
CS 540 Fall 2019

1

CS 540: Introduction to Artificial Intelligence

Homework Assignment #1

Assigned: Thursday, September 12
Due: Monday, September 23

Hand-in Instructions
This homework assignment includes two written problems and a programming problem in Java. Hand in
all parts electronically to your Canvas assignments page. For each written question, submit a single pdf
file containing your solution. Handwritten submissions must be scanned. No photos or other file types
allowed. For the programming question, submit a zip file containing all the Java code necessary to run
your program, whether you modified provided code or not.

Submit the following three files (with exactly these names):

<wiscNetID>-HW1-P1.pdf
<wiscNetID>-HW1-P2.pdf
<wiscNetID>-HW1-P3.zip

For example, for someone with UW NetID crdyer@wisc.edu the first file name must be:
crdyer-HW1-P1.pdf

Late Policy
All assignments are due at 11:59 p.m. on the due date. One (1) day late, defined as a 24-hour period from
the deadline (weekday or weekend), will result in 10% of the total points for the assignment deducted.
So, for example, if a 100-point assignment is due on a Wednesday and it is handed in between any time
on Thursday, 10 points will be deducted. Two (2) days late, 25% off; three (3) days late, 50% off. No
homework can be turned in more than three (3) days late. Written questions and program submission
have the same deadline. A total of three (3) free late days may be used throughout the semester without
penalty. Assignment grading questions must be discussed with a TA within one week after the assignment
is returned.

Collaboration Policy
You are to complete this assignment individually. However, you may discuss the general algorithms and
ideas with classmates, TAs, peer mentors and instructor in order to help you answer the questions. But
we require you to:

• not explicitly tell each other the answers

• not to copy answers or code fragments from anyone or anywhere

• not to allow your answers to be copied

• not to get any code from the Web

mailto:crdyer@wisc.edu

CS 540 Fall 2019

2

Problem 1: Search Algorithms [25 points]

You are given below a state-space graph that consists of nine states, the costs of the connections
between them, and a heuristic, h(n), for each state. Your task is to find a path from start state S to goal
state F. In order to find a solution path, one can use a number of different search methods. In the
following questions, you are to find the path from S to F that the search algorithm given in the question
would yield. Use the tree-search algorithm given in Figure 3.7 in the textbook where the goal test is
performed when a state is removed from Frontier. Assume that states are selected/expanded in
alphabetical order when a tie occurs (e.g., if there is a tie between states A and B, then expand A first).
Repeated states along a path from a node back to the root are not allowed. Lastly, if there happen to be
several instances of the same state in Frontier when expanding (i.e., two of the same states that have
different paths back to S), expand first the one that has been in Frontier longest.

(a) [5] Which solution path will the Depth-First Search (DFS) algorithm find? Expand the successors of a

node in alphabetical order (e.g., if a node has 3 successors, A, B, and C, then A will be expanded
before B, and B will be expanded before C). Give your answer as one of (i) – (vi) and show the
search tree used to find this solution.
(i) S – A – C – B – D – E - F
(ii) S – A – C – H – D – F
(iii) S – A – C – B – D – F
(iv) S – B – A – G – D – E – F
(v) S – C – B – A – G – D – F
(vi) DFS will not find a solution.

H
h=6

S
h=10

A
h=8

G
h=6

E
h=3

B
h=9

C
h=7

D
h=4

F
h=0

2

4

3

5

4

3

2

4

3

4

4

5

5

3

2

6

CS 540 Fall 2019

3

(b) [5] Which solution path will the Breadth-First Search (BFS) algorithm find? Expand the successors of
a node in alphabetical order (e.g., if a node has 3 successors, A, B, and C, then A will be expanded
before B, and B will be expanded before C). Give your answer as one of (i) – (vi) and show the
search tree used to find this solution.

(i) S – A – G – E – F
(ii) S – C – H – D - F
(iii) S – B – D – F
(iv) S – A – G – D – F
(v) S – A – G – D – E – F
(vi) BFS will not find a solution.

(c) [5] Which solution will Uniform-Cost Search (UCS) find? Give your answer as one of (i) – (vi) and
show the search tree used to find this solution.

(i) S – B – D – F
(ii) S – C – H – A – G – D – F
(iii) S – B – D – E – F
(iv) S – A – C – H – D – E – F
(v) S – B – A – G – D – E – F
(vi) UCS will not find a solution.

(d) [5] Which solution will Greedy Best-First Search find? Give your answer as one of (i) – (vi) and show
the search tree used to find this solution.

(i) S – A – G – D – F
(ii) S – B – D – E – F
(iii) S – C – H – D – E – F
(iv) S – C – H – D – F
(v) S – C – B – A – G – E – F
(vi) Greedy Best-First Search will not find a solution.

(e) [5] Which solution will Algorithm A find? Give your answer as one of (i) – (vi) and show the search
tree used to find this solution.

(i) S – B – D – F
(ii) S – A – C – B – D – E – F
(iii) S – A – G – D – F
(iv) S – A – C – B – D – F
(v) S – B – D – E – F
(vi) Algorithm A will not find a solution.

CS 540 Fall 2019

4

Problem 2: State-Space Search Trees [10 points]

The 8-puzzle consists of eight numbered tiles on a 3 x 3 board. The object is to go from a starting state
to a goal state by sliding tiles horizontally or vertically (not diagonally) using the empty space. For this
problem, assume that if a state has been reached previously along the path back to the root in the
search tree, you cannot go back to that state again (i.e., repeated state checking is done to avoid loopy
paths).

(a) [3] From some state in the 8-puzzle, what can be the minimum number of possible moves (i.e.,
the minimum number of legal successors)?

(b) [3] From some state in the 8-puzzle, what can be the maximum number of possible moves (i.e.,
the maximum number of legal successors)?

(c) [4] What is the minimum number of moves needed to reach the goal state given below? Justify
your answer by drawing a portion of the search tree that proves this.

3 2 4

1 6

7 5 8

3 2

1 6 4

7 5 8

An example move in the 8-puzzle.

1 2 3

4 5

6 7 8

4 1 3

2 5

6 7 8

Initial state

Goal state

CS 540 Fall 2019

5

Problem 3: Maze Solver [65 points]

Given a two-dimensional maze with a starting position and a goal position, your task is to write a Java
program called FindPath.java that assists a robot in solving the maze by finding a path from the start
node to the goal node (as described below) if one exists. The program must accept command line
arguments in the following format:

 $ java FindPath maze search-method

The first argument, maze, is the path to a text file containing the input maze as described below, and the
second argument, search-method, can be either “bfs” or “astar” indicating whether the search
method to be used is breadth-first search (BFS) or A* search, respectively.

The Maze
A maze will be given in a text file as a matrix in which the start position is indicated by “S”, the goal position
is indicated by “G”, walls are indicated by “%”, and empty positions where the robot can move are
indicated by “ “. The outer border of the maze, i.e., the entire first row, last row, first column and last
column will always contain “%” characters. A robot is allowed to move only horizontally or vertically, not
diagonally.

The Algorithms
For both BFS and A* search, explore the surrounding positions in the following order: move-Left (L), move-
Down (D), move-Right (R), and move-Up (U). In BFS, add the successors in that order to the queue that
implements the Frontier set for this search method. In this way, moves will be visited in the same order
as insertion, i.e., L, D, R, U. Assume all moves have cost 1. Repeated state checking should be done by
maintaining both Frontier and Explored sets. If a newly generated node, n, does not have the same state
as any node already in Frontier or Explored, then add n to Frontier; otherwise, throw away node n.

For A* search, use the heuristic function, h, defined as the Euclidean distance from the current position
to the goal position. That is, if the current (row#, column#) position is (u, v) and the goal position is (p, q),

the Euclidean distance is �(𝑢𝑢 − 𝑝𝑝)2 + (𝑣𝑣 − 𝑞𝑞)2 . Add moves in the order L, D, R, U to the priority queue
that implements the Frontier set for A* search. Assume all moves have cost 1. For A* search, repeated
state checking should be done by maintaining both Frontier and Explored sets as described in the Graph-
Search algorithm in Figure 3.14 in the textbook. That is,

• If a newly generated node, n, does not have the same state as any node already in Frontier or
Explored, then add n to Frontier.

• If a newly generated node, n, has the same state as another node, m, that is already in Frontier,
you must compare the g values of n and m:

o If g(n) ≥ g(m), then throw node n away (i.e., do not put it on Frontier).
o If g(n) < g(m), then remove m from Frontier and insert n in Frontier.

• If new node, n, has the same state as previous node, m, that is in Explored, then, because our
heuristic function, h, is consistent (aka monotonic), we know that the optimal path to the state is
guaranteed to have already been found; therefore, node n can be thrown away. So, in the
provided code, Explored is implemented as a Boolean array indicating whether or not each square
has been expanded or not, and the g values for expanded nodes are not stored.

CS 540 Fall 2019

6

Output
After a solution is found, print out on separate lines:

1. the maze with a “.” in each square that is part of the solution path
2. the length of the solution path
3. the number of nodes expanded (i.e., the number of nodes removed from Frontier, including the

goal node)
4. the maximum depth searched
5. the maximum size of Frontier at any point during the search.

If the goal position is not reachable from the start position, the standard output should contain the line
“No Solution” and nothing else.

Code
You must use the code skeleton provided. You are to complete the code by implementing search()
methods in the AStarSearcher and BreadthFirstSearcher classes and the
getSuccessors() method of the State class. You are permitted to add or modify the classes and
methods, but we require you to keep the IO class as is for automatic grading. The FindPath class
contains the main function.

Compile and run your code using an IDE such as Eclipse. To use Eclipse, first create a new, empty Java
project and then do File  Import  File System to import all of the supplied java files into
your project.

You can also compile and run with the following commands in a terminal window:

javac *.java
java FindPath input.txt bfs

Testing
Test both of your search algorithms on the sample test input file: input.txt and compare your results
with the two output files: output_astar.txt and output_bfs.txt. Make sure the results are
correct on CSL machines.

Deliverables
Put all .java files needed to run your program, including ones you wrote, modified or were given and
are unchanged, into a folder called <wiscNetID>-HW1-P3 Compress this folder to create
<wiscNetID>-HW1-P3.zip and upload it to Canvas. For example, for someone with UW NetID
crdyer@wisc.edu the file name must be: crdyer-HW1-P3.zip

mailto:crdyer@wisc.edu

