

"You don't make a photograph just with a camera. You bring to the act of photography all the pictures you have seen, the books you have read, the music you have heard, the people you have loved."

- Ansel Adams

"The camera is an instrument that teaches people how to see without a camera."

- Dorothea Lange

What is Computational Photography?

 An extension of traditional digital photography that uses computational techniques for improving or augmenting image making by producing new types of image or scene representations

What is Computational Photography?

- Digital Photography
 - Simply replaced traditional film by digital technology
- Computational Photography
 - Image manipulation and computational techniques for capturing, analyzing, manipulating, combining, augmenting, searching, synthesizing, and using images for new applications (software)
 - Design new kinds of cameras (hardware)
 - Create new types of images, e.g., panoramas, 3D models, high dynamic range images

Course Information

http://pages.cs.wisc.edu/~cs534-1

- Pre-req: CS 367 (Matlab not assumed)
- Textbook: None. Readings from papers and some chapters in books (all online)
- Powerpoint slides
- Piazza web page for Q&A
- **Moodle** web page for homework electronic hand-in
- Alternative courses: CS 766: Computer Vision (Spring), CS 567: Medical Image Analysis (Spring)

Instructor

- Chuck Dyer
 - Chuck, Prof. Dyer, Dr. Dyer
 - 6379 CS
 - Office hours: MW 2 3
- Ph.D., University of Maryland
- M.S., UCLA
- · B.S., Stanford
- · Hometown: San Diego
- Research: Computer vision
- Hobby: Running (3:28 marathon in 2008, 4:22 mile in high school)

Teaching Assistant

- · Qisi "Cheese" Wang
 - 1308 CS
 - Office Hours: TR 11:45 12:45
- CS graduate student
- B.S., Georgia Tech
- Hometown: Beijing, China

Course Requirements

- Class Attendance and Participation: about 5%
 - Come to class (attendance will be taken randomly)
 - Ask questions and make comments, including on Piazza (not anonymous)
 - Come to office hours
- Homework Assignments: probably 4, about 45%
 - Try out existing apps such as Photosynth and Photomatix
 - Implement some methods using Matlab
 - 3 free late days; late penalty: 1 day 10%, 2 days 25%, 3 days 50%, 4 days 100%
- · Course Project: about 25%
 - Define, implement, experiment, write report, present in class
 - Grading is based primarily on effort, results and initiative try to be creative!
 - 3-person teams
- Midterm Exam: about 25%
 - Tentatively Thursday, October 27, 7:15 9:15 p.m.
- No Final Exam

Class Presentation

- December 13 and 15
- ~5 minutes
- · Conference-style "powerpoint" talk
- State problem, give motivation and example, background, description of method and main ideas of the approach, initial results, discussion of strengths and weaknesses of the method, possible future extensions

Project Ideas and Grading

- "Straightforward" approach: Pick a paper, implement it, extend it in some ways, and perform experimental evaluation
- Pick a paper that's easy to understand and on a topic you're interested in
- Grading based on effort, initiative, creativity, coolness, difficulty, focus, depth, implementation, quality of experimental results, originality, project report write-up
- Best to pick a narrower topic and go deeply into it rather than pick a broad topic that is not very in-depth on any part

Course Overview

- Digital photography
- Image filtering
- Texture synthesis, image completion,
- Combining multiple images into panoramas
- Feature detection, warping, morphing
- Faces and places
- 3D scene reconstruction
- High dynamic range imaging and tone mapping
- Light fields, flash/no-flash photography
- Video processing (if time)

What will Not be Covered

- Photoshop
- New camera technologies (except briefly)
- Video (except briefly)
- Combining photographic imagery with standard graphics imagery ("augmented reality")

Things to Do

- Start learning or reviewing Matlab
 In-class introduction to Matlab will be given
- Read introductory papers
- Start on HW #1 (due Thursday, September 15)
- Start thinking about possible course project ideas and possible 3-person team

Things to Do

- · Check out the course web page
 - pages.cs.wisc.edu/~cs534-1
- Activate your CS instructional Linux and Windows accounts
 - If you had a CS account in Spring or Summer, you do not need to re-activate your account; use same CS login
 - Otherwise, go to CSL web site and click "Activate Account" link
- · Sign up on Piazza
 - piazza.com/wisc/fall2016/cs534/home

Today

Course overview and motivation

A Very Brief History of Image Making

- Painting
- Camera Obscura
- Film photography
- Digital photography
- Computational photography

Silicon Image Sensor (1973)

CCD chip with 100 x 100 pixels produced by Fairchild Semiconductor

First Digital Camera (Kodak, 1975)

Steven Sasson

Digital Camera (1991)

Kodak DCS-100 introduced in 1991 with 1.3 MP

Traditional Photography

- Traditional photography, film or digital, focuses on the process of recording rays of light onto a permanent medium
- The art of photography is controlling the many settings (shutter speed, aperture, lighting, viewpoint, etc.) to obtain high-quality photographs
- But, what are photographs / images for?
- What we SEE is influenced by the Human Visual System, and what we often want is to capture a representation of a visual experience

Image Making, Not Image Taking

- Overcome limitations of traditional photography and enhance visual experiences
 - 1. Capture and combine *more light rays* from the "light field"
 - New computational cameras (optics + computation)
 - 2. Improve image quality
 - Deblur, refocus, relight, denoise, dehaze, different capture time
 - 3. Exploit the billions of images on web & social media
 - Community photo collections / the Internet of Cameras

High-Speed Cameras

- Casio Exilim EX-ZR100
 - High-speed movie mode
 - 30 fps at 1980 x 1080 (HD)
 - 240 fps at 432 x 320
 - 1000 fps at 224 x 64
 - High-speed, continuous-shutter still image mode
 - Up to 30 10 MP images at 40 fps
 - · Pre-record mode: half-press shutter to start continuously-refreshed buffer of images; full press records buffer contents
 - \$300 (2011)

Gigapixel Cameras

- Pan-STARRS GPC1
 - Custom-built camera for astronomical use
 - 64 x 64 array of CCD sensors, each 600 x 600 pixels, giving image with 1.4 gigapixels

Gigapixel Cameras

- DARPA Argus-IS 1.8 gigapixel video camera (@15 fps) on Predator and Hummingbird unmanned aerial vehicles (UAVs) for airborne surveillance system called "Gorgon Stare"
 - Combines 4 cameras, each with 92 5 MP sensors

Gigapan Camera Mounts

Robotic camera mount + camera + stitching software + viewer

Example:

70,000 images stitched into 365 GP panorama of Mount Blanc

www.in2white.com

In-Camera Panoramas Fujifilm FinePix X100 120° or 180° "motion panorama" mode Up to 10 frames combined to produce 7680 x 2160 image \$1,200 (2011)

by KopiOkaya, 2011

In-Camera HDR • Nikon D5100 - automatically combines multiple exposures to produce a single HDR image • Casio EX-ZR100 • Apple iPhone (3 exposures)

What is Computational Photography?

- Answer 2: Capture multiple images varying camera setting X (e.g., aperture, position, time) and combine them to produce a single image that exhibits better Y, overcoming limitations of traditional photography
 - Larger field of view (panoramic images)
 - Improve dynamic range (HDR images)
 - Improve lighting
 - Change focus
 - Video stabilization
- · In-camera or off-camera processing

Image Manipulation for *Artistic* and Other Effects

- Many smartphone apps
 - Instagram
 - Snapseed
 - Shockmypic
 - Vignette
 - PhotoFX
 - ToonPaint
 - ArtistaOil
 - many, many more
- Most involve *manual* editing tools

What is Computational Photography?

- Answer 3: Exploiting the billions of online images and videos in community photo collections and social media sites
 - Facebook users posted over 350 million images / day in 2014
 - Instagram users shared 40 million images / day in 2013
 - Snapchat users sent 700 million images / day in 2014
 - Sites such as Flickr, Picasa, Photobucket have billions of user-supplied images
- · Mostly unorganized; few tagged or labeled
- How to search, index, organize, share, manipulate, combine, extract and use image content?

What are All the Photos on the Internet Good For?

Exploit the "unreasonable effectiveness of data" [Halevy, Norvig, Pereira 2009]:

With a large enough number of images, we have samples that are "similar to" almost any other image ever taken or to be taken,

so use them!

Paste and Blend

Graph cut + Poisson blendin

Appearance Transfer Find another image that has pixels with similar texture, color distribution, contrast, lighting, etc. and use to fill hole

What are All the Photos on the Internet Good For?

Mobile social media provides near-real-time data about intentional or unintentional communities of users, which can be used for tasks such as surveillance and monitoring:

Social Media as Sensors

Photography as Communication

- Photography + social networking → photography is an increasingly important new "communication medium" and new form of dialogue between people
- "This is a watershed time where we are moving away from photography as a way of recording and storing a past moment, ... and turning photography into a communication medium."
 Robin Kelsey, Harvard