Texture

What is texture?
• Easy to recognize, hard to define
• Deterministic/regular textures (“thing-like”)
• Stochastic textures (“stuff-like”)

Tasks
• Discrimination / Segmentation
• Classification
• Texture synthesis
• Shape from texture
• Texture transfer
• Video textures

Modeling Texture

What is texture?
• An image obeying some statistical properties
• Similar structures (“textons”) repeated over and over again according to some placement rule
• Must separate what repeats and what stays the same
• Often has some degree of randomness
• Often modeled as repeated trials of a random process

Texture Discrimination

Shape from Texture
Texture

- Texture is often “stuff” (as opposed to “things”)
- Characterized by spatially repeating patterns
- Texture lacks the full range of complexity of photographic imagery, but makes a good starting point for study of image-based techniques

Texture Synthesis

- Goal of texture synthesis: Create new samples of a given texture
- Many applications: virtual environments, hole-filling, inpainting, texturing surfaces, image compression

The Challenge

- Need to model the whole spectrum, from regular to stochastic textures

Method 1: Copy Blocks of Pixels

- Photo
- Visual artifacts at block boundaries
- Pattern Repeated
Statistical Modeling of Texture

• Assume stochastic model of texture (*Markov Random Field*)

• Assume *Stationarity*: the stochastic model is the same regardless of position in the image

Markov Chain

• Markov Chain
 - a sequence of random variables \(x_1, x_2, \ldots, x_n\)
 - \(x_t\) is the state of the model at time \(t\)

\[
\begin{align*}
 x_1 &\rightarrow x_2 &\rightarrow x_3 &\rightarrow x_4 &\rightarrow x_5 \\
\end{align*}
\]

• Markov assumption: each state is dependent only on the previous one
 - dependency given by a *conditional probability*:
 \[P(x_t \mid x_{t-1}) \]
 - The above is actually a *first-order* Markov chain
 - An *Nth-order* Markov chain: \[P(x_t \mid x_{t-1}, \ldots, x_{t-N}) \]

Markov Random Field

A Markov Random Field (MRF)

• Generalization of Markov chains to two or more dimensions

First-order MRF:

• Probability that pixel \(X\) takes a certain value given the values of neighbors \(A, B, C,\) and \(D\):

\[
P(X \mid A, B, C, D) = \frac{\text{constant}}{Z}
\]

• Higher-order MRFs have larger neighborhoods, e.g.:

Statistical Modeling of Texture

• Assume stochastic model of texture (*Markov Random Field*)

• Assume *Stationarity*: the stochastic model is the same regardless of position

• Assume *Markov* (i.e., *local*) property:
 \[p(\text{pixel} \mid \text{rest of image}) = p(\text{pixel} \mid \text{neighborhood}) \]
Motivation from Language

- Shannon (1948) proposed a way to generate English-looking text using N-grams:
 - Assume a Markov model
 - Use a large text corpus to compute probability distributions of each letter given N−1 previous letters
 - Starting from a seed, repeatedly sample the conditional probabilities to generate new letters
 - Can use whole words instead of letters too

Mark V. Shaney (Bell Labs)

- Results (using alt.singles corpus):
 - “As I’ve commented before, really relating to someone involves standing next to impossible.”
 - “One morning I shot an elephant in my arms and kissed him.”
 - “I spent an interesting evening recently with a grain of salt.”
- Notice how well local structure is preserved!
 - Now let’s try this in 2D using pixels

Efros & Leung Algorithm

- Synthesizing One Pixel

 - What is $P(x \mid \text{neighborhood of pixels around } x)$?
 - Find all the windows in the image that match the neighborhood
 - consider only pixels in the neighborhood that are already filled in
 - To synthesize pixel x, pick one matching window at random and assign x to be the center pixel of that window
Efros & Leung Algorithm

• Assume Markov property, sample from \(P(x \mid \text{Nbr}(x)) \)
 – Building explicit probability tables is infeasible
 – Instead, we search the input image for all sufficiently similar neighborhoods and pick one match at random

Really Synthesizing One Pixel

– An exact neighborhood match might not be present
– So we find the best matches using “SSD error” and randomly choose between them, preferring better matches with higher probability

Computing \(P(x \mid \text{Nbr}(x)) \)

• Given output image patch \(w(x) \) centered around pixel \(x \)
• Find best matching patch in sample image:

\[
\begin{align*}
 w_{\text{best}} &= \arg \min_w d(w(x), w) \in I_{\text{sample}} \\
 \text{Note: } &\text{ normalize } d \text{ by number of known pixels in } w(x)
\end{align*}
\]
• Find all image patches in sample image that are close matches to best patch:

\[
\Omega(x) = \{ w \mid d(w(x), w) < (1 + \varepsilon)d(w(x), w_{\text{best}}) \}
\]
• Compute a histogram of all center pixels in \(\Omega \)
• Histogram = conditional pdf of \(x \)

Finding Matches

• Sum of squared differences (SSD)

\[
\| \begin{array}{c} \text{Original} \\ \end{array} - \begin{array}{c} \text{Sample} \\ \end{array} \|_2^2
\]

or, in Matlab:

\[
\text{sum(sum(} \cdot - \cdot) .^2))
\]
Finding Matches

- Sum of squared differences (SSD)
 - *Gaussian-weighted* to make sure closer neighbors are in better agreement

\[|| \begin{pmatrix} \text{pixel} \\ \cdot \\ \cdot \end{pmatrix} - \begin{pmatrix} \text{pixel} \\ \cdot \end{pmatrix} ||^2 \]

Gaussian Filtering

- The picture shows a smoothing kernel proportional to

\[\frac{1}{e^{-\frac{x^2+y^2}{2\sigma^2}}} \]

(which is a reasonable model of a circularly symmetric fuzzy blob)

Growing Texture

- Starting from the initial configuration, “grow” the texture one pixel at a time
- The size of the neighborhood window is a parameter that specifies how stochastic the user believes the texture to be
- To grow from scratch, we use a random 3 x 3 patch from input image as seed

Details

- Random sampling from the set of candidates vs. picking the best candidate
- Initialization for blank output image
 - Start with a “seed” in the middle and grow outward in layers
- Hole filling: Growing in “onion skin” order
 - Within each “layer”, pixels with the largest number of known-neighbors are synthesized first
 - Normalize error by the number of known pixels
 - If no close match can be found, the pixel is not synthesized until the end
Varying Window Size

Synthesis Results

french canvas raffia weave

Results

reptile skin aluminum wire
Summary of Efros and Leung Algorithm

- Advantages:
 - conceptually simple
 - models a wide range of real-world textures
 - naturally does hole-filling

- Disadvantages:
 - it’s greedy
 - it’s slow
 - it’s heuristic

Accelerating Texture Synthesis

- For textures with large-scale structure, use a Gaussian pyramid to reduce required neighborhood size

Another Property of Gaussians

- **Cascading Gaussians**: Convolution of a Gaussian with itself is another Gaussian

 - So, we can first smooth an image with a small Gaussian
 - Then, we convolve that smoothed image with another small Gaussian and the result is equivalent to smoothing the original image with a larger Gaussian
 - If we smooth an image with a Gaussian having standard deviation σ twice, then we get the same result as smoothing the image with a Gaussian having standard deviation $\sqrt{2}\sigma$

Pyramids

- Useful for representing images at multiple “scales”
- Pyramid is built using multiple copies of image
- Each level in the pyramid is an image with 1/4 the number of pixels of previous level, i.e., each dimension is 1/2 resolution of previous level
Reduce Gaussian Pyramids

\[g_l(u, v) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m, n) g_{l-1}(2u + m, 2v + n) \]

\(g_l = REDUCE[g_{l-1}] \)

Expand Gaussian Pyramids

\[g_{l,n}(u, v) = \sum_{p=-2}^{2} \sum_{q=-2}^{2} w(p, q) g_{l,n-1}\left(\frac{u-p}{2}, \frac{v-q}{2}\right) \]

\(g_{l,n} = EXPAND[g_{l,n-1}] \)
Convolution Mask

Exploit separability property of Gaussian filtering

\[w(-2), w(-1), w(0), w(1), w(2) \]

Commonly used masks:

\[.05, .25, .4, .25, .4 \]

or \(\frac{1}{20} [1, 5, 8, 5, 1] \)

or \(\frac{1}{16} [1, 4, 6, 4, 1] \)

Accelerating Texture Synthesis

- For textures with large-scale structure, use a Gaussian pyramid to reduce required neighborhood size
 - Low-resolution image is synthesized first
 - For synthesis at a given pyramid level, the neighborhood consists of already generated pixels at this level plus all neighboring pixels at the lower-resolution level

Gaussian Pyramid

High resolution

Low resolution

Image Quilting

A. Efros and W. Freeman, Image quilting for texture synthesis and transfer, Proc. SIGGRAPH, 2001

- Observation: neighbor pixels are highly correlated
- Idea: unit of synthesis = block of pixels
 - Exactly the same as Efros & Leung but now we want \(P(B|\text{Nbr}(B)) \) where \(B \) is a block of pixels
 - Much faster: synthesize all pixels in a block at once
Main Idea

• The “Plagiarist’s Algorithm”
 – Copy as much of the source image as you can
 – Then try to cover up the evidence
• Rationale:
 – Texture blocks are by definition correct samples of texture so the only problem is connecting them together

Algorithm

– User picks size of block and size of overlap
– Synthesize blocks in raster order
 – Search input texture for all blocks that satisfy overlap constraints (above and left)
 • Overlap error SSD < threshold
 – Paste new block into resulting texture
 • Use Dynamic Programming to compute minimum error boundary cut

Minimum Error Boundary

overlap error

min. error boundary
Dynamic Programming

• Linear time algorithm for solving sequential decision (optimal path) problems

![Trellis Diagram]

How many paths through this trellis? 3^T

Principle of Optimality for an n-stage assignment problem:

$$C_t(j) = \min_i (\Pi_{ij} + C_{r-1}(i))$$

$$b_t(j) = \arg \min_i (\Pi_{ij} + C_{r-1}(i))$$

Assume cost can be decomposed into stages
Minimum Error Boundary

- Let $i = 1, \ldots$, number of columns of overlap
- Let $t = 1, \ldots$, number of rows in overlap

\[
\begin{pmatrix}
\vdots & \vdots \\
\end{pmatrix}^2
\]

overlap error
Political Texture Synthesis!

President Bush's campaign advertised Thursday that it had digitally altered a photo that appeared in a national cable television commercial in the photo, a handful of officials were multiplied many times.

This section discusses the significance of the political campaign.

Original photograph

This section focuses on the implications of political manipulation in advertisements.
Texture Transfer

- Take the texture from one source "palette" image and "paint" it onto another "target" image
 - This requires separating texture and shape
 - That’s HARD, but we can cheat
- Just add another constraint when picking a block: similarity to target image at that position
- Error = \(\alpha \) (overlap error w/ palette block) + (1-\(\alpha \))(diff w/ target image)
- Here, diff w/ target image = SSD between palette texture block and intensity in block of target face image
- Iterate using successively smaller block sizes

Here, bright patches of rice should match bright patches of face, and dark patches match too

Here, diff w/ target image = SSD between blurred palette texture block and blurred intensity in block of target face image
Efros and Freeman Alg. Summary

- Quilt together patches of input image
 - randomly (texture synthesis)
 - constrained (texture transfer)
- Image Quilting
 - No filters, no multi-scale, no one-pixel-at-a-time!
 - fast and very simple
 - Results are not bad

Extension: Texture Transfer Using Objects as Primitives

Lorenzo De Carli, UW

- Throughout the centuries, many artists created stunning visual effects by rendering well-known physical objects using combinations of other objects.
- The first to do so was probably the 16th century Italian painter Giuseppe Arcimboldo
- The technique is also popular among modern artists such as Octavio Ocampo
Giuseppe Arcimboldo

Method

• Small images of a user-specified library of objects are used as “macropixels” to render the image
• The algorithm works by computing all possible matchings of the objects in the library with the source image – computing the pixel-by-pixel difference (SSD) between the colors of the two images
• The closest matchings are chosen and used to generate the result image

Matching an Object with an Image Patch

Library of Object Images
Full Image Rendering

Multiple Region Rendering

Results

Extension: Texture Synthesis from Non-Fronto-Parallel Textures

Saurabh Goyal, UW-Madison
Extension: Texture Synthesis on Surfaces

Extension: 3D Texture Synthesis

Multiscale Texture Synthesis

C. Han et al., SIGGRAPH 2008

A Simple Graph
Image Analogies: Assumptions

- Image A’ is assumed to have been created from A by applying some unknown filter.
- Images A and A’ are assumed to be registered, i.e., the colors around pixel p in A correspond to the colors around pixel p in A’, though transformed via some image filter.
- Each pixel has an associated feature vector specifying color, luminance, and various filter outputs.
- Implemented as “resynthesizer” in GIMP.

The Approach
The Approach

How to Select Best Pixel for $B'(q)$?

- **Nearest-Neighbor Match**: Given $F(q) = \text{concatenation of feature vectors around } q \text{ in } B$ and B' at levels l and $l-1$, find pixel p in A such that $F(p)$ is closest match to $F(q)$ (using Gaussian weighted SSD).
- **Coherence Match**: Find pixel r in A such that $F(r)$ is closest match to $F(q)$ for all r's used to synthesize already synthesized pixels in neighborhood of q.
- Pick “best” of p and r

Results: Blur Filter Learning

$F(p) =$ luminance at pixel p in A and A' in 5×5 neighborhood at current level, and 3×3 neighborhood at next coarser level.

Results: Edge Filter

$F(p) =$ luminance at pixel p.
Texture Synthesis

Source images (A, B) are blank/constant

Texture Transfer

- A and A' is the same (or A is a blurred version of A')
- Optional: Use a weight to control the tradeoff between matching (A, B) and (A', B')
Colorization

Unfiltered source (A)

Filtered source (A')

Unfiltered target (B)

Filtered target (B')

Image Analogies

Aaron Hertzmann
Charles Jacobs
Nuria Oliver
Brian Curless
David Salesin