

CS 540 Fall 2019

1

CS 540: Introduction to Artificial Intelligence

Homework Assignment #4

Assigned: Friday, November 1
Due: Tuesday, November 12

Hand-in Instructions
This homework assignment includes two written problems and a programming problem in Java. Hand in
all parts electronically to your Canvas assignments page. For each written question, submit a single pdf
file containing your solution. Handwritten submissions must be scanned. No photos or other file types
allowed. For the programming question, submit a zip file containing all the Java code necessary to run
your program, whether you modified provided code or not.

Submit the following three files (with exactly these names):

<wiscNetID>-HW4-P1.pdf
<wiscNetID>-HW4-P2.pdf
<wiscNetID>-HW4-P3.zip

For example, for someone with UW NetID crdyer@wisc.edu the first file name must be:
crdyer-HW4-P1.pdf

Late Policy
All assignments are due at 11:59 p.m. on the due date. One (1) day late, defined as a 24-hour period from
the deadline (weekday or weekend), will result in 10% of the total points for the assignment deducted.
So, for example, if a 100-point assignment is due on a Wednesday and it is handed in between any time
on Thursday, 10 points will be deducted. Two (2) days late, 25% off; three (3) days late, 50% off. No
homework can be turned in more than three (3) days late. Written questions and program submission
have the same deadline. A total of three (3) free late days may be used throughout the semester without
penalty. Assignment grading questions must be discussed with a TA or grader within one week after the
assignment is returned.

Collaboration Policy
You are to complete this assignment individually. However, you may discuss the general algorithms and
ideas with classmates, TAs, peer mentors and instructor in order to help you answer the questions. But
we require you to:

• not explicitly tell each other the answers

• not to copy answers or code fragments from anyone or anywhere

• not to allow your answers to be copied

• not to get any code from the Web

mailto:crdyer@wisc.edu

CS 540 Fall 2019

2

Problem 1. Neural Networks [15 points]

The figure below shows a 2-layer, feed-forward neural network with two hidden-layer nodes and
one output node. x1 and x2 are the two inputs. For the following questions, assume the learning
rate is α = 0.1. Each node also has a bias input value of +1. Assume there is a sigmoid
activation function at the hidden layer nodes and at the output layer node. A sigmoid activation
function takes the form: 𝑔𝑔(𝑧𝑧) = 1

1+𝑒𝑒−𝑧𝑧
 where 𝑧𝑧 = ∑ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 and wi is the ith incoming weight to a
node, xi is the ith incoming input value, and n is the number of incoming edges to the node.

(a) [5] Calculate the output values at nodes h1, h2 and 𝑦𝑦� of this network for input {x1 = 0, x2 = 1}.

Each unit produces as its output the real value computed by the unit's associated sigmoid
function. Show all steps in your calculation.

(b) [10] Compute one (1) step of the backpropagation algorithm for a given example with
input {x1 = 0, x2 = 1} and target output y = 1. The network output is the real-valued output of
the sigmoid function, so the error on the given example is defined as 𝐸𝐸 = 1

2
(𝑦𝑦 − 𝑂𝑂)2 where O

is the real-valued network output of that example at the output node, and y is the integer-
valued target output for that example. Compute the updated weights for both the hidden
layer and the output layer (there are nine updated weights in total (i.e., the three incoming
weights to node h1, the three incoming weights to node h2 and the three incoming weights to
node 𝑦𝑦�) by performing ONE step of gradient descent. Show all steps in your calculation.

CS 540 Fall 2019

3

Problem 2. Constraint Satisfaction Problems [20 points]

Consider the following graph representing 7 countries on a map that needs to be colored using
three different colors, 1, 2 and 3, so that no adjacent countries have the same color.
Adjacencies are represented by edges in the graph. We can represent this problem as a CSP
where the variables are the countries and the values are the colors.

(a) [5] What are the domains of all the variables after applying Forward Checking inference with

variables ordered alphabetically (from A to G) and values ordered increasingly (from 1 to 3),
assuming you start with each variable having all possible values except it is known that A
has value 1 and E has value 2?

(b) [10] Apply the Backtracking Search algorithm (Figure 6.5 in the textbook) with Forward
Checking inference (Section 6.3.2), assuming you start with each variable having all
possible values. Variables and values are chosen following alphabetical ordering of the
variables (A to G) and increasing order of the values (1 to 3), respectively. Show your result
as a search tree where each node in the tree shows each variable with its set of possible
values. Arcs in the search tree should be labeled with an assignment of a selected value to
a selected variable. If a solution is found, show the final coloring of the map. The search tree
only needs to show nodes and arcs until a single solution is found.

(c) [5] What are the domains of all the variables after applying Arc-Consistency (AC-3)

inference (Figure 6.3) with variables ordered alphabetically and values ordered increasingly,
assuming you start with each variable having all possible values except it is known that A
has value 1, B has value 1, and C has value 2? List all the possible outcomes.

CS 540 Fall 2019

4

Problem 3. Back-Propagation for Handwritten Digit Recognition [65 points]

In this problem you are to write a program that builds a 2-layer, feed-forward neural network
and trains it using the back-propagation algorithm. The problem that the neural network will
handle is a multi-class classification problem for recognizing images of handwritten digits. All
inputs to the neural network will be numeric. The neural network has one hidden layer. The
network is fully connected between consecutive layers, meaning each unit, which we’ll call a node,
in the input layer is connected to all nodes in the hidden layer, and each node in the hidden layer
is connected to all nodes in the output layer. Each node in the hidden layer and the output layer
will also have an extra input from a “bias node" that has constant value +1. So, we can consider
both the input layer and the hidden layer as containing one additional node called a bias node.
All nodes in the hidden layer (except for the bias node) should use the ReLU activation function,
while all the nodes in the output layer should use the Softmax activation function. The initial
weights of the network will be set randomly (already implemented in the skeleton code). Assuming
that input examples (called instances in the code) have m attributes (hence there are m input
nodes, not counting the bias node) and we want h nodes (not counting the bias node) in the
hidden layer, and o nodes in the output layer, then the total number of weights in the network is
(m +1)h between the input and hidden layers, and (h+1)o connecting the hidden and output
layers. The number of nodes to be used in the hidden layer will be given as input.

You are only required to implement the following methods in the classes NNImpl and Node:

public class Node{

public void calculateOutput()
public void calculateDelta()
public void updateWeight(double learningRate)

}

public class NNImpl{

public int predict(Instance inst);
public void train();
private double loss(Instance inst);

}

void calculateOutput():
calculates the output at the current node and stores that value in a member variable called
outputValue

void calculateDelta():
calculates the delta value, ∆, at the current node and stores that value in a member variable
called delta

void updateWeight(double learningRate):
updates the weights between parent nodes and the current node using the provided learning
rate

int predict (Instance inst):
calculates the output (i.e., the index of the class) from the neural network for a given
example

CS 540 Fall 2019

5

void train():
trains the neural network using a training set, fixed learning rate, and number of epochs
(provided as input to the program). This function also prints the total Cross-Entropy loss on all
the training examples after each epoch.

double loss(Instance inst):
calculates the Cross-Entropy loss from the neural network for a single instance. This function will
be used by train()

Dataset
The dataset we will use is called Semeion
(https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit). It contains 1,593 binary
images of size 16 x 16 that each contain one handwritten digit. Your task is to classify each
example image as one of the three possible digits: 6, 8 or 9. If desired, you can view an image
using the supplied python code called view.py Usage is described at the beginning of this file
(this is entirely optional if you want to view what an image in the dataset looks like. In other words,
it has nothing to do with your implementation in Java).

Each dataset will begin with a header that describes the dataset: First, there may be several lines
starting with “//” that provide a description and comments about the dataset. The line starting
with “**” lists the digits. The line starting with " ##" lists the number of attributes, i.e., the number
of input values in each instance (in our case, the number of pixels). You can assume that the
number of classes will always be 3 for this homework because we are only considering 3-class
classification problems. The first output node should output a large value when the instance is
determined to be in class 1 (here meaning it is digit 6). The second output node should output a
large value when the instance is in class 2 (i.e., digit 8) and, similarly, the third output node
corresponds to class 3 (i.e., digit 9). Following these header lines, there will be one line for each
instance, containing the values of each attribute followed by the target/teacher values for each
output node. For example, if the last 3 values for an instance are: 0 0 1 then this means the
instance is the digit 9. We have written the dataset loading part for you according to this format,
so do not change it.

Implementation Details
We have created four classes to assist your coding, called Instance, Node, NNImpl and
NodeWeightPair. Their data members and methods are commented in the skeleton code. An
overview of these classes is given next.

The Instance class has two data members: ArrayList<Double> attributes and
ArrayList<Integer> classValues. It is used to represent one instance (aka example) as
the name suggests. attributes is a list of all the attributes (in our case binary pixel values) of
that instance (all of them are double) and classValues is the class (e.g., 1 0 0 for digit 6) for
that instance.

The most important data member of the Node class is int type. It can take the values 0, 1, 2,
3 or 4. Each value represents a particular type of node. The meanings of these values are:

0: an input node
1: a bias node that is connected to all hidden layer nodes
2: a hidden layer node
3: a bias node that is connected to all output layer nodes
4: an output layer node

https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

CS 540 Fall 2019

6

Node also has a data member double inputValue that is only relevant if the type is 0.
Its value can be updated using the method void setInput(double inputValue). It
also has a data member ArrayList<NodeWeightPair> parents, which is a list of all
the nodes that are connected to this node from the previous layer (along with the weight
connecting these two nodes). This data member is relevant only for types 2 and 4. The
neural network is fully connected, which means that all nodes in the input layer (including
the bias node) are connected to each node in the hidden layer and, similarly, all nodes in
the hidden layer (including the bias node) are connected to the node in the output layer. The
output of each node in the output layer is stored in double outputValue. You can
access this value using the method double getOutput() which is already implemented.
You only need to complete the method void calculateOutput(). This method should
calculate the output activation value at the node if it’s of type 2 or 4. The calculated output
should be stored in outputValue. The value is determined by the definition of the
activation function (ReLU or Softmax), which depends on the type of node (type 2 means
ReLU, type 4 means Softmax). Definitions of the ReLU and Softmax activation functions are
given at https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-
Activation-Functions as well as in the Notes section below.

NodeWeightPair has two data members, Node and weight. These should be self-
explanatory. NNImpl is the class that maintains the whole neural network. It maintains lists of
all input nodes (ArrayList<Node> inputNodes), hidden layer nodes (ArrayList<Node>
hiddenNodes), and output layer nodes (ArrayList<Node> outputNodes). The last node
in both the input layer and the hidden layer is the bias node for that layer. Its constructor creates
the whole network and maintains the links. So, you do not have to worry about that as it’s
already implemented in the skeleton code. As mentioned before, you must implement these
three methods here. The data members ArrayList<Instance> trainingSet, double
learningRate and int maxEpoch will be required for this. To train the network, implement
the back-propagation algorithm given in the textbook (Figure 18.24) or in the lecture slides.
Implement it by updating all the weights in the network after each instance (as is done in the
algorithm in the textbook), so you will be doing a form of Stochastic Gradient Descent for
training. Use Cross-Entropy loss as the loss function at the output nodes for the back-
propagation algorithm. Details about Cross-Entropy loss are available at http://ml-
cheatsheet.readthedocs.io/en/latest/loss_functions.html Finally, remember to change the input
values of each input layer node (except the bias node) when using each new training instance
to train the network.

Classification
Based on the outputs of the output nodes, int predict(Instance inst) classifies the
instance as the index of the output node with the maximum value. For example, if one instance
has outputs [0.1, 0.3, 0.6], this instance will be classified as digit 9. If there are multiple
maximum values, the smallest digit will be predicted. For example, if the outputs are [0.4 0.4
0.2], then the instance should be classified as 6.

Testing
We will test your program on multiple training and testing sets, and the format of testing
commands will be:

java DigitClassifier <numHidden> <learnRate> <maxEpoch>
<trainFile> <testFile>

https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions
https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions
https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions
http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

CS 540 Fall 2019

7

where trainFile, and testFile are the names of training and testing datasets,
respectively. numHidden specifies the number of nodes in the hidden layer (excluding the
bias node at the hidden layer). learnRate and maxEpoch are the learning rate and the
number of epochs that the network will be trained, respectively. To facilitate debugging, we
are providing you with sample training data and testing data in the files train1.txt and
test1.txt. We are also providing you the file testcases.txt which contains three
example test cases. The outputs for these three test cases are also provided. A sample test
command is

java DigitClassifier 5 0.01 100 train1.txt test1.txt

You are not responsible for handling parsing of the training and testing datasets, creating
the network, or printing test dataset results on console. We have written the class
DigitClassifier for you, which will load the data and pass it to the method you are
implementing. Do NOT modify any IO code. As part of our testing process, we will unzip the
java files you submit to Canvas, call javac DigitClassifier.java to compile your
code, and then call it with above command, with parameters of our choice.

Deliverables
Hand in your modified versions of NNImpl.java and Node.java that include your
implementation of the back-propagation algorithm. Also submit any additional helper .java
files required to run your program (including the provided ones in the skeleton). Do not
submit any other files including the data files (no .class or .txt files). Also, all the .java
files should be zipped as <wiscNetID>-HW4-P3.zip for submission to Canvas.

Notes
• Use the Collections.shuffle(list,random) function on the training data with the

random object available in the class only once before every epoch while implementing the
void train() function. For the purpose of this homework, we fixed the random object
to a certain value. Therefore, you should not worry about what random is. You only have
to make sure that the shuffling given above happens once before every epoch.

• After each epoch of training and weight updating, print the cumulative Cross-Entropy loss

on the entire training set in the format shown in the sample output. This should be done in
the train()function. Use 3 decimal double precision using %.3e to get the required
formatting of the sample output.

• Do not include package statements in your final submission (i.e., do not include

statements in the java files that start with the keyword package).

• You only need to implement the above-mentioned methods and you must not change any
other existing function implementations. However, you are free to add any helper methods
you’d like to implement these methods.

• Make sure your implementation can run under 30 seconds for a maxEpoch of 100 and 10

hidden units, otherwise it will timeout by the grading script.

• To better understand how backpropagation and weight updating work in detail, you can
look at the following tutorial. Note, however, that the example in this tutorial uses a
different loss function; therefore, the computations made in the tutorial will not be

CS 540 Fall 2019

8

exactly the same as in this homework. https://mattmazur.com/2015/03/17/a-step-by-
step-backpropagation-example/

• The ReLU function is defined as

𝑔𝑔(𝑧𝑧) = max (0, 𝑧𝑧)

where 𝑧𝑧 = ∑ 𝑤𝑤𝑖𝑖 𝑥𝑥𝑖𝑖 𝑛𝑛
𝑖𝑖=1 and 𝑥𝑥𝑖𝑖 are the inputs to the given node, 𝑤𝑤𝑖𝑖 are the corresponding

weights, and 𝑛𝑛 is the number of inputs including the bias. When updating weights, you’ll
need to use the derivative of the ReLU, defined as

𝑔𝑔′(𝑧𝑧) = � 0, 𝑧𝑧 ≤ 0
 1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

• The Softmax function is defined as

𝑔𝑔�𝑧𝑧𝑗𝑗� =
𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

where 𝑧𝑧𝑗𝑗 is the weighted sum of its inputs at the jth output node, and 𝐾𝐾 is the number of
output nodes.

• The Cross-Entropy loss function for a single example 𝒙𝒙(𝑖𝑖) is defined as

𝐿𝐿(𝑖𝑖) = −� 𝑦𝑦𝑘𝑘
(𝑖𝑖)

𝐾𝐾

𝑘𝑘=1
ln 𝑔𝑔(𝑧𝑧𝑘𝑘)

where 𝒚𝒚

(𝑖𝑖) is the target class value of the ith example 𝒙𝒙
(𝑖𝑖). For example, if the target digit

is 6, then the target class value = [1, 0, 0]. The total loss is defined as the average loss
across the entire training set:

𝐿𝐿 =
1

|𝐷𝐷|
� 𝐿𝐿

(𝑖𝑖)
|𝐷𝐷|

𝑖𝑖=1

where |𝐷𝐷| is the number of examples in the training set. When updating weights, it’s
easier to compute the gradients of the Softmax activation function and Cross-Entropy
loss together, which is defined as

𝜕𝜕𝐿𝐿(𝑖𝑖)

𝜕𝜕𝑧𝑧𝑗𝑗
= 𝑔𝑔�𝑧𝑧𝑗𝑗� − 𝑦𝑦𝑗𝑗

(𝑖𝑖)

More details can be found at https://deepnotes.io/softmax-crossentropy

• Based on the above information, if we set the learning rate to α, the weight update rule

for this neural network is
Δw𝑖𝑖𝑖𝑖 = α𝑎𝑎𝑖𝑖 Δj

 where 𝑎𝑎𝑖𝑖 is the output of node 𝑖𝑖, and

Δ𝑗𝑗 =

⎩
⎨

⎧
 𝑦𝑦𝑗𝑗 − 𝑔𝑔(𝑧𝑧𝑗𝑗), 𝑖𝑖𝑖𝑖 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑔𝑔′(𝑧𝑧𝑗𝑗)�𝑤𝑤𝑗𝑗𝑗𝑗

𝑘𝑘

Δ𝑘𝑘, 𝑖𝑖𝑖𝑖 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑎𝑎 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://deepnotes.io/softmax-crossentropy

