhood costs for neighboring pixel pairs. By
combining sampling methods and affinities together in a single opti-
mization process, one can expect more accurate and robust matting
solutions.

4.2 Non-closed-form Optimization

The iterative matting approach [48] estimates foreground mattes from
a sparse set of user input such as a few foreground and background
scribbles. To achieve this an iterative optimization process is employed,
where the alpha values are gradually propagated from known pixels to
unknown ones, in a front propagation fashion. The matte is modeled
as a Markov Random Filed (MRF), and in each iteration the energy
function to be minimized is defined as

E =
∑
z∈ψ

Ed(αz) + λ ·
∑
z,v∈ψ

Es(αz,αv). (4.2)

The data cost, Ed(αz), is constructed using the histogram-based
sampling method described in Section 2.3.3, where alpha is discretized
into K levels and a histogram is built for each unknown pixel as in
Equation (2.4). The data cost is then defined for each of the possible
states αkz as

Ed(αkz) = 1 − Lk(z)∑K
k=1 Lk(z)

. (4.3)

The likelihood terms, L, describe how well the estimated alpha value
αkz , and foreground and background samples for z fit with the actual
color Iz, preferring those which generate smaller fitting errors.

The neighborhood cost Es(αz,αv) is defined by using the classic
affinity in Equation (3.4), as

Es(αz,αv) = 1 − exp
(−(αz − αv)/σ2

s

)
, (4.4)

where σs is set to be 0.2 empirically.
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With the MRF defined above, finding a labeling (α level for each
pixel) with minimum energy corresponds to the MAP estimation prob-
lem, which are solved by using the loopy Belief Propagation (BP)
algorithm [51].

This approach opens a new window for matting research to explore
ways to significantly reduce user efforts that are traditionally required
for creating accurate trimaps, especially for images with large portions
of semi-transparent foreground where the trimap is difficult to cre-
ate even manually. However, it also presents two major limitations.
The global color sampling scheme is used to guide the matte propaga-
tion, thus it requires the foreground and background to have distinct,
well-separable color distributions. Furthermore, the expensive nonlin-
ear BP optimization process is employed multiple times to create a
matte, which might converge to different local minima. The required
processing time of this approach is usually very long, which is undesir-
able in an interactive setting.

4.3 Closed-form Optimization

Newly proposed optimization-based matting approaches, such as the
Easy Matting system [17] and the Robust Matting system [49], employ
faster closed-form optimization techniques.

4.3.1 Easy Matting

In the easy matting system [17], the energy function to be minimized
is defined as:

E =
∑
z∈ψ


 1

N2

N∑
i=1

N∑
j=1

‖Iz − Îz‖2

σ2
z

+ λ
∑

z∈N (z)

(αz − αv)2

‖Iz − Iv‖


 . (4.5)

where N is the number of pixels, N (z), defines a neighborhood around
z, and Îz is the estimated color given alpha. Both the data term and the
neighborhood term are designed in a similar way as in the iterative mat-
ting approach [48], except that no exponential mappings are employed.
This greatly simplifies the optimization process since Equation (4.5) is a
quadratic function, thus the energy can be easily minimized by solving
a set of linear equations by using the conjugate gradient method.
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Another improvement made in this approach over previous ones is
that the weight λ in Equation (4.5) is dynamically adjusted rather than
manually fixed, as

λ = e−(k−β)3 , (4.6)

where k is the iteration count, and β is a pre-defined constant which is
set to be 3.4 in the system. This is motivated by the fact that users often
place scribbles inside foreground and background regions, thus a larger
λ value, which indicates an emphasis on the neighborhood term, will
encourage the foreground and background regions to smoothly spread
out in early iterations. Later on when the foreground and background
regions encounter at the object boundary where discontinuity presents,
the iteration count has increased so that λ will be small, thus the data
term will play a more important role to try to estimate accurate alpha
values. This dynamic weight setting helps the iterative algorithm avoid
stepping into bad local minima in early stages.

4.3.2 Robust Matting

The Robust Matting system [49] combines the optimized color sampling
scheme described in Section 2.3.4 and the matting affinity defined in
Section 3.6, resulting in a well-balanced system which is capable of
generating high quality results while maintaining a reasonable degree
of robustness against different user inputs. The energy function to be
minimized in this approach, although not explicitly formulated in [49],
is defined as

E =
∑
z∈ψ

[
f̂z(αz − α̂z)2 + (1 − f̂z)(αz − δ(α̂z > 0.5))2

]
+ λ · J(α,a,b),

(4.7)

where α̂z and f̂z are estimated alpha and confidence values in the
color sampling step as described in Section 2.3.4, and J(α,a,b) is the
neighborhood energy defined in Equation (3.13), where the param-
eters a and b can be analytically eliminated in the optimization
process.

In [49], minimizing the energy function defined in Equation (4.7)
is interpreted as solving a corresponding graph labeling problem as
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Fig. 4.1 Matting is formulated as solving a soft graph labeling problem in the Robust
Matting system [49]. This figure is modified from Figure 6 in [49].

shown in Figure 4.1, where ΩF and ΩB are virtual nodes representing
pure foreground and pure background, white nodes represent unknown
pixels on the image lattice, and light red and light blue nodes are known
pixels marked by the user. A data weight is defined between each pixel
and a virtual node to enforce the data constraint (the first term on the
right side of Equation (4.7)), and an edge weight is defined between two
neighboring pixels to enforce the neighborhood constraint (the second
term on the right side of Equation (4.7)).

Numerically, similar to the Closed-form matting approach [21], the
energy to be minimized is defined as a quadratic function in αz, thus
can be solved using a linear system solver. The Laplacian matrix in the
linear system is defined as

Lij =




Wii : if i = j,

−Wij : if i and j are neighbors,
0 : otherwise,

(4.8)

where Wii =
∑

jWij . L is thus a sparse, symmetric, positive-definite
matrix with dimension N × N , where N is the number of all nodes in
the graph, including all pixels in the image plus two virtual nodes ΩB
and ΩF . Wij is exactly the same as the one defined in Equation (3.15)
if i and j are neighboring pixels; otherwise Wij equals to the data cost
Wi,F or Wi,B if j is a virtual node.
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Note that the confidence value f̂z plays an important role in bal-
ancing the data cost and neighborhood cost in Equation (4.7). This is
motivated by the fact that color sampling will not be always reliable for
every single pixel and bad estimations are typically associated with low
confidence values, thus using the confidence value to tone down incor-
rect data costs and let neighborhood costs take over for those pixels
will produce better mattes with less noise.

4.3.3 Linear System Solvers

After reviewing various matting approaches described in Sections 3
and 4, one may have noticed that in a number of affinity-
involved matting approaches the energy functions to be minimized
are defined in a quadratic form, leading to large linear systems
which can be solved by a variety of linear solvers. Such approaches
include Poisson matting (Section 3.2), Random Walk matting
(Section 3.3), Closed-form matting (Section 3.6), Easy matting (Sec-
tion 4.3.1), and Robust matting (Section 4.3.2). Note that although
these approaches share the same optimization framework, the underly-
ing energy functions are quite different from each other.

Once a linear system is constructed, many existing linear solvers
can be applied to solve for the final alpha matte. These solvers can
be divided into two categories: direct methods and iterative ones.
Direct methods use sparse matrix representations together with sta-
ble factorization algorithms such as LU (lower–upper) or Cholesky
decomposition to obtain sparse symmetric factor matrices for which
forward and backward substitution can be efficiently performed [13].
However, these methods become inefficient for large multi-dimensional
problems because of excessive amounts of fill-in that occurs during
the solution. Iterative relaxation algorithms use a series of steps that
successively refine the solution to minimize the quadratic energy func-
tion [35]. Representative techniques include gradient descent, successive
over-relaxation (SOR), and conjugate gradient descent. Compared with
direct methods they are often more computationally efficient for large
scale linear systems.
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The basic iterative methods often can be accelerated by techniques
such as multigrid, hierarchical basis preconditioning, and tree-based
preconditioning. Multigrid methods [7] operate on a pyramid and
alternate between solving the problem on the fine level and project-
ing the error to a coarser level where the lower-frequency components
can be reduced. Preconditioning techniques [40, 41] use the multi-level
hierarchy to precondition the original system, i.e., to make the search
directions more independent and better scaled. The recently proposed
locally adapted hierarchical basis functions [41] have been shown to
be very effective for preconditioning large optimization problems that
arise in computer graphics applications such as tone mapping, gradient-
domain blending, and colorization. However, it may not be able to be
directly applied to certain matting affinities such as the one defined
in [21], due to its limitation on the order of the smoothness terms (only
first-order smoothness terms are supported). Details of this technique
along with a good survey of related work can be found in [41].

There are also many existing software packages that one can directly
use to solve linear matting systems. A straightforward choice is the
“backslash” operator in Matlab, or other equivalent Matlab-based lin-
ear solver. A good overview of a variety of iterative linear system solver
packages can be found in [14].

4.4 Summary

Sampling-based methods and affinity-based approaches both have their
own advantages and disadvantages. Sampling-based methods work
better when dealing with distinct foreground and background color
distributions along with carefully specified trimaps, but tend to gener-
ate significant errors when their underlying assumptions are violated.
On the other hand, affinity-based approaches are relatively insensitive
to different user inputs and always generate smooth mattes. However,
they may not be very accurate for long and furry foreground structures.
By combining these two methodologies together through an optimiza-
tion process, more advanced systems can be developed, achieving a
good trade-off between accuracy and robustness. The recently proposed
Robust Matting system [49] is an example of such a system.



5
Performance Evaluation

5.1 Introduction

Early matting systems often justify their approaches by presenting a
few good examples, and rely on the users to visually examine mattes
generated by different algorithms for quality assessment. These com-
parisons thus are often subjective and/or incomplete.

Given the increasing interest in the matting problem from both
industry and academia, there is a demand for conducting objective
and quantitative comparisons among different algorithms, especially
those that have been recently proposed. Such a comparison will reveal
strengths as well as weaknesses of different methods, providing promis-
ing directions to follow for future research. Furthermore, since no single
algorithm can work well in all cases, such an evaluation will help users
choose proper methods that can best solve their specific problems.

This issue has been addressed in some recently proposed matting
approaches [21, 49], where independent objective evaluations have been
conducted, however on totally different data sets. In this survey, a
new test data set is constructed by combining various examples used
in previous approaches together. The data set is then used for an
objective comparison among different algorithms. The methodology
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used for comparison in this survey is extended from the study
conducted in [49].

5.2 The Data Set

The test set includes 6 test images along with ground-truth mattes, as
shown in Figure 5.1. Specifically, images T1–T3 are part of the data
set constructed in [49], while images T4–T6 have been used in [22]
as test examples. All ground-truth mattes are extracted using blue
screen matting techniques described in [37]. Specifically, as shown in
Figure 5.2, a fuzzy foreground is shot against two known backgrounds,
triangulation matting techniques thus can be applied to pull out a
fairly accurate matte. For T1–T3, the mattes are then used to create
new composites which serve as the test images. For T4–T6, since the
foregrounds are shot against a computer screen, the test images are
directly captured without re-compositing.

To apply matting algorithms on this data set, a series of user-
specified trimaps are also provided for each test example, as shown in
Figure 5.2. First, for a test image, a fairly accurate trimap T0 is man-
ually created. The unknown region of T0 is then dilated gradually to
create a series of less accurate trimaps T1, T2, . . . ,T9. The idea is that
by applying the same algorithm using different trimaps on the same
example, one can examine how sensitive the algorithm is to different
user inputs.

Given the fact that some algorithms have the extra ability to work
from less user input, such as a few scribbles, for each example we

T2T1 T3 T4 T5 T6

Fig. 5.1 Test images and corresponding ground-truth mattes. Images T1–T3 are from [49],
T4–T6 are from [22].
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Fig. 5.2 Top: shooting the foreground against two known backgrounds to extract the
ground-truth matte and create a new composite. Bottom: fine-to-coarse trimaps. This
figured is modified from Figure 8 in [49].

develop an additional set of trimaps based on scribbles, as shown in Fig-
ure 5.2, and use them to conduct comparisons among these algorithms.

It is obvious that six test images are not able to cover all possi-
ble situations one may expect in real applications, thus the data set
is limited in scale. In the newly proposed high resolution matting sys-
tem [31], a new high-resolution matting ground-truth data set has been
constructed, which can be used for more extensive studies in the future.

5.3 Quantitative Measurements

All the computation in our test is conducted on a Dell Precision 690
workstation, with an Intel Xeon 5160 CPU at 3.00 GHz and 4 GB of
RAM. Different algorithms are compared in three aspects: accuracy,
robustness, and efficiency.

Each algorithm is applied to each test image using the pre-defined
series of trimaps, resulting a series of mattes. These mattes are then
compared to the ground-truth and errors are computed in the Mean
Squared Error (MSE) sense as {e1,e2, . . . ,en}. The minimal MSE
value min(ei) is then chosen as the measurement of accuracy, as it
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is associated with the most accurate matte the algorithm can achieve
no matter how much user input it takes.

The maximum MSE value max(ei) is used to measure the robustness
of the algorithm against different user inputs.

The efficiency of an algorithm is measured as the computational
time and memory it takes on each example. These two are hard to
measure in a fully objective way since they are closely related to the
computational environment. Also, most of the test systems are devel-
oped only for research purposes and have not been fully optimized in
terms of efficiency. Furthermore, as mentioned in Section 4.3.3, some
of the approaches involve solving large linear systems, which could be
significantly accelerated by using faster linear solvers. For all these
reasons, time and memory cost presented in this study should not be
treated as accurate measurement, but rather as reference information
to be used to help users choose a proper method to meet their specific
computational constraints.

Note that each algorithm may have a set of tunable parameters
which may largely affect its performance on a specific example. In this
study to ensure a fair comparison, all the parameters are set to be their
default values for all algorithms.

5.4 Test Algorithms

We compare the performance of 9 algorithms: Bayesian matting [9],
Knockout 2 [11], Iterative matting [48], Global Poisson matting [38],
Random Walk matting [16], Robust matting [49], Closed-form mat-
ting [21], Easy matting [17], and Geodesic matting [3]. As described in
previous sections, these systems can be classified into three categories:
sampling-based methods, affinity-based methods, and approaches com-
bining sampling with affinity, as shown in Table 5.1. These algorithms
form a representative ensemble of existing image matting approaches.

5.5 Comparisons on Trimaps

In the first round of test, all algorithms are applied with the series of
trimaps T0–T9. Comparisons on scribble-based input will be presented
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Table 5.1 Matting algorithms tested in this study.

Sampling-based Affinity-based Combined
Bayesian [9] •
Knockout2 [11] •
Random Walk [16] •
Poisson [38] •
Closed-form [21] •
Iterative [48] •
EasyMatting [17] •
Robust [49] •
Geodesic [3] •

later. The geodesic matting approach is not included in the trimap-
based test since it is primarily designed for scribble-based input as an
efficient method for generating trimaps, as described in [3].

5.5.1 Accuracy and Robustness

Figure 5.3 shows the MSE curves of different algorithms for test image
T2. As expected, most algorithms achieve their best performance on
the finest trimap. As the trimap becomes coarser, their performances
generally degrade, but at different rates. Partial mattes are shown at
two trimap levels (2 and 8) since MSE values do not precisely represent
visual quality.

Table 5.2 shows the Minimal MSE values as the measure of accuracy
for all algorithms on the data set along with their ranks. Table 5.3
shows the Maximum MSE values as the measure of robustness for all
algorithms on the data set along with their ranks.

This study reveals that pure sampling-based approaches usually
work well with fine trimaps, but as the trimap becomes coarser, their
performance degrades dramatically. For instance, the maximum MSE of
Bayesian matting on example T3 is 7.34 times larger than the minimal
MSE it achieves with the finest trimap, indicating that this approach
is very sensitive to user input. This conclusion is consistent with the
theoretic analysis conducted in Section 2.

Pure affinity-based approaches generate more stable results in the
test.For instance, themaximumMSEofClosed-formmattingon example
T3 is only 31.1% larger than the minimal MSE it achieves, indicating
its robustness against different user inputs. This observation again is
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Random walk Knockout Poisson Bayesian Iterative BP

Closed-form Robust Ground-truth

R.W. K.O. Pois.

Baye. Iter. Clos.

Robust Grd-Tru.

EasyMatting

Easy

Fig. 5.3 Top left: MSE curves for test image T2. Top right and bottom: Partial mattes
computed at two trimap levels 2 and 9 (indicated by colored triangular marks).

Table 5.2 Minimal MSE (representing accuracy) of different algorithms and their ranks.

T1 T2 T3 T4 T5 T6 Rank
Bayesian 4537 4156 1375 2826 4236 394 5.7
Knockout 1555 3265 1133 1573 2053 373 3.7
Rand.Walk 2866 4828 2187 5817 4417 737 7.0
Poisson 7178 4777 8438 15008 10998 1618 7.8
Clos.-form 793 1052 612 891 1481 362 1.8
Iterative 612 1183 1304 1804 3374 436 3.8
EasyMatting 1274 1984 1566 2285 3975 405 4.8
Robust 461 441 381 992 1792 351 1.3

Note: Last column shows the average ranks.

consistent with the theoretic analysis conducted in Section 3. Note that
some approaches, such as Global Poisson matting and Random Walk
matting, cannot achieve very accurate results on this data set, due to their
specific weaknesses in defining the affinities as addressed in Section 3.

By combining sampling methods with neighborhood affinities,
optimization-based approaches typically achieve a good balance
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Table 5.3 Maximal MSE (representing robustness) of different algorithms and their ranks.

T1 T2 T3 T4 T5 T6 Rank
Bayesian 11987 20068 10057 9137 11767 976 7.0
Knockout 3215 6785 1803 2974 3832 764 3.8
Rand.Walk 3436 7486 2786 6436 4955 1077 6.0
Poisson 19598 15777 17368 32428 25118 6358 7.8
Clos.-form 972 2342 802 4495 3893 592 2.7
Iterative 1823 3373 2054 2251 4794 845 3.3
EasyMatting 2704 3774 2205 2523 5176 663 4.2
Robust 851 1011 671 2292 3631 491 1.2

Note: Last column shows the average ranks.

between accuracy and robustness. Specifically, the Robust Matting
system, which combines the optimized color sampling procedure (Sec-
tion 2.3.4) and the closed-form matting affinity (Section 3.6) together,
constantly ranks the first in terms of both accuracy and robustness.

5.5.2 Efficiency

Table 5.4 shows the approximate processing time of different
algorithms, using the level 5 trimap for each example. Note that the
Random Walk matting algorithm used in this test is fully implemented
on CPU rather than GPU as described in the original paper, so the
actual GPU implementation may require significantly less process-
ing time.

Table 5.5 shows the approximate memory requirements for different
algorithms on example T4 with the level 5 trimap.

Based on time and memory costs, we label each approach as com-
putationally inexpensive, moderately expensive, or very expensive.

Table 5.4 Processing time on trimap No. 5 (in seconds).

T1 T2 T3 T4 T5 T6
Bayesian 288 408 84 721 85 6
Knockout 2 2 2 2 2 1
Rand.Walka 2 2 2 3 3 1
Poisson 14 11 9 26 18 4
Clos.-form 4 4 4 7 6 3
Iterative 240 300 173 507 250 66
EasyMatting 5 7 2 14 3 1
Robust 5 7 4 14 6 2

aImplemented on CPU rather than GPU.
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Table 5.5 Memory consumption on Example T4 with trimap No. 5 (in Mb). The image size
is 1008 × 672 with 19.8% unknown pixels.

Bayesian Knockout Rand.Walk Poisson Clos.-form Iterative EasyMatting Robust
130 10 30 22 45 450 46 48

Specifically, Knockout2 and Random Walk matting are labeled as
inexpensive given their low requirements on both time and memory.
Poisson Matting, Closed-form matting, Robust Matting, and Easy Mat-
ting are labeled as moderately expensive. Bayesian matting and Iter-
ative matting are labeled as very expensive, since both require signifi-
cantly large amounts of processing time and memory.

5.6 Comparisons on Scribbles

Four approaches are compared by using scribble-based user inputs (at
three levels): Closed-form matting, Robust Matting, Geodesic matting,
and Geodesic+Robust matting. The last method, introduced in [3], is
a hybrid approach which first applies geodesic matting algorithm to
generate a trimap, then uses Robust matting algorithm to estimate
fine foreground details.

Table 5.6 shows the minimal and maximal MSE values of the four
algorithms on the data set along with their ranks. Table 5.7 shows
their costs in time and memory on example T4 using the second level
scribbles. Figure 5.4 shows partial mattes generated on example T4
using the third level scribbles.

Table 5.6 Minimal and Maximal MSE of different algorithms and their ranks for scribble-
based user input (Format: min(MSE)rank : max(MSE)rank).

Closed-form Robust Geodesic Geodesic+Robust
T1 1812 : 11553 2373 : 16744 3774 : 3852 1381 : 2171

T2 2752 : 13083 4333 : 13374 8534 : 8562 2381 : 7661

T3 722 : 2022 833 : 4764 2724 : 2833 571 : 991

T4 791 : 1612 973 : 4363 4174 : 4374 942 : 1431

T5 1122 : 35554 1423 : 21883 2944 : 3042 961 : 2521

T6 482 : 1533 654 : 3294 933 : 942 451 : 491

Rank 1.8 : 2.8 3.2 : 3.7 3.8 : 2.5 1.2 : 1.0

Note: Bottom line shows the average ranks.
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Table 5.7 Time (in second) and memory (in Mb) consumption on Example T4 with scribble
set 2(Format: time:memory). The image size is 1008 × 672 with 92.8% unknown pixels.

Closed-form Robust Geodesic Geodesic + Robust
11:48 15:62 1:50 9:70

Fig. 5.4 Results of scribble-based matting on example T4.

Geodesic matting stands out in terms of efficiency: it is almost 10
times faster than any other methods, which is not a surprise given
the linear complexity of its computation. However, as shown in the
results, Geodesic matting alone cannot generate accurate mattes for
hairy regions due to the simple color models used for final alpha esti-
mation around foreground boundaries.

The best results are achieved by the hybrid approach, which
generates noticeably higher quality mattes than other methods. The
computational efficiency of the method is also quite impressive. By
combining the advantages of Geodesic segmentation and Robust mat-
ting together, it becomes a powerful and practical tool for extracting
high quality mattes in an efficient way.

5.7 Accuracy vs. Cost Analysis

Each algorithm presents unique characteristics in our tests. Some
approaches are fast to compute but cannot generate accurate mattes,
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Fig. 5.5 Accuracy vs. Error analysis of existing matting approaches.

and some have the opposite attributes. By jointly considering both
accuracy and efficiency, each algorithm can be located in a two
dimensional error-cost space, as shown in Figure 5.5. The horizontal
axis is error, which measures the degree of accuracy that an algorithm
can achieve. The vertical axis is cost, which combines the effort users
need to spend on an algorithm to achieve its best possible results,
including both labor (how much user input is needed) and computa-
tional resources. An ideal (user preferred) matting algorithm should
have both small errors and costs, thus is located at the bottom-left
corner of the diagram as indicated in red. Recently proposed matting
systems are converging in this direction, but there is still consider-
able room for further improvement, in terms of both accuracy and
efficiency.

5.8 Summary

A quantitative and objective evaluation compares the performance of
existing matting algorithms, in terms of accuracy, robustness against
different user inputs, and computational efficiency. To achieve this a
test data set is constructed where each test image is accompanied by a
ground-truth matte and a series of predefined trimaps and scribbles as
user inputs. Extracted mattes are compared to the ground-truths in the
MSE sense as the measure of accuracy and robustness. Computational
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efficiency is measured by examining the time and memory costs of each
algorithm.

Both advantages and disadvantages of each algorithm are revealed
and addressed in this study, and are summarized in a single Error vs.
Cost figure (Figure 5.5). From the practical stand point of view, an ideal
matting algorithm should be able to generate accurate mattes for fairly
complicated examples while using the least amounts of user input and
computational resources. Recently proposed matting approaches are
approaching toward this goal, as shown on the Error vs. Cost figure.



6
Extension to Video

6.1 Introduction

In parallel to image matting research, video matting, the process of
pulling a matte from a video sequence of a dynamic foreground element
against a natural background, has also received considerable attention.
Video matting is a critical operation in commercial television and film
production, giving the power to insert new elements seamlessly into a
scene, or to transport an actor into a completely new environment in
order to create novel visual artifacts.

Extracting foreground objects from still images is a hard problem, as
demonstrated in previous sections. Unfortunately, extracting dynamic
objects from video sequences is an even more challenging task, although
there are also possible advantages. The challenges mainly come from
the following aspects:

• Large data size. The algorithms must be able to efficiently
process the large number of pixels in a video sequence. In
particular, the algorithms must be fast enough so that the
interface appears responsive and the user remains engaged in
the extraction task.

143
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• Temporal coherence. It has been proven that human visual-
ization system (HVS) is very sensitive to temporal inconsis-
tencies presented in video sequences [44]. However, applying
image matting algorithms naively on per-frame-basis often
results in temporal incoherence. How to estimate mattes con-
sistently across frames is one of the biggest challenges for
video matting.

• Fast motion vs. low temporal resolution. Typical video cam-
eras only capture at 30 frames per second, thus the sampling
rate is much lower than ideal when dealing with fast motions.
Building correspondence across frames and maintaining
temporal coherence in this case is very difficult.

Some advantages can arise in matting objects from videos versus
images. If the foreground moves across the background, a more com-
plete background model can be constructed to matte against. Also, the
edges between foreground and background can be easier to determine
since the texture on the foreground side of the edge remains intact,
while the background side of the edge changes as new portions of the
background are covered up or revealed.

A number of techniques have been proposed in existing video mat-
ting approaches to alleviate the difficulties and leverage the advantages.
To deal with large data size, most approaches adopt a two-step frame-
work. In the first step, only binary segmentation is solved to generate a
trimap for each frame. Given the trimaps, matting algorithms are then
applied in the second step to refine the foreground boundary. Since only
binary segmentation is considered in the first step, these approaches can
give users rapid response through various user interfaces. Once accurate
trimaps are generated, image matting algorithms can then be applied
offline on each frame to generate the final fine mattes.

To address the importance of temporal coherence, instead of cre-
ating trimaps on video frames independently, most approaches create
trimaps in a temporally coherent way, by performing spatio-temporal
optimizations. This also allows trimaps to be propagated from a limited
number of user defined keyframes to the entire sequence, resulting in
significantly reduced user input.
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When facing fast motions, most approaches rely on the user to
provide dense input as guidance for properly tracking objects across
frames. Including users in the loop ensures that the systems are able
to handle sequences at a variety of difficulty levels.

6.2 Interpolating Trimaps Using Optical Flow

As a widely used technique for estimating the inter-frame motion at
each pixel in a video sequence, optical flow has been used in the
Bayesian video matting system [8] for trimap propagation. The basic
idea is to ask the user to specify trimaps on a few keyframes in the
input sequence, and then use optical flow [5] to propagate trimaps to
all other frames.

Unfortunately, optical flow estimation is often erroneous, especially
for large motions. To ensure the trimap propagation is stable, a set of
supplemental methods have been proposed, as shown in Figure 6.1. In
the first step, the system requires the user to specify some “garbage
mattes” to eliminate the foreground on some frames. This allows a
dynamic clean background plate to be reconstructed from a composite
mosaic [42] of the remaining backgrounds in each frame. Both trimap
propagation and matte estimation can leverage the constructed back-
ground plate.

In the second step, bi-directional (forward and backward) flow is
computed to guide the user-specified trimaps from keyframes to inter-
mediate frames. Specifically, from frame t, a forward flow is computed
from the previous keyframe tk to t, along with an accumulated error

Background 
Estimation

Step 1

C G

Trimap
Interpolation

C

Bayesian 
Matting

C K

Step 2 Step 3

matte

Fig. 6.1 Flowchart of Bayesian video matting system. C is the input sequence, K is user-
selected keyframes, and G stands for garbage trimaps. This figure is modified from Figure 1
in [8].
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map Et
tk

. The trimap Mtk is then warped to frame t as Mf
t . A back-

ward flow from the next key frame tk+1 is computed in a similar way,
resulting an accumulated error map Et

tk+1 and a warped trimap M b
t .

The two warped trimaps are then unified by choosing the assignment
with smaller error at each pixel. If the two error maps are large at a
particular pixel, the pixel is then either set to be unknown, or to be
background if its color is close enough to the color in the background
plate computed in the first step.

In the third step, Bayesian matting is applied on each frame with
the propagated trimap. The estimated background plate is also used
to both improve the quality of the matte and speed up the matting
process.

Although optical flow is used in a very conservative way in the
system, its performance is still limited by the accuracy of flow esti-
mation, which is often quite erroneous. Furthermore, the background
plate estimation assumes that the background undergoes only planar-
perspective transformation, which may not be true for sequences in
which the background contains moving objects.

6.3 Rotoscoping for Trimap Generation

Another commonly used production matting technique is rotoscoping.
In traditional film production, rotoscoping often refers to the process
of manually tracing shapes, performed one frame at a time, through a
captured image sequence. Recently, optimization techniques have been
introduced into rotoscoping process and a keyframe-based rotoscoping
system has been proposed [2], which significantly reduces the amount
of human effort involved for tracking shapes.

The process starts by having the user select two keyframes ta and tb,
and draw a set of curves indicating object boundaries on them. Curves
are specified by placing control points of a piecewise cubic Bézier curve
with C0 continuity. The curves drawn on ta can be copied to tb and
modified to fit the new object position.

The system then solves an optimization problem to locate these
curves in the intermediate frames. Two types of energy terms are
defined in the objective function, image terms and shape terms.
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The image terms prefer curves that closely follow the motion of image
features or contours. The shape terms penalize quickly moving and
deforming curves. Mathematically the objective function to be mini-
mized is defined as:

E = wV EV + wLEL + wCEC + wIEI + wGEG, (6.1)

where w{V,L,C,I,G} are pre-defined weights, E{V,L,C} are shape terms,
and E{I,G} are image terms. Specifically, EV penalizes fast motion,
EL penalizes the change over time of the length of the vector between
adjacent samples of a curve, and EC measures the change in the second
derivative of the curve over time. The image term EI suggests pixels
that are close to curves on adjacent frames should have similar colors,
and EG encourages the curves to attach to high gradient points which
are typically boundary pixels. The total energy E has the general form
of a nonlinear least squares (NLLS) problem, and can be minimized
using the well-studied Levenberg–Marquardt (LM) method. Examples
of roto curves are shown in Figure 6.2.

Although the rotoscoping system is described as a binary segmen-
tation tool, it can be used to generate trimaps for further accurate
boundary matting, by creating a narrow band around the object bound-
ary using the correctly interpolated curves. However, the limitation of
this approach lies in the fact that it requires the object to maintain the
same topology without occlusion, since valid boundary correspondence

Fig. 6.2 Examples of roto-curves generated in the keyframe-based rotoscoping system [2].
Images are taken from [2].
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will not exist when the foreground changes topology or self-occlusions
occur. The application range of the keyframe-based rotoscoping system
is thus limited to simple motions.

6.4 Graph-Cut Segmentation for Trimap Generation

Graph-cut has been demonstrated to be an efficient optimization tool
for interactive image segmentation [6, 24, 32]. Given its promising per-
formance on single images, it is a natural thought to extend it to video
sequences for spatio-temporal video object segmentation. Two success-
ful systems, the video object cut-and-paste system [25] and the interac-
tive video cutout system [47], have been independently developed and
proposed at the same time based on this idea.

6.4.1 Object-Cut-and-Paste System

There are three main steps in the video object cut-and-paste sys-
tem [25]: 3D graph-cut segmentation, tracking-based local refinement,
and a coherent matting method for generating the final mattes. The
first two steps are used to accurately generate trimaps for video frames.

3D graph-cut segmentation: The user first provides accurate foreground
segmentation on some keyframes as initial guidance. Between each
pair of successive keyframes, a 3D graph G = 〈V,A〉 is then built on
atomic regions (obtained with pre-segmentation using the watershed
algorithm [45]) instead of individual pixels, as shown in Figure 6.3.
V is the node set which includes all the atomic regions generated by
pre-segmentation. A is the link set which contains two types of links:
intra-frame links AI which connect neighboring regions on the same
frame, and inter-frame links AT which connect nodes across adjacent
frames. Two regions on two adjacent frames are considered as tempo-
ral neighbors if they have both similar colors and overlapping spatial
locations.

The graph-cut algorithm is then performed on the 3D graph to solve
the segmentaion/labeling problem. Intuitively, the graph-cut optimiza-
tion will maintain the color consistency of foreground/background color
distributions which are initially constructed based on user-provided
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Fig. 6.3 Demonstration of the video object cut-and-paste system [25]. Left: 3D graph cut
construction. E1, E2, and E3 are different energy terms defined on different types of links.
Right top: Tracked window on one frame. Right bottom: applying local graph-cut seg-
mentation in the tracked window results in a refined segmentation. Illustrations are taken
from [25].

segmentation on keyframes, and at the same time maximize the color
differences between regions across the object boundary. Gaussian mix-
ture models (GMMs) are used to describe color distributions in the
system.

Tracking-based local refinement: Since the foreground/background color
distributions are built globally from the keyframes, the graph-cut
segmentation may be erroneous in areas where the foreground color
matches with the background color at a different part of the video,
and vice versa. To solve this problem a tracking-based local refinement
algorithm is proposed.

As shown in Figure 6.3, a video tube is interactively constructed,
which consists of rectangular windows {Wt}Tt=1 across T frames. This
is done by having the user place two key windows W1 and WT on two
keyframes, and the windows on the intermediate frames are automati-
cally located by a bi-directional feature tracking algorithm. The track-
ing algorithm is similar in spirit to the rotoscoping algorithm described
in the previous section, but is defined on rectangular windows instead
of curves. The energy terms defined in this process ensure the video
tube to vary smoothly, both in color and location of windows, and also
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force intermediate windows to capture image patches that are similar
to W1 and WT .

After tracking is performed, a constrained 2D pixel-level graph-cut
segmentation is applied to each window individually using the local
foreground and background color models constructed from the windows
in the keyframes, as shown in Figure 6.3. Finally, the refined segmen-
tation result in each window is seamlessly connected to the existing
boundary outside the window.

Coherent matting: To create the final matte, the binary segmenta-
tion boundary is dilated by 10 pixels to create a narrow band as the
unknown region for matting. The coherent matting algorithm [36] is
used, which improves Bayesian matting by introducing a regularization
term for the alpha. Hence, it produces an alpha matte that complies
with the prior binary segmentation boundaries, and performs better
than Bayesian matting when foreground and background colors are
similar.

6.4.2 Interactive Cut-Out System

Another 3D graph-cut based video object cutout system is proposed
in [47], where a number of techniques are developed, both in the under-
lying segmentation algorithms and the user interface. The two main
contributions of this work are: (1) a hierarchical graph-cut-based video
segmentation algorithm which enables the task of segmenting a 200-
frame video sequence to be interactive; and (2) a novel volumetric
painting interface which allows the user to easily specify the dynamic
spatio-temporal foreground object.

Mean-shift pre-segmentation: A mean-shift clustering algorithm [10] is
applied twice to build a strict hierarchical representation of the input
video sequence, as shown in Figure 6.4. Pixels are first grouped into
2D spatial regions on each frame using mean-shift image segmentation.
The complete collection of 2D regions, parameterized by their mean
positions and colors, are then clustered into 3D spatio-temporal regions.
This procedure generates a strict hierarchy of regions so that each pixel
belongs to a single 2D region and each 2D region belongs to a single
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Fig. 6.4 The hierarchical mean-shift structure of a video in [47]. As users mark foreground
(red) or background (blue) pixels the labels are propagated up the trees. (a) Nodes that
contain only red or blue paint are fully constrained. (b) Mixed nodes are left out of the
graph due to conflicting paint strokes in their children. (c) If an entire subtree is marked as
background (highlighted in gray) it is removed from further consideration. (d) The graph-
cut algorithm must assign a label to each white node in the graph. To apply graph-cut the
highest level nodes of a single color (highlighted in yellow) are used for graph construction.
This figure is taken from [47].

3D region. The exact coverage ensures that each pixel is given exactly
one label in the interactive min-cut optimization.

Once the user has marked some pixels as foreground and some
as background, the labels are propagated up the trees in the video
hierarchy. The min-cut graph is dynamically constructed each time
a segmentation is performed, by using only the highest level nodes
that have no label confliction. This is significantly different from other
approaches [24, 25, 32] where the graph is constructed once with fixed
topology. This dynamic graph construction has two major advantages:

(1) Fast segmentation. Since only a small number of nodes are
included in the graph, the optimization process can be speed
up dramatically. As shown in the examples, a 200-frame
720 × 480 sequence can be segmented within 10 seconds.

(2) The ability to correct pre-segmentation errors. In the sys-
tem pre-segmentation errors can be corrected by the user
by adding paint strokes to the erroneous regions, which will
break down higher level nodes into lower level ones. In other
words, when pre-segmentation errors are apparent, the user
has the ability to force the system to segment the erroneous
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regions at a finer resolution, such as the 2D region level, or
even at the pixel level.

To achieve a good segmentation using graph-cut optimization, data
and link costs must be properly assigned on the constructed graph. In
addition to global colors models used in previous approaches [24, 25,
32], a set of local color and edge models are also proposed in the system
to leverage the advantages video offers. The local models are combined
with the global models to achieve the best possible results.

Volumetric painting interface: A novel interface is developed in the sys-
tem which allows users to interactively access pixels that lie inside the
video volume. As shown in Figure 6.5, the video volume is treated as a
3D cube of data where the X- and Y -axes represent the normal hori-
zontal/vertical axes of a single frame, while the Z-axis represents time.
Users can rotate the cube to view it from any angle, cut through the
cube with cutting planes at any orientation and slice through parts of
the cube by drawing arbitrary surfaces through it. These manipula-
tions make it easy to mark foreground and background pixels within
the volume using simple paint strokes as well as larger-scale volume fill
operations.

Fig. 6.5 The volumetric painting interface presented in [47]. (a) The user rotates a video
volume. (b) An XZ-view of the video volume. The user draws a green curve to extrude a
surface through the volume. (c) The extruded surface allows the user to fill the right side of
the volume with background paint (blue tint on XZ-plane). (d) Another curve drawn along
the foreground’s path creates an extruded surface that allows the user to quickly mark the
object with red foreground paint across multiple frames. Images are taken from [47].
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Spatio-temporal cutting surfaces are very useful for isolating the
motion of objects over the entire video sequence in a single image.
Figure 6.5(d) shows an extruded surface where the foreground object is
spread out over much of the surface. By applying red, foreground paint
over the foreground object on this curved surface, the user quickly
indicates foreground pixels across many parts of the spatio-temporal
volume. Cutting the volume with such surfaces is especially useful for
marking thin moving structures that may be difficult to paint in a
standard video frame.

Boundary refinement: The foreground boundary generated by binary
graph-cut segmentation is typically noisy. To refine the boundary, a
pixel-level graph-cut segmentation is performed within a narrow band
(usually 10 pixel wide) of the initial boundary. The graph is constructed
by treating each pixel within the band as a node, and each node is
connected to its immediate spatial/temporal neighbors. A color sam-
pling and modeling algorithm which is similar to the one used in [9] is
employed to assign proper data and link costs in the graph.

Finally, a 3D border matting algorithm, improved from the 2D
border algorithm proposed in [32], is applied to estimate a spatio-
temporally coherent matte for the foreground. The foreground bound-
ary is first parameterized, and boundaries on adjacent frames are then
matched using a shape context-based [4] boundary matching algorithm.
In this way a consistent 3D contour mesh can be constructed across
the entire video volume, which is then used in the border matting algo-
rithm for generating the final matte. Similar to the coherent matting
algorithm used in [25], the 3D border matting algorithm also assumes a
strong profile for the alpha matte, thus is able to generate stable alpha
mattes even if the foreground and background colors are similar.

6.5 Geodesic Segmentation for Trimap Generation

The geodesic segmentation and matting approach [3], which has been
described in Section 3.4, has also been extended to video sequences.
In this approach video is also modeled as a 3D cube of pixels, in
which every pixel has six neighbors, four spatially and two temporally.
The user first specifies foreground and background scribbles on some
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Fig. 6.6 Video tubes used in geodesic video segmentation [3]. (a) Although the scribbles in
frame t1 intend to separate A as foreground, the foreground label (red) reaches the object
B by a path in 3D space where both objects A and B overlap. (b) and (c) The scribble
propagation is constrained to move forward and the branch between t1 and t2 is eliminated.
Illustrations are taken from [3].

keyframes, and the scribbles are then propagated throughout the whole
video by calculating weighted distances in spatio-temporal space.

One problem of this simple approach is the undesired backward
propagation in time. As shown in Figure 6.6(a), two objects A and
B are separated on frame t1, then overlap on frame t2, and finally
separate again on frame t3. If the user specifies A as foreground and
the rest of the image as background, then the foreground label will be
propagated to frame t2, and since A and B overlap on this frame, the
foreground label is then propagated backwards in time following B’s
trajectory, and finally B is segmented as foreground on frame t1, which
is incorrect. A simple solution to solve this problem is to constrain the
propagation to be forward-only, as shown in Figures 6.6(b) and 6.6(c).

The nice property of this approach is that since the geodesic dis-
tances can be computed in O(n) complexity, the segmentation can be
achieved very efficiently, allowing the user to interactively refine the
segmentation until it converges.

6.6 Summary

Video matting is inherently a more challenging task than image mat-
ting, and the difficulties lie in three aspects: (1) how to allow the user
to efficiently specify the dynamic spatio-temporal foreground object in
a video sequence; (2) how to propagate the small amount of user input
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to the vast amount of pixels living in the sequence to generate seg-
mentation that is temporally coherent; and (3) how to develop efficient
algorithms that can give users rapid feedback.

Most existing video matting systems adopt a two-step framework
by first interactively generating high quality binary segmentation and
using it to generate trimaps for video frames, then applying image
matting algorithms to generate the final mattes. In the segmentation
(trimap generation) step a number of techniques have been explored
to efficiently segment the entire video based on small amount of user
input, such as optical flow, rotoscoping, graph-cut optimization, and
the computation of geodesic distances. In the matting step the matte
is often encoded with strong prior profiles to ensure matte estimation to
be less erroneous when dealing with similar foreground and background
colors.

However, as pointed out in [48], this “segmentation + matting”
framework will fail when the foreground object presents large amounts
of transparent pixels. Most approaches will dilate the binary segmen-
tation boundary by 10–20 pixels to create a narrow band around the
foreground for matting, which may not be sufficient for covering all the
fine details of the foreground. Additionally, some approaches, such as
the rotoscoping system [2] and the cutout system [47], require matching
foreground boundaries across frames, thus will not be able to handle
objects with fast-changing topologies or occlusions very well.
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Matting with Extra Information

7.1 Motivation

As addressed in Section 1.1, matting from a single image or video
sequence is a severely under-constrained problem, since 7 unknown vari-
ables need to be estimated from 3 known ones for every unknown pixel.
Knowing or having a close guess of any of the unknown variables ahead
of time will significantly reduce the size of the solution space, typically
resulting in more accurately estimated mattes. Many approaches have
been proposed to utilize such extra information for matting when it is
available, both in the image domain and the video domain.

Unfortunately, the extra information does not come free. It may
require specially designed capturing devices, or require capturing an
object using different camera settings over multiple shots. In this
section we review some of the system designs for such a purpose.

7.2 Blue Screen Matting

In early matting approaches, the problem is simplified by having the
foreground object to be shot against one or multiple known constant-
colored background(s), which is called blue screen matting. Note that
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in this setup, although the background is a constant-colored scene, the
exact background color for an unknown pixel is still unknown (although
good estimations can be made fairly easily) due to the effects of shadows
and non-perfect lighting conditions.

Smith and Blinn [37] showed that simple constraints make the prob-
lem tractable, by assuming that 0.5 ≤ α2 ≤ Fb ≤ α2Fg, where Fb and
Fg are blue and green channels of the foreground color, and α2 is a
user-selected parameter. Under this assumption the alpha value can be
computed as

α = 1 − α1(Ib − α2Ig), (7.1)

where α1 is another user-controlled parameter, and Ib and Ig are blue
and green channels of the observed pixel. This approach, while easy to
implement, requires an expert to tune the parameters and can fail on
fairly simple foregrounds.

A more useful technique derived from this work is triangular mat-
ting, which has been used in many recent matting approaches as
part of the methodology for generating ground-truth mattes [22, 49].
In the simplest situation, if the foreground is shot against two dif-
ferent shades of blue color, for a foreground color Fz = [Fr,Fg,Fb],
its two observed colors are [Ir1 , Ig1 , Ib1 ] = [Fr,Fg,Fb + (1 − αz)Bk1 ]
and [Ir2 , Ig2 , Ib2 ] = [Fr,Fg,Fb + (1 − αz)Bk2 ], then αz can be solved as
1 − (Ib1 − Ib2)/(Bk1 − Bk2) (since Bk1 − Bk2 �= 0). This can be gener-
alized to foreground objects shot against any two distinct background
colors Ck1 and Ck2 , where both are arbitrary and (Rk1 − Rk2) + (Gk1 −
Gk2) + (Bk1 − Bk2) �= 0, the solution for αz is

αz = 1 − (Ir1 − Ir2) + (Ig1 − Ig2) + (Ib1 − Ib2)
(Rk1 − Rk2) + (Gk1 − Gk2) + (Bk1 − Bk2)

. (7.2)

These conditions are quite broad: only the sums of the primary color
coordinates of the two background colors have to differ. In fact, a con-
stant background color is not necessarily required.

Another representative blue screen matting is the nonparametric-
sampling-based technique proposed in [27], which has been described
in detail in Section 2.3.1.
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7.3 Flash Matting

Processing flash and non-flash image pairs has gained considerable
attention in recent years for a variety of applications such as photo
enhancement [15], red-eye correction [28], nonphotorealistic render-
ing [30], etc. In [39], a matting algorithm based on flash/no-flash image
pairs is proposed, based on the observation that the most noticeable
difference between the flash and no-flash image is in the foreground
object, if the background scene is sufficiently distant. An example
is shown in Figure 7.1, where Figure 7.1(a) shows the flash image
If = αF f + (1 − α)Bf , Figure 7.1(b) shows the corresponding non-
flash image I = αF + (1 − α)B, and Figure 7.1(c) shows the flash-only
image If − I. Note that the background of the flash-only image is dark,
indicating that Bf ≈ B.

The foreground matte is estimated by using non-flash image I and
flash-only image I ′ = If − I, in a joint Bayesian matting algorithm.
For an unknown pixel, the likelihood function to be maximized is

Fig. 7.1 Foreground flash matting [39]. (a) The flash image. (b) The non-flash image.
(c) Flash-only image. (d) Extracted matte. Images are taken from [39].



7.3 Flash Matting 159

defined as

arg max
α,F,B,F ′ L(α,F,B,F ′|I,I ′)

= max
α,F,B,F ′

{
L(I|α,F,B) + L(I ′|α,F ′) + L(F ) + L(B)

+L(F ′) + L(α)
}

, (7.3)

where the first two terms on the right-hand side are defined as

L(I|α,F,B) = −‖I − αF − (1 − α)B‖/σ2
I , (7.4)

and

L(I ′|α,F ′) = −‖I ′ − αF ′‖/σ2
I′ , (7.5)

where σI and σI′ are noise variances which are fixed parameters. The
likelihood L(F ) and L(F ′) are determined in a similar way as Baeysian
matting [9]: A group of nearby foreground colors are collected as sam-
ples and form an oriented Gaussian distribution, thus the log likelihood
is calculated as

L(F ) = −(F − F̄ )TΣ−1
F (F − F̄ ), (7.6)

where F̄ and Σ−1
F are mean and covariance matrix of the distribution.

The same method is applied to calculate L(F ′) and L(B). L(α) is
assumed to be a constant. The total log likelihood will be maximized
when

α =
σ2
I′(F − B)T (I − B) + σ2

IF
′T I ′

σ2
I′(F − B)T (F − B) + σ2

IF
′TF ′ , (7.7)

and


Σ−1
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I Iα(1 − α)/σ2
I 0

Iα(1 − α)/σ2
I Σ−1
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I 0

0 0 Σ−1
F ′ + Iα2/σ2
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
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Σ−1
F F̄ + Iα/σ2

I

Σ−1
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I

Σ−1
F ′ F̄ ′ + I ′α/σ2

I′


 , (7.8)
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where I is the 3 × 3 identity matrix. α and {F,B,F ′} are iteratively
estimated until convergence.

By using flash and non-flash image pairs this approach can gener-
ate good alpha mattes even when foregrounds and backgrounds contain
complex patterns, as shown in Figure 7.1(d). However, the limitations
of this approach are also obvious. The underlying assumption is that
only the appearance of foreground is dramatically changed by the flash,
which may not hold in practice. Other possible failure situations include
low reflectance foreground, surfaces near silhouettes, and pixel satura-
tion. This approach also assumes that the input image pair is pixel-
aligned, thus will fail when the fine foreground structures have moved
in the time interval between the two images.

7.4 Compositional Matting

Given an input image, most matting approaches will first try to estimate
a foreground matte, which can then be used to recompose the foreground
onto a new background to create a novel composite. In this process
matting and compositing as treated as separate tasks. The compositional
matting system proposed in [50] is the first approach to integrate matting
and compositing into a single optimization process, by treating both
the original image and the new background image as the input, and
taking advantage of knowing the new background image onto which the
foreground is to be composed. The key idea of the algorithm is that if the
new background has similar regions to the original background, instead
of extracting the true foreground matte in these regions which can be
difficult, a good transition between the old and the new background
can be found for creating a good composite. In spirit, this is similar to
the photomontage system [1]. In other words, matte estimation can be
conservative in this case and thus some of the original background is
carried into the composed image with the foreground.

This approach is also similar to the “drag-and-drop pasting” sys-
tem [19] where characteristics of both the source and the target images
are explored for creating a successful composite using Poisson blending
techniques. Specifically, a shortest closed-path algorithm is proposed
to search for the optimal location of the foreground boundary, thus
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Fig. 7.2 Using the compositional algorithm [50] for foreground retargeting. Left: The orig-
inal image. Middle: User input. Right: Result image where the foreground is enlarged
1.9 times. Images are taken from [50].

the final composite will contain the least amount of artifacts caused
by imperfect boundary conditions. Moreover, to faithfully preserve the
object’s fractional boundary, a blended guidance field is constructed
to incorporate the foreground alpha matte. However, as with other
gradient-based blending techniques, the composites generated by this
approach often contain strong discoloration artifacts [33], which is often
undesirable.

An interesting application of the compositional matting approach
is foreground retargeting. As shown in Figure 7.2, using the algorithm
the foreground object can be enlarged while maintaining the wide angle
view of the background.

However, the system is limited to work well only when the new
background has large, similar regions to the original background. Also,
since the output of the system is a composite rather than a matte,
the system needs to be invoked each time a new background image is
selected.

7.5 Defocus Matting

A multi-sensor camera is developed in [26], which captures multiple syn-
chronized video streams, as shown in Figure 7.3. Beam splitters allow
all sensors to share a virtual optical center yet have varying parameters.
The pinhole sensor has a small aperture that creates a large depth of
field. The foreground and background sensors have large apertures, cre-
ating narrower depths of field. The foreground sensor produces sharp
images for objects within about 0.5 m of depth of the foreground object
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Fig. 7.3 Left: The illustration of the multiparameter video camera used for defocus mat-
ting [26]. Right: The actual camera. Images are taken from [26].

and defocuses objects farther away. The background sensor produces
sharp images for objects from about 5 m to infinity and defocuses the
foreground object.

Given all three streams, matting becomes an over-constrained prob-
lem since for each frame, we have 7 unknowns α, F{r,g,b}, and B{r,g,b},
but 9 known variables IP{r,g,b}, IF{r,g,b}, and IB{r,g,b}. The actual matte
is solved by a rather complex optimization process. A trimap is first
automatically generated by classifying pixels to background, foreground
or unknown based on their z values. The matte, true foreground and
background colors are then estimated by solving a large optimization
problem using a gradient descent solver.

The main contribution of this survey is to introduce the multipa-
rameter camera to the video matting problem. The limitation of this
system lies in the following aspects. First, as addressed by the authors,
the sensors behind two beam splitters receive only 25% of the inci-
dent light, thus the system requires stronger illumination than does a
normal camera. The system also requires a significant depth discon-
tinuity between foreground and background, and is limited to scenes
where the foreground and background are visually distinguishable. This
also brings a question mark to the expensive computation involved in
the matting process, since in the case that foreground and background
are well separable, other simpler matting algorithms may work equally
well. It is unclear how the matting algorithm proposed in this approach
would compare to other matting algorithms given the same set
of trimaps.
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7.6 Matting with Camera Arrays

Using a camera array to extract high quality foreground mattes from
video sequences has been proposed in [20]. The actual system is shown
in Figure 7.4. The key idea behind the system is that relative paral-
lax in the array images, due to separation between the foreground and
background, allows foreground objects to be captured in front of differ-
ent parts of the background. Given a sufficiently textured background,
the foreground object can be captured in front of several background
colors, which constrains the matting problem.

Mathematically, in the system I, F, and B are all treated as random
variables and each camera i (i ∈ [1,n]) captures a sample of them as Ii =
αFi + (1 − α)Bi. Note that the matte α is assumed to be consistent
across different cameras. Taking the variances of the matting equation
gives us:

var(I) = var[αF + (1 − α)B]

= α2var(F) + (1 − α)2var(B), (7.9)

Fig. 7.4 The camera array matting system [20].
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by assuming that F and B are statistically independent. The solutions
to the quadratic equation are

α =
var(B) ± √

∆
var(F + var(B))

, (7.10)

where

∆ = var(I)[var(F) + var(B)] − var(F)var(B). (7.11)

In practice, one of the solutions is often greater than 1, thus needs to
be discarded. In case that both are valid, the average is taken as the
solution. The final solution is summarized as:

α =




0 : var(I) > max(var(B),var(F));
var(B)+

√
∆

var(B)+var(F) : var(B) < (I) ≤ var(F);
var(B)−√

∆
var(B)+var(F) : var(F) < (I) ≤ var(B);

var(B)
var(B)+var(F) : var(B)var(F)

var(B)+var(F) ≤ var(I) ≤ min(var(F),var(B));

1 : var(I) < var(B)var(F)
var(B)+var(F) .

(7.12)

Discontinuities will occur when switching from one solution to another,
but will be small enough if var(B) � var(F).

Note that for an unknown pixel var(B) and var(F) are still
unknown. They are estimated by assuming that the second-order
statistics vary smoothly on the image, thus for an unknown pixel z,
its variances can be approximated by using the variances of near-
est foreground and background samples, i.e., var(Fz) ≈ var(Ffz ) and
var(Bz) ≈ var(Bb

z), where F f
z and Bb

z are nearest foreground and back-
ground samples on the trimap.

The system has been demonstrated to be very efficient, and can
handle not only hair and trees, but also transparent objects such as
fluids and smoke, which is nearly impossible to achieve using the defo-
cus matting system or flash matting system. The light computation
enables the system to extract mattes in nearly realtime.

However, this approach also suffers from several limitations. The
alpha matte is assumed to be fixed and not view-dependent. However,
this is not true for some objects/materials which present self-occlusion.
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Also, the variance of the background is assumed to be several orders of
magnitude larger than that of the foreground, which may not be the
case. The accuracy of the system is also limited by aliasing in the light
fields. Finally, the system is specifically designed for indoor scenes with
controllable backgrounds, thus it is hard to extend to general outdoor
scenes.

7.7 Summary

Given only one input image or video sequence, matting is a severely
ill-posed problem due to the large number of unknown variables. Most
matting approaches rely on the user to provide sufficient constraints
toward good solutions. For difficult examples it is often a tedious pro-
cess for users to specify accurate trimaps, and the results may still
suffer from inaccuracy. The problem is obviously more severe on video
sequences than still images.

Matting systems described in this section take a different approach
toward accurate and efficient matting, by creating and using extra fore-
ground or background information to constrain the matting problem.
Various techniques or devices for capturing extra information have been
proposed, such as using flash/non-flash image pairs, multiparameter
cameras, and camera arrays. It is shown that once the additional infor-
mation can be faithfully captured, it can be used to dramatically reduce
the user’s effort for pulling out high quality mattes from images or video
sequences.

These approaches have opened many new possibilities in matting
research. However, their practical usage is somewhat limited due to
their special requirements on data acquisition. For instance, the flash
and non-flash images need to be perfectly registered to recover the
fine foreground details. A significant depth discontinuity is required in
the defocus matting system, and foreground is assumed to not have
self-occlusion in the camera array matting system. These assumptions
may not hold in real cases. Looking forward, given the fast evolving
of advanced imaging techniques in recent years, one can expect more
power imaging systems to be developed in the near future which are as
general as regular cameras we have today, but can capture much richer
information to significantly reduce the difficulty for high quality matting.
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Conclusion

The ultimate goal of matting research is to develop intelligent, user-
friendly, computationally efficient tools, which can be used to extract
high quality mattes wherever the foreground and background are sep-
arable to human eyes, both on still images and video sequences. In this
survey, we have tried to provide a comprehensive review of existing
image and video matting techniques. Many state-of-the-art algorithms
and systems have been visited, discussed, and compared. To compare
approaches, we explain each method’s motivation, why it works, and
when and where it will fail.

We have discussed how samples can be drawn from known fore-
ground and background areas and then how these samples have been
used to develop models for the different regions. This led to examining
how optimization methods use these models to determine the fore-
ground matte. We then have shown a quantitative comparison of many
of the published methods. Video matting presents special challenges
and opportunities which was discussed next. Finally, we show how some
systems have leveraged additional input for the matting problem.

There is of course much more to be done, and new applications to
be developed given the recent success of the matting approaches we
have outlined.
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8.1 Limitations of Current Approaches

Although matting techniques have been largely improved in recent
years, there is still a long way to go to finally solve the problem.

8.1.1 Accuracy

Current matting approaches can achieve good results when the fore-
ground and background are smooth and well-separable in the color
space. However, if the foreground and/or background contain(s)
highly textured regions with complex color patterns, existing matting
approaches tend to generate noisy results with noticeable artifacts.
In the experiments conducted in Section 5, for the test example T5
(see Figure 5.1), the strong texture patterns on the background have
caused all algorithms to generate MSE errors that are significantly
larger than those generated from other examples (see Table 5.2). One
could imagine that a more complex background will make the situation
even worse. Strong color discontinuities within texture patterns may be
even stronger than real foreground edges, thus will confuse most of mat-
ting algorithms. How to improve the accuracy of matting algorithms
against such difficult examples is a open question.

8.1.2 Efficiency

As revealed in Section 5, although recently proposed matting algo-
rithms tend to generate more accurate results than early approaches,
they are generally more expensive to compute. The Soft Scissors sys-
tem [46] achieves near-realtime performance on 1000 × 1000 images,
but are not able to give instant feedback on larger ones. The mem-
ory consumption of matting algorithms also need to reduced in order
to deal with gigapixel images. The GPU implementation for the basic
Random Walk matting [16] is inspiring, but how to take advantage of
GPU computation for other algorithms is still unknown.

8.2 Future Directions

There are a number of directions that one can explore in order to
improve current matting algorithms, or build new matting systems that
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outperform existing ones. In this section we mention some of the inter-
esting possibilities that we think may inspire future research.

8.2.1 Automatic Evaluation toward Self-Adjusting Mattes

There are some common properties of good mattes extracted from nat-
ural images. For instance, the transition from foreground to background
are generally smooth, and it is almost impossible to have two neigh-
boring pixels whose alpha values are 1 and 0, or have a region where
every pixel has the same alpha value of 0.5. These errors can often be
spotted in erroneous mattes.

Developing automatic means that can detect erroneous matting
results, both globally and locally, can be beneficial to existing matting
systems. Most of existing matting algorithms have a number of tunable
parameters, which are either fixed internally, or provided to the user to
tweak. If the resulting matte can be automatically evaluated, matting
algorithms thus can adjust their parameters to find the best parameter
combination, which can generate the best possible result.

Automatic evaluation can also help build hybrid matting system by
combining a number of techniques together. As described in previous
sections, different matting algorithms have quite different characteris-
tics, thus may work well in different situations. By evaluating results
generated by different algorithms from the same input, a better one can
be produced by combining all of them together using the best parts of
each of them.

8.2.2 Learning/Example-based Approaches

Existing matting approaches only rely on the current input to generate
a result, thus could fail in similar situations over and over again. This
gives us the opportunity to use example-based learning approaches to
augment matting systems, and give them the ability to learn what the
correct mattes should be in certain situations. Potentially, a matting
system could be customized if the user keeps feeding it certain types
of inputs. As more training examples are available one can hope the
systems can improve. As a result, the required user efforts for generating
good results will be reduced over time.
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The idea may sound straightforward, but how to implement such a
system remains an open problem. Since foregrounds in different images
usually have quite different colors and shapes, the training samples
may contain extremely large variances. A compact set of features thus
need to be extracted which can capture the essential characteristics
of the underlying mattes, while ignoring the absolute foreground and
background colors in each example.

The newly proposed high resolution matting system [31] has made
the first attempt along this direction. A high resolution ground-truth
data set is constructed, and a new gradient preserving prior on alpha
is developed based on the training data, which is used in the “alpha
deblurring” process for improving the results generated by previous
approaches. Such a data set is extremely valuable for exploring new
example-based matting approaches in the future.

8.2.3 More Practical Video Matting Systems

A number of image matting systems have already been successfully
commercialized. Compared with image matting tools, current video
matting systems are somewhat less practical. As addressed in Sec-
tion 6, existing systems either are computationally expensive, or have
too many assumptions which may or may not hold in practice. Further-
more, it is unclear what is the right user interface for video matting.
Keyframe-based interfaces are natural and intuitive, but may not be
efficient when large motions present. Volume-based interfaces are very
efficient for marking foreground objects in multiple frames, as shown
in the Video Cutout system [47], however are less intuitive for normal
users. A hybrid interface which combines them together may stand out
in the future.

8.3 Conclusion

Once a matte has been extracted, what can one do with it? We have
barely touched on this topic. The obvious application is compositing
the matte and associated image onto a new background, but other
applications are possible. We have shown one application for refor-
matting images by making the foreground object bigger on the same
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background. One can also envision much more interesting compositing
applications where multiple matted images and video are combined.
This raises other issues such as adjusting the lighting, color tempera-
ture, and shadowing to create a seamless composite. We are sure there
are other applications we have not thought of. Hopefully this survey
will provide a good basis for those wanting to push the state-of-the-art
in matting methods and for developing new unforseen applications.
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