Video Textures

Arno Schödl
Richard Szeliski
David Salesin
Irfan Essa
Microsoft Research, Georgia Tech
Problem Statement

video clip video texture

Approach

How do we find good transitions?

Finding Good Transitions

Compute L_2 distance $D_{i,j}$ between all frames vs. frame i

frame j

Similar frames make good transitions

Markov Chain Representation

Similar frames make good transitions
Transition Costs

Transition from i to j if successor of i is similar to j

Cost function:

$$C_{i \rightarrow j} = D_{i, j} + 1$$

Transition Probabilities

Probability for transition $P_{i \rightarrow j}$ inversely related to cost:

$$P_{i \rightarrow j} \propto \exp\left(-\frac{C_{i \rightarrow j}}{\sigma^2}\right)$$

Preserving Dynamics

- High σ
- Low σ
Preserving Dynamics

Cost for transition \(i \rightarrow j \)

\[
C_{i \rightarrow j} = \sum_{k = -N}^{N-1} w_k D_{i+k+1, j+k}
\]

Deadends

No good transition at the end of sequence

Future Cost

- Propagate future transition costs backward
- Iteratively compute new cost

\[
F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_k F_{j \rightarrow k}
\]
Future Cost

• Propagate future transition costs backward
• Iteratively compute new cost

\[F_{i\rightarrow j} = C_{i\rightarrow j} + \alpha \min_{k} F_{j\rightarrow k} \]

Future Cost

• Propagate future transition costs backward
• Iteratively compute new cost

\[F_{i\rightarrow j} = C_{i\rightarrow j} + \alpha \min_{k} F_{j\rightarrow k} \]

Future Cost

• Propagate future transition costs backward
• Iteratively compute new cost

\[F_{i\rightarrow j} = C_{i\rightarrow j} + \alpha \min_{k} F_{j\rightarrow k} \]

• Q-learning
Future Cost – Effect

Finding Good Loops
- Alternative to random transitions
- Precompute a good set of loops up front (using dynamic programming)

Visual Discontinuities
- Problem: Visible “Jumps”

Crossfading
- Solution: Crossfade from one sequence to the other.

\[\ldots \quad A_{i-2} \quad A_{i-1} \quad A_i \quad \frac{2}{4} \quad B_{i-2} \quad B_{i-1} \quad B_i \quad \frac{3}{4} \quad A_{i+1} \quad B_{i+1} \quad \ldots \]

\[\ldots \quad A_{i-2} \quad A_{i-1} \quad A_i \quad \frac{2}{4} \quad B_{i-2} \quad B_{i-1} \quad B_i \quad \frac{3}{4} \quad A_{i+1} \quad B_{i+1} \quad \ldots \]
Morphing

• Interpolation task:
 \[
 \frac{2}{5} \text{A} + \frac{2}{5} \text{B} + \frac{1}{5} \text{C}
 \]

• Compute correspondence between pixels of all frames

• Interpolate pixel position and color in morphed frame

• based on [Shum 2000]

Results – Crossfading / Morphing
Results – Crossfading / Morphing

Jump Cut Crossfade Morph

Crossfading

Frequent Jump & Crossfading

Video Portrait

Useful for web pages
Combine with IBR techniques

Region-based Analysis
- Divide video up into regions
- Generate a video texture for each region

Automatic Region Analysis

User-controlled Video Textures
slow variable fast
User selects target frame range
Time Warping

- Shorter
- Original
- Longer

Lengthen / shorten video without affecting speed

Summary

- Video clips → video textures
 - define Markov process
 - preserve dynamics
 - avoid dead-ends
 - disguise visual discontinuities

Summary

- Extensions
 - regions
 - external constraints
 - video-based animation

Discussion

- Some things are relatively easy
Discussion

• Some are hard