

Application: Movie Special Effects

- First movies with morphing
 - *Willow*, 1988
 - Indiana Jones and the Last Crusade, 1989
- First music video with morphing
 - Black or White, Michael Jackson, 1991

Mesh-based Warp Specification

 How can we specify the warp? Specify corresponding *spline control points Interpolate* to a complete warping function

Sparse Warp Specification

- How can we specify the warp?
 - 2. Specify corresponding line segments (*vectors*)
 - Interpolate to a complete warping function

Feature-based Image Morphing

- T. Beier and S. Neely, Proc. SIGGRAPH 1992
- Distort color *and* shape
 - \Rightarrow image warping + cross-dissolving
- Warping transformation partially defined by user interactively specifying corresponding pairs of vectors in the source and destination images; only a sparse set is required (but carefully chosen)
- Compute dense pixel correspondences, defining continuous mapping function, based on weighted combination of displacement vectors of a pixel from all of the input vectors
- Interpolate pixel positions and colors (2D linear interpolation)

Beier and Neely Algorithm

- Given: 2 images, A and B, and their corresponding sets of line segments, L_A and L_B, respectively
- Foreach intermediate frame time $t \in [0, 1]$ do
 - Linearly interpolate the *position* of each line
 L_t[i] = Interpolate(L_A[i], L_B[i], t)
 - Warp image A to destination shape
 - WA = Warp(A, L_A , L_t)
 - Warp image B to destination shape
 - WB = Warp(B, L_B, L_t)
 - Cross-dissolve by fraction t
 - MorphImage = CrossDissolve(WA, WB, t)

Sparse Warp Specification

- How can we specify the warp? Specify corresponding *points*
 - Interpolate to a complete warping function

How do we go from feature points to pixels?

Morphing between Two Image Sequences

- Goal: Given two animated sequences of images, create a morph sequence
- User defines corresponding line segments in pairs of key frames in the two sequences
- At frame *i*, compute the two sets of line segments by interpolating between the nearest bracketing key frames' line sets
- Apply 2-image morph algorithm for *t* = 0.5 only to obtain morph frame *i*

Geometrically-Correct Pixel Reprojection

- What geometric information is needed to generate **optically-correct** virtual camera views?
 - Dense pixel correspondences between two input views
 - Known geometric relationship between the two cameras
 - Epipolar geometry

