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Abstract: Although so-called “naive” Bayesian classification makes the unrealistic assumption
that the values of the attributes of an example are independent given the class of the example, this
learning method is remarkably successful in practice, and no uniformly better learning method is
known. Boosting is a general method of combining multiple classifiers due to Yoav Freund and Rob
Schapire. This paper shows that boosting applied to naive Bayesian classifiers yields combination
classifiers that are representationally equivalent to standard feedforward multilayer perceptrons. (An
ancillary result is that naive Bayesian classification is a nonparametric, nonlinear generalization of
logistic regression.) As a training algorithm, boosted naive Bayesian learning is quite different
from backpropagation, and has definite advantages. Boosting requires only linear time and constant
space, and hidden nodes are learned incrementally, starting with the most important. On the real-
world datasets on which the method has been tried so far, generalization performance is as good as
or better than the best published result using any other learning method. Unlike all other standard
learning algorithms, naive Bayesian learning, with and without boosting, can be done in logarithmic
time with a linear number of parallel computing units. Accordingly, these learning methods are
highly plausible computationally as models of animal learning. Other arguments suggest that they
are plausible behaviorally also.



1 Introduction

So-called “naive” Bayesian classification is the optimal method of supervised learning if the val-
ues of the attributes of an example are independent given the class of the example. Although this
assumption is almost always violated in practice, recent work has shown that naive Bayesian learn-
ing is remarkably effective in practice and difficult to improve upon systematically [Domingos and
Pazzani, 1996]. This paper shows that it is possible to improve reliably the generalization ability
of naive Bayesian classifiers using a technique called boosting due to Freund and Schapire [1995].
The paper also argues that with and without boosting, naive Bayesian classification is computation-
ally and phenomenologically plausible as a model of animal and human learning. Specifically, the
paper shows that when the AdaBoost algorithm of Freund and Schapire [1995] is used to combine
several naive Bayesian classifiers, the resulting combination is mathematically equivalent to a feed-
forward neural network with sparse encoding of inputs, a single hidden layer of nodes, and sigmoid
activation functions.

As a learning algorithm, boosting in combination with naive Bayesian learning has important
advantages. First, the generalization ability of boosted naive Bayesian classifiers is excellent. On
the real-world example datasets discussed below (and on many other datasets not discussed here)
such a classifier gives better test set accuracy than any known method, including backpropagation
and C4.5 decision trees. Second, these classifiers can be learned very efficiently. Given e training
examples over f attributes, the time required to learn a boosted naive Bayesian classifier is O(ef),
i.e. linear. No learning algorithm that examines all its training data can be faster. Moreover, the
constant factor is very small. On a modern workstation a boosted naive Bayesian classifier can be
learned from 40000 examples of dimension 25 in under one minute, with most of the time devoted
to processing strings in the dataset.

2 A review of naive Bayesian learning

Let A; through Ay be attributes with discrete values used to predict a discrete class C. Given an
example with observed attribute values a; through a;, the optimal prediction is class value ¢ such
that Pr(C =c| A1 =a1 A ... N Ap = ax) is maximal. By Bayes’ rule this probability equals

Pr(Ai=a1 AN ... N Ay =a; | C =c¢)
Pr(Ay=a1 AN ... N Ap = ayg)

Pr(C =c¢).

The background probability or base rate Pr(C = c) can be estimated from training data easily. The

example probability Pr(A; = a1 A ... AN Ag = ayg) is irrelevant for decision-making since
it is the same for each class value c¢. Learning is therefore reduced to the problem of estimating
Pr(Ay =a1 A ... N A = ai | C = ¢) from training examples. Using Bayes’ rule again, this

class-conditional probability can be written as
PT(A1:G,1|A2:a2 AN LA Ak:ak,C:C)'PT(AQZGQ AL A Ak:ak|C:C).
Recursively, the second factor above can be written as

Pr(AQ:a2|A3:a3 Ao A Akzak,C:C)-PT(Agzag Ao A Ak:ak|C:c)



and so on. Now suppose we assume for each A; that its outcome is independent of the outcome of
all other A;, given C'. Formally, we assume that

Pr(Aj=a1|As=a2 A ... N Ay =a;,C=¢c)=Pr(Ay=a1|C =¢)
and so on for A, through Ag. Then Pr(4; =ay A ... AN Ap =ai | C = ¢) equals
Pr(A;=a,|C=¢)Pr(A2 =a2|C =c)---Pr(Ar =a; | C = ¢).

Now each factor in the product above can be estimated from training data:

N count(A; =a; N C=c
Pr(Aj=a;|C=c)= (cozjmt(C]:c) ) (1)

It can be shown that Equation (1) gives “maximum likelihood” probability estimates, i.e. probability
parameter values that maximize the probability of the training examples.

The induction algorithm explained above is called naive Bayesian learning; the earliest reference
known to this author is Chapter 12 of the celebrated Perceptrons book by Minsky and Papert [1969].

3 Naive Bayesian classifiers, perceptrons, and logistic regression

Suppose that there are just two possible classes, called 0 and 1, and let a; through a;, be the observed
attribute values for a test example. Let by = Pr(C = 0), let by = Pr(C = 1) = 1 — by, let
pjo = P’T‘(Aj = aj | C = 0), and |etpj1 = P’I"(Aj = aj ‘ C = 1). Then

pZP’f‘(CZl‘Alzal/\.../\Ak—ak (Hpjl)bl/z

and

q:Pr(C:0|A1:a1 Ao A Ak—ak <Hp]0)b0/z

7j=1
where z is a normalizing constant. Taking logarithms gives
k
logp — logq = (Z logpj1 —logpjo) + log by — log by.
j=1

Letting w; = log pj1 — logpjo and b = log by — log by gives

log :—Zw]—b

Exponentiating both sides and rearranging gives
1
~(Zhim)-

p:
14+e



In general, suppose the attribute A; has v(j) possible values. Let
Wy = logPr(Aj = Gj4' | C = 1) - log P?"(Aj = Gjjy! | C = 0)
where 1 < ' < v(j). Then

Pr(Cz) = 1) = ! . 2)

1+e (E] DRPCHOEIN jj')_b

Here I is an indicator function: I(¢) = 1if ¢ is true and I(¢) = 0 if ¢ is false.

Equation (2) describes exactly the functioning of a perceptron with a sigmoid activation function
and sparse encoding of attributes, i.e. with a separate input for each of the () possible values of
each attribute A;. Naive Bayesian classifiers are therefore equivalent in representational ability to
perceptrons with localist input representations. Of course maximum likelihood learning as given
by Equation (1) in general gives parameter values different from those obtained by other training
methods.

It is also possible to show that naive Bayesian classification generalizes logistic regression, the
most widely used statistical method for probabilistic classification from numerical attribute values.
Consider again Equation (1). If A; has discrete values then count(4; = a; A C = c) can be
computed directly from training examples If the values of A; are numerical, the standard practice
is to quantize or discretize the attribute. The simplest quantization method is to divide the range
of the attribute into a fixed number M of equal-width bins. In the experiments described below
M = 10 is chosen arbitrarily. Previous experimental work has shown that the benefits of more
complex quantization methods are small at best [Dougherty et al., 1995]. Using bins of equal width
tends to work well because they allow good non-parametric approximation of skewed, multimodal,
and/or heavy-tailed probability distributions.

Leteach A; be anumerical (integer-valued or real-valued) attribute. Logistic regression assumes
the model

— _ k
Pr ( =1 | Al =ai, . Ak _ ak) ija] +b0 (3)

lo =
SPr(C=0[A,=a1,... Ay = ay) =

This equation describes the functioning of a perceptron with a sigmoid activation function and a sin-
gle input node for each attribute, i.e. with attribute values encoded as their magnitude. Discretization
of A; corresponds to replacing the linear term b;a; by a piecewise constant function of a;. If the
range of A; is divided into M intervals where the ith interval is [c;(;_1), ¢;s] then this function is

M
filas) = bjil(cji-1) < aj < ¢ji) (4)

i=1
where each bj; is a constant. Combining Equations (3) and (4) yields a version of Equation (2).
Hence naive Bayesian classification is a nonparametric, nonlinear extension of logistic regression;
the standard logistic regression equation can be approximated by setting b;; = (c;j(i—1) +c¢ji)/(2b;).



4 Boosting

The general idea of boosting is to learn a series of classifiers, where each classifier in the series
pays more attention to the examples misclassified by its predecessor. Specifically, after learning the
classifier Hy, boosting increases the weight of training examples misclassified by Hy, and learns
the next classifier Hy_; from the reweighted examples. This process is repeated for 7" rounds. The
final boosted classifier outputs a weighted sum of the outputs of the individual H, with each Hy,
weighted according to its accuracy on its training set.

Formally, the AdaBoost algorithm of Freund and Schapire [1995] is as follows. Let wEl) =1/N
for example i = 1,..., N. For round ¢t = 1 through T do:

o Given weights w." obtain a hypothesis H® : X — [0, 1].
o Letthe error of H®) be e® = SN w |y, — B (z)).

o Let S0 = e /(1 — ¢®) and let wl™) = w{® (8®) 1= mi=hO @),

i i
o Normalize w{""™" to sum to 1.0.

Suppose that each individual classifier is actually useful, i.e. ¢® < 0.5. Then 3® < 1, and as
lyi — hz(-t) (x;)| increases, wgt“) increases, so the algorithm satisfies the intuitive description given
above. Experiments with variants of the AdaBoost algorithm show that none of its details are
critical to its success—the basic idea of upweighting misclassified examples is all that is important
in practice.

One proposal of Freund and Schapire [1995] is to let the final combination hypothesis be H
given by

1
) - 1 (t) t)\2r(z)—1
+[1=, (B8®)2r (@)

where the linear combination of individual classifiers is

i (g 1/80)HO (z)
2, 1og1/8®
We now show that a boosted naive Bayesian classifier is representationally equivalent to a mul-

tilayer perceptron with a single hidden layer. Let a = Hthl B and let the vote of classifier ¢ be
v®) = log )/ log a.. Then

H(z

r(z)

1 1

H(x) = —

( ) Q(th;l v(®) H () (w))—l Z 21og av(®) H(®) (w))—loga
1+a =

1

T 14 e 2log SOHM (2)—y log O

1+e(

In words, the output of the combined classifier is found by applying a sigmoid function to a weighted
sum of the outputs of the individual classifiers. Since individual naive Bayesian classifiers are
equivalent to perceptrons, the combined classifier is equivalent to a perceptron network with a single
hidden layer.



The derivation above shows that boosted naive Bayesian learning can be viewed as an alterna-
tive training algorithm for feedforward neural networks. (The argument can be extended to cover
feedforward networks with multiple hidden layers.) As such, it is most similar to algorithms such
as the “tiling” method of Mezard and Nadal [1989] that incrementally create new hidden nodes to
correct errors made by previously created nodes.

5 Computational complexity

Suppose that examples are over f attributes, each with v values. Then a naive Bayesian classifier as
in Equation (2) has fv+1 parameters. These parameters are learned by accumulating 2 fv+2 counts.
Each attribute value of each training example leads to incrementing exactly one count. Hence with
e examples training time is O(ef) independent of ». This time complexity is essentially optimal:
any learning algorithm that examines every attribute value of every training example must have
the same or worse complexity. For comparison, learning a decision tree without pruning requires
O(ef?) time. (The algorithm that underlies this result is non-trivial.) The time required to update
weights under boosting is also O(ef), so T" rounds of boosting use O(T'ef) time in total, which is
also O(ef) if T' is constant.

When accumulating the counts on which a naive Bayesian classifier is based, training examples
may be processed sequentially directly from disk or tape storage. The amount of random-access
memory required is O(fv) independent of the number of training examples. With boosting, the
random-access memory needed is O(T fv). Therefore, boosted naive Bayesian classifiers are well-
suited for knowledge discovery in very large databases: these databases can remain on disk or even
on tape, and need not fit into main memory.

It is straightforward to show that learning a boosted naive Bayesian classifier is in the parallel
complexity class NC. This class consists of problems that can be solved in polylogarithmic time
with a polynomial number of processors.  With communication patterned after a binary tree of
height log e, e processors can compute count(A; = a A C = 0) and count(A; =a A C = 1) for
a given 7 and a in O(log e) time. Therefore naive Bayesian learning requires O(log e) time using
O(efv) processors.

In practice, with f and v constant and many examples allocated to each processor, a parallel
implementation could use far fewer than e processors and still run in O(log e) time. With a constant
number of rounds of boosting, boosted naive Bayesian learning is also in NC. A literature search
reveals that no other practical learning problem is known to have an NC algorithm. Training simple
linear threshold neural nets optimally is NP-complete [Blum and Rivest, 1992].

6 Experimental results

It is important to stress that the experiments described here are exploratory in nature. They use
datasets selected as likely to yield particularly informative results.

The “German credit” dataset. This dataset has 700 positive and 300 negative examples.
Seventeen features are discrete, while three are continuous. The best published prediction error
rate is 25.3%, for a naive Bayesian classifier with five-fold cross-validation [Friedman and Gold-
szmidt, 1996]. Although boosting improves the performance of C4.5 on most datasets, on this
dataset boosting increases the prediction error rate of C4.5 from 28.44% to 29.14% [Quinlan, 1996].



The table below shows the results of boosted naive Bayesian learning on this dataset. Combining
three naive Bayesian classifiers through boosting gives an error rate of 24.0%, a useful improvement.

rounds | error (%)
25.1
24.3
24.0
24.4
24.7
24.9
25.2
25.1
25.3
254

O© o0 NOoO Ol WwDN -

=
o

100 25.7

In the table above, the reduction in test set error due to boosting can be seen to come after just a
few rounds. Experiments done so far show a similar phenomenon on all datasets, although usually
more than three rounds are beneficial. Boosted naive Bayesian learning is therefore a practical
“anytime” learning algorithm. Depending on how much time and memory is available, learning a
combination classifier may be stopped after any number of components have been learned.

As the number of rounds of boosting is increased beyond a dataset-dependent threshold, the
error of the combined classifier increases slowly. This phenomenon is not surprising, but it has
not been observed when boosting is used with other base learning methods [Schapire et al., 1997].
Future work will aim to explain this phenomenon. For practical applications, cross-validation is a
good way of deciding how many rounds of boosting to use.

The monk’s problems. In 1991 Sebastian Thrun organized a comparison of dozens of learning
algorithms on three synthetic datasets generated from propositional formulas over six attributes.
The formulas can be stated as (i) A; = As or A5 = as1, (ii) exactly two of A; through Ag have
their first value, and (iii) (A5 = as3 and Ay = a41) or (A5 # asq4 and Ay # ae3). For the third
dataset 5% classification noise was added.

The first two formulas above involve comparing attributes with each other, and hence have an
“xor” or first-order (relational as opposed to propositional) flavor. Only backpropagation and a
version of Michalski’s AQ with the builtin ability to use appropriate new features succeeded on
these problems. On the third problem, the only successful methods were other versions of AQ,
one of several decision tree algorithms, one of several inductive logic programming algorithms, and
backpropagation with weight decay.

A boosted naive Bayesian classifier succeeds on the third monk’s problem, but not on the first
two. In general, boosted naive Bayesian learning appears to perform very well on realistic tasks
where the true concept resembles a disjunction of conjunctions, with noise. Failure on the first
two monk’s problems can be explained qualitatively: naive Bayesian learning cannot achieve over
50% accuracy on “xor”, and boosting requires that each intermediate hypothesis, including the first,
have over 50% accuracy. With noise added to training examples, a naive Bayesian classifier should
achieve over 50% accuracy on “xor”. Future experiments will investigate whether boosting can
amplify this advantage.



Diabetes in Pima Indians. This dataset is used by Ripley [1996] throughout his book. It is
typical of difficult medical diagnosis problems where a limited number of training examples are
available, and some attribute values are missing in many examples. Under naive Bayesian learning,
even if some attribute values are unknown for a training example, its other attribute values can still
contribute to counts. Our implementation of boosted naive Bayesian learning takes advantage of this
fact. (An alternative is to view “unknown” as just another possible discrete value for each attribute.)

Examples in the Pima Indians diabetes dataset consist of eight numerical attributes:

number of pregnancies

glucose concentration in a tolerance test
diastolic blood pressure (mm Hg)

skin triceps skin fold thickness (mm)
serum insulin (micro U/ml)

body mass index (kg/m?)

diabetes pedigree function

age in years

Using 200 complete training examples, the best learning method reported by Ripley [1996] is stan-
dard linear discrimination, which realizes 20.3% error on a separate test set. Backpropagation using
one hidden unit achieves 22.6%; more hidden units give worse performance. Using an additional
100 training examples with missing data, C4.5 achieves 22.3% error rate. As shown in the table be-
low, using the 200 complete training examples and the 100 examples with missing attribute values,
boosting with ten rounds achieves an error rate of 18.7%. This result is a substantial improvement
over any method tried by Ripley, and shows the practical importance of being able to use training
examples with missing attribute values.

using only 200 including 100 extra
complete examples incomplete examples
round error (%) error (%)
1 24.7 20.2
2 23.8 20.5
3 22.9 19.9
4 22.6 19.6
5 22.9 19.6
6 22.9 19.3
7 22.9 19.0
8 22.9 19.0
9 22.6 19.0
10 22.0 18.7

7 Neurocomputational and psychological plausibility

There is strong experimental evidence that humans are highly sensitive to class-conditional proba-
bilities; see for example [Bechara et al., 1997]. Learning a single naive Bayesian classifier can be
done incrementally, so it is computationally straightforward for the brain to do this in the course of
everyday experience. Learning a boosted naive Bayesian classifier can be done by rehearsing past



experiences. Boosting involves paying most attention to training examples that have been classi-
fied incorrectly previously; it is plausible that these are precisely the examples most likely to be
accessible to memory.

At the behavioral level, naive Bayesian learning, with and without boosting, is a plausible human
and animal learning method.

e The method can tolerate many irrelevant attributes: if some or all values of some attributes
are uncorrelated with the class of an example, the log-odds weights attached to these attribute
values will tend to zero as the number of training examples increases.

e With multiplicative updating of counts instead of additive updating, target concepts that
change over time can be tracked efficiently and effectively.

¢ Either by changing the initial weights of training examples, or by changing the probability
threshold used to make decisions, different costs for different misclassification errors (which
may vary example by example) can be taken into account in an optimal manner.

The extended version of this paper will contain a detailed exposition of how naive Bayesian
learning, with and without boosting, is a better model of human learning behavior than backpropa-
gation. This discussion will show that naive Bayesian learning reproduces each of the phenomena of
human category learning discussed by Kruschke [1993]. In particular, naive Bayesian learning per-
forms better at so-called “filtration” tasks than at “condensation” tasks [Garner and Sutliff, 1974].
While humans also find filtration tasks easier, backpropagation works equally well for tasks of both
types. The corresponding mathematical phenomenon is that backpropagation with a hidden layer
learns a decision plane equally well regardless of its rotation, while naive Bayesian learning is less
accurate when the optimal decision plane is not axis-parallel.

Lehky and Sejnowski [1988] expressed a standard opinion when they wrote “No biological sig-
nificance is claimed for the algorithm (back propagation) by which the network developed”. On
the contrary, naive Bayesian learning is neurocomputationally plausible. In a nutshell, this type of
learning can be done either in logarithmic time with a linear number of neurons, or incrementally
in constant time per example, with fixed, sparse, connections between neurons, with low preci-
sion connection strengths between neurons, without feedback connections, and without any sort of
associative memory.

One major assumption of naive Bayesian learning is a sparse, localist encoding of attributes,
i.e. of stimulus dimensions. Such an encoding, which is also called a population code, is quite plau-
sible in many domains. For example, rats have place cells that fire when and only when the animal
is in a specific spatial location [Bures et al., 1997] and they have localist neural representations of
other environmental features also. In humans, face recognition may be based on localist features
such as Gabor transforms of small facial regions that are in fixed positions relative to each other
[Kalocsai et al., 1996].

It is important to note that the claim here is not that humans or animals implement the Ad-
aBoost algorithm precisely. Rather, the claim is that it is computationally feasible for low-level
brain processes to implement some generally similar algorithm. Since little is known about the
operation of memory and learning at the neural level, one way to make progress in understanding
these phenomena is to identify algorithms that meet basic constraints of computational feasibility.
The computational complexity class NC' is a useful first approximation of the computational ca-
pacity of low-level brain processes. With about 10'° neurons and about 10° synapses per neuron,



the human brain may possess about 105 information processing elements, but these elements are
relatively slow. Therefore learning methods that require sublinear processing time, using a linear
number of computing units, are more neurocomputationally plausible than intrinsically sequential
methods—even if those methods have the same sequential time complexity. Formally speaking, it is
cognitively plausible for low-level brain mechanisms to be solving problems in NC, while it is not
plausible for them to be solving problems that lie outside NC.
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