Human Body Recognition and Tracking: How the Kinect RGB-D Camera Works

Kinect RGB-D Camera
Microsoft “Kinect for Xbox 360”
– aka “Kinect 1” (2010)
– Color video camera + laser-projected IR dot pattern + IR camera

What the Kinect Does

“2016 will be the year that we see interesting new applications of depth camera technology on mobile phones.”
-- Chris Bishop, Director of Microsoft Research, Cambridge (2015)
How Kinect Works: Overview

IR Projector → Projected Light Pattern → IR Sensor

Stereo Algorithm ↓ Segmentation, Part Prediction

Depth Image → Body parts and joint positions

Stereo from Projected Dots

IR Projector → Projected Light Pattern → IR Sensor

Stereo Algorithm ↓ Segmentation, Part Prediction

Depth Image → Body parts and joint positions

Stereo from Projected Dots

1. Overview of depth from stereo
2. How it works for a projector/sensor pair
3. Stereo algorithm used

Depth from Stereo Images

image 1

image 2

Dense depth map

Some of following slides adapted from Steve Seitz and Lana Lazebnik
Depth from Stereo Images

- Goal: recover depth by finding image coordinate \(x' \) in Image 2 that corresponds to \(x \) in Image 1

Basic Stereo Matching Algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information

Depth from Disparity

\[
\frac{x - x'}{O-O'} = \frac{f}{z}
\]

\[\text{disparity} = x - x' = \frac{B \cdot f}{z} \quad z = \frac{B \cdot f}{x-x'}\]

Disparity is inversely proportional to depth, \(z \)

Basic Stereo Matching Algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel \(x \) in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match \(x' \)
 - Compute disparity \(x-x' \) and set depth(\(x \)) = \(fB/(x-x') \)
Correspondence Search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized cross-correlation

Results of Window Search

- Window-based matching
- Ground truth

Improve by Adding Constraints and Solve with Graph Cuts

- Graph cuts
- Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo/

Failures of Correspondence Search

- Textureless surfaces
- Occlusions, repeated structures
- Non-Lambertian surfaces, specularities

Structured Light

- Basic Principle
 - Use a projector to create known features in the 3D scene (e.g., points, lines)
- Light projection
 - If we project distinctive points, matching is easy

Example: Book vs. No Book

Source: http://www.futurepicture.org/?p=97

Kinect’s Projected Dot Pattern

Example: Book vs. No Book

Source: http://www.futurepicture.org/?p=97
Same Stereo Algorithms Apply

Projector

Sensor

Implementation

• In-camera ASIC computes 11-bit 640 x 480 depth map at 30 Hz
• Range limit for tracking: 0.7 – 6 m (2.3’ to 20’)
• Practical range limit: 1.2 – 3.5 m

Kinect RGB-D Camera

Kinect for Xbox One

• aka “Kinect 2” (2013)
• Replaced Structured-Light Camera by Time-of-Flight Camera
• Higher resolution (1080p), larger view of view, 30 fps camera
• Depth resolution 2.5cm at 4m
Kinect 2’s Time of Flight Sensor

- Kinect 2 uses multiple measurements (3 pulse frequencies x 3 amplitudes) to compute at each pixel:
 - The amount of reflected light originating from the active light source (called the “active image”)
 - The depth of the scene from the phase shifts for the multiple measurements (which disambiguate the depth)
 - The amount of ambient light

Part 2: Pose from Depth

IR Projector → Projected Light Pattern
IR Sensor → Depth Image
Stereo Algorithm → Segmentation, Part Prediction → Body parts and joint positions

Goal: Estimate Pose from Depth Image

Real-Time Human Pose Recognition in Parts from a Single Depth Image,
Goal: Estimate Pose from Depth Image

Step 1. Find body parts
Step 2. Compute joint positions

Challenges

• Lots of variation in bodies, orientations, poses
• Needs to be very fast (their algorithm runs at 200 fps on the Xbox 360 GPU)

Finding Body Parts

• What should we use for a feature?
 – Difference in depth

• What should we use for a classifier?
 – Random Forest / Decision Forest

Extract Body Pixels by Thresholding Depth
Features

- Difference of depth at two pixels
- Offset is scaled by depth at reference pixel

\[f_\theta(I, x) = d_I \left(x + \frac{u}{d_I(x)} \right) - d_I \left(x + \frac{v}{d_I(x)} \right) \]

\(d(x) \) is depth image, \(\theta = (u, v) \) is offset to second pixel

Part Classification with Random Forests

- **Random Forest**: collection of independently-trained binary decision trees
- Each tree is a classifier that predicts the likelihood of a pixel \(x \) belonging to body part class \(c \):
 - Non-leaf node corresponds to a thresholded feature
 - Leaf node corresponds to a conjunction of several features
 - At leaf node store learned distribution \(P(c|I, x) \)

Classification

Learning Phase:
1. For each tree, pick a randomly sampled subset of training data
2. Randomly choose a set of features and thresholds at each node
3. Pick the feature and threshold that give the largest information gain
4. Recurse until a certain accuracy is reached or tree-depth is obtained

Testing Phase:
1. Classify each pixel \(x \) in image \(I \) using all decision trees and **average** the results at the leaves:

\[P(c|I, x) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I, x) \]
Implementation

• 31 body parts
• 3 trees (depth 20)
• 300,000 training images per tree randomly selected from 1M training images
• 2,000 training example pixels per image
• 2,000 candidate features
• 50 candidate thresholds per feature
• Decision forest constructed in 1 day on 1,000 core cluster

Get Lots of Training Data

• Capture and sample 500K motion capture frames of people kicking, driving, dancing, etc.
• Get 3D models for 15 bodies with a variety of weights, heights, etc.
• Synthesize motion capture data for all 15 body types

Results
Step 2: Joint Position Estimation

- Joints are estimated using the **mean-shift clustering** algorithm applied to the labeled pixels
- Gaussian-weighted density estimator for each body part to find its mode 3D position
- “Push back in depth” each cluster mode to lie at approx. center of the body part
- 73% joint prediction accuracy (on head, shoulders, elbows, hands)