
1

1

Uninformed Search

Chapter 3.1 – 3.4

Models To Be Studied in CS 540

State-based Models
– Model task as a graph of all possible states

l Called a “state-space graph”

– A state captures all the relevant information about
the past in order to act (optimally) in the future

– Actions correspond to transitions from one state to
another

– Solutions are defined as a sequence of
steps/actions (i.e., a path in the graph)

Many AI (and non-AI) Tasks can be
Formulated as Search Problems

l Puzzles
l Games
l Navigation
l Assignment
l Motion planning
l Scheduling
l Routing

Goal is to find a sequence of actions

Search Example: Route Finding

Actions: go straight, turn left, turn right
Goal: shortest? fastest? most scenic?

2

Search Example: River Crossing Problem

Rules:
1) Farmer must row the boat
2) Only room for one other
3) Without the farmer present:

• Dog bites sheep
• Sheep eats cabbage

Actions: F>, F<,
FC>, FC<, FD>,
FD<, FS>, FS<

Goal: All on
right side of river

Search Example: 8-Puzzle

Actions: move tiles (e.g., Move2Down)
Goal: reach a certain configuration

Search Example: Water Jugs Problem

Given 4-liter and 3-liter pitchers, how do you get
exactly 2 liters into the 4-liter pitcher?

4 3

Search Example: Robot Motion Planning

Actions: translate and rotate
joints

Goal: fastest? most energy
efficient? safest?

3

Search Example: 8-Queens

14

What Knowledge does the Agent
Need?

l The information needs to be
– sufficient to describe all relevant aspects for reaching

the goal
– adequate to describe the world state (aka situation)

l Fully observable assumption, also known as the
closed world assumption, means
– All necessary information about a problem domain

is accessible so that each state is a complete
description of the world; there is no missing (or noisy)
information at any point in time

15

How should the Environment be
Represented?

l Determining what to represent is difficult and is
usually left to the system designer to specify

l Problem State = representation of all necessary
information about the environment

l State Space (aka Problem Space) = all possible valid
configurations of the environment

16

What Goal does the Agent want to
Achieve?

l How do you know when the goal is reached?
– with a goal test that defines what it means

to have achieved the goal
– or, with a set of goal states

l Determining the goal is usually left to the system
designer or user to specify

4

17

What Actions does the Agent Need?

l Discrete and Deterministic task assumptions imply

l Given:
– an action (aka operator or move)
– a description of the current state of the world

l Action completely specifies:
– if that action can be applied (i.e., is it legal)
– what the exact state of the world will be after the

action is performed in the current state (no "history"
information needed to compute the successor state)

18

What Actions does the Agent Need?

l A finite set of actions/operators needs to be
– decomposed into atomic steps that are discrete and

indivisible, and therefore can be treated as
instantaneous

– sufficient to describe all necessary changes

l The number of actions needed depends on how the
world states are represented

Search Example: 8-Puzzle

l States = configurations
l Actions = up to 4 kinds of moves: up, down, left,

right

Water Jugs Problem
Given 4-liter and 3-liter pitchers, how do you get exactly 2

liters into the 4-liter pitcher?

State: (x, y) for # liters in 4-liter and 3-liter pitchers, respectively
Actions: empty, fill, pour water between pitchers
Initial state: (0, 0)
Goal state: (2, *)

4 3

5

Action / Successor Functions

1. (x, y | x < 4) (4, y) “Fill 4”

2. (x, y | y < 3) (x, 3) “Fill 3”
3. (x, y | x > 0) (0, y) “Empty 4”
4. (x, y | y > 0) (x, 0) “Empty 3”
5. (x, y | x+y ≥ 4 and y > 0) (4, y - (4 - x))

“Pour from 3 to 4 until 4 is full”
6. (x, y | x+y ≥ 3 and x > 0) (x - (3 - y), 3)

“Pour from 4 to 3 until 3 is full”
7. (x, y | x+y ≤ 4 and y > 0) (x+y, 0)

“Pour all water from 3 to 4”

22

Formalizing Search in a State Space

l A state space is a directed graph: (V, E)
– V is a set of nodes (vertices)
– E is a set of arcs (edges)

each arc is directed from one node to another node
l Each node is a data structure that contains:

– a state description
– other information such as:

l link to parent node
l name of action that generated this node (from its

parent)
l other bookkeeping data

23

Formalizing Search in a State Space

l Each arc corresponds to one of the finite number of
actions:
– when the action is applied to the state associated

with the arc's source node
– then the resulting state is the state associated with

the arc's destination node

l Each arc has a fixed, positive cost:
– corresponds to the cost of the action

24

Formalizing Search in a State Space

l Each node has a finite set of successor nodes:
– corresponding to all the legal actions

that can be applied at the source node's state

l Expanding a node means:
– generate all successor nodes
– add them and their associated arcs to the state-

space search tree

6

25

Formalizing Search in a State Space

l One or more nodes are designated as start nodes
l A goal test is applied to a node's state to determine

if it is a goal node
l A solution is a sequence of actions associated with

a path in the state space from a start to a goal node:
– just the goal state (e.g., cryptarithmetic)
– a path from start to goal state (e.g., 8-puzzle)

l The cost of a solution is the sum of the arc costs
on the solution path

Search Summary

• Solution is an ordered sequence of
primitive actions (steps)

f(x) = a1, a2, …, an where x is the input
• Model task as a graph of all possible states

and actions, and a solution as a path
• A state captures all the relevant information

about the past

Sizes of State Spaces*

l Tic-Tac-Toe 103

l Checkers 1020

l Chess 1050

l Go 10170

Problem # Nodes

* Approximate number of legal states

What are the Components of
Formalizing Search in a State Space?

7

Formalizing Search
A search problem has five components:

S, I, G, actions, cost
1. State space S : all valid configurations
2. Initial states I ⊆	S: a set of start states
3. Goal states G ⊆ S: a set of goal states
4. An action function successors(s) ⊆ S : states

reachable in one step (one arc) from s

5. A cost function cost(s, s’): The cost of moving from
s to s’

l The goal of search is to find a solution path from a
state in I to a state in G

I = {(FCDS,)} ⊆	S
G = {(,FCDS)} ⊆	S

successors((FCDS,)) = {(CD,FS)}
successors((CDF,S)) = {(CD,FS), (D,FCS), (C,FSD)}

?

F C D S

F C D S

State Space = A Directed Graph

l In general, there will be many generated, but un-
expanded, states at any given time during a search

l One has to choose which one to “expand” next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

Start Goal

Different Search Strategies
l The generated, but not yet expanded, states

define the Frontier (aka Open or Fringe) set
l The essential difference is, which state in the

Frontier to expand next?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

Start Goal

33

Formalizing Search in a State Space
State-space search is the process of searching through
a state space for a solution by making explicit a
sufficient portion of an implicit state-space graph, in
the form of a search tree, to include a goal node:
TREE SEARCH Algorithm:

Frontier = {S}, where S is the start node
Loop do

if Frontier is empty then return failure
pick a node, n, from Frontier
if n is a goal node then return solution
Generate all n’s successor nodes and add

them all to Frontier
Remove n from Frontier

called
“expanding”
node n

8

34

Formalizing Search in a State Space

l This algorithm does NOT detect a goal when
the node is generated

l This algorithm does NOT detect loops (i.e.,
repeated states) in state space

l Each node implicitly represents
– a partial solution path from the start node to the

given node
– cost of the partial solution path

l From this node there may be
– many possible paths that have this partial path

as a prefix
– many possible solutions

A State Space Graph

START

GOAL

d

b

p
q

c

e

h

a

f

r

t

u

v

What is the corresponding search tree?

Uninformed Search on Trees

l Uninformed means we only know:
– The goal test
– The successors() function

l But not which non-goal states are better

l For now, also assume state space is a tree
– That is, we won’t worry about repeated states
– We will fix this later

41

Key Issues of
State-Space Search Algorithm

l Search process constructs a "search tree"
– root is the start state
– leaf nodes are:

l unexpanded nodes (in the Frontier list)
l "dead ends" (nodes that aren't goals and have no

successors because no operators were possible)
l goal node is last leaf node found

l Loops in graph may cause "search tree" to be infinite
even if state space is small

l Changing the Frontier ordering leads to different
search strategies

9

(Not all nodes shown;
e.g., no “backwards”

moves)

8-Puzzle State-Space Search Tree

43

Uninformed Search Strategies

Uninformed Search: strategies that order nodes
without using any domain specific information, i.e.,
don’t use any information stored in a state

l BFS: breadth-first search
– Queue (FIFO) used for the Frontier
– remove from front, add to back

l DFS: depth-first search
– Stack (LIFO) used for the Frontier
– remove from front, add to front

44

Formalizing Search in a State Space
State-space search is the process of searching through
a state space for a solution by making explicit a
sufficient portion of an implicit state-space graph, in
the form of a search tree, to include a goal node:
TREE SEARCH Algorithm:

Frontier = {S}, where S is the start node
Loop do

if Frontier is empty then return failure
pick a node, n, from Frontier
if n is a goal node then return solution
Generate all n’s successor nodes and add

them all to Frontier
Remove n from Frontier

called
“expanding”
node n

Breadth-First Search (BFS)
Expand the shallowest node in the tree first:
1. Examine states one step away from the initial state
2. Examine states two steps away from the initial state
3. and so on

Goal

10

46

Breadth-First Search (BFS)

of nodes tested: 0, expanded: 0

expnd. node Frontier list
{S} 5 2

9
6

4

4

6 2
1

7

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

47

5 2

9
6

4

4

6 2
1

7

Breadth-First Search (BFS)

of nodes tested: 1, expanded: 1

expnd. node Frontier list
{S}

S not goal {A,B,C}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

48

4

5 2

9
6

4

6 2
1

7

Breadth-First Search (BFS)

of nodes tested: 2, expanded: 2

expnd. node Frontier list
{S}

S {A,B,C}
A not goal {B,C,D,E}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

49

5 2

9
6

4

4

6 2
1

7

Breadth-First Search (BFS)

of nodes tested: 3, expanded: 3

expnd. node Frontier list
{S}

S {A,B,C}
A {B,C,D,E}
B not goal {C,D,E,G}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

11

50

2

5 2

9
6

4

4

6
1

7

Breadth-First Search (BFS)

of nodes tested: 4, expanded: 4

expnd. node Frontier list
{S}

S {A,B,C}
A {B,C,D,E}
B {C,D,E,G}
C not goal {D,E,G,F}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

51

7

5 2

9
6

4

4

6 2
1

Breadth-First Search (BFS)

of nodes tested: 5, expanded: 5

expnd. node Frontier list
{S}

S {A,B,C}
A {B,C,D,E}
B {C,D,E,G}
C {D,E,G,F}
D not goal {E,G,F,H}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

52

5 2

9
6

4

4

6 2
1

7

Breadth-First Search (BFS)

of nodes tested: 6, expanded: 6

expnd. node Frontier list
{S}

S {A,B,C}
A {B,C,D,E}
B {C,D,E,G}
C {D,E,G,F}
D {E,G,F,H}
E not goal {G,F,H,G}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

53

5 2

9
6

4

4

6 2
1

7

Breadth-First Search (BFS)

of nodes tested: 7, expanded: 6

expnd. node Frontier list
{S}

S {A,B,C}
A {B,C,D,E}
B {C,D,E,G}
C {D,E,G,F}
D {E,G,F,H}
E {G,F,H,G}
G goal {F,H,G} no expand

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

12

54

6

5 2

9
6

4

4

2
1

7

Breadth-First Search (BFS)

of nodes tested: 7, expanded: 6

expnd. node Frontier list
{S}

S {A,B,C}
A {B,C,D,E}
B {C,D,E,G}
C {D,E,G,F}
D {E,G,F,H}
E {G,F,H,G}
G {F,H,G}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, queue)

path: S,B,G
cost: 8

56

Evaluating Search Strategies

l Completeness
If a solution exists, will it be found?
– a complete algorithm will find a solution (not all)

l Optimality / Admissibility
If a solution is found, is it guaranteed to be optimal?
– an admissible algorithm will find a solution with

minimum cost

57

Evaluating Search Strategies

l Time Complexity
How long does it take to find a solution?
– usually measured for worst case
– measured by counting number of nodes expanded,

including goal node, if found

l Space Complexity
How much space is used by the algorithm?
– measured in terms of the maximum size

of Frontier during the search

l If goal is at depth d, how big is the Frontier (worst
case)?

What’s in the Frontier for BFS?

Goal

13

59

Breadth-First Search (BFS)

l Complete?
– Yes

l Optimal / Admissible?
– Yes, if all operators (i.e., arcs) have the same

constant cost, or costs are positive, non-decreasing
with depth

– otherwise, not optimal but does guarantee finding
solution of shortest length (i.e., fewest arcs)

60

Breadth-First Search (BFS)

l Time and space complexity: O(bd) (i.e., exponential)
– d is the depth of the solution
– b is the branching factor at each non-leaf node

l Very slow to find solutions with a large number of steps
because must look at all shorter length possibilities first

61

Breadth-First Search (BFS)

l A complete search tree has a total # of nodes =
1 + b + b2 + ... + bd = (b(d+1) - 1) / (b-1)

– d: the tree's depth
– b: the branching factor at each non-leaf node

l For example: d = 12, b = 10
1 + 10 + 100 + ... + 1012 = (1013 - 1)/9 = O(1012)
– If BFS expands 1,000 nodes/sec and each node

uses 100 bytes of storage, then BFS will take 35
years to run in the worst case, and it will use 111
terabytes of memory!

Depth-First Search

Goal

Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
Use a Stack to order nodes in Frontier

14

66

5 2

9
6

4

4

6 2
1

7

of nodes tested: 0, expanded: 0

Depth-First Search (DFS)

expnd. node Frontier
{S}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

67

5 2

9
6

4

4

6 2
1

7

of nodes tested: 1, expanded: 1

Depth-First Search (DFS)

expnd. node Frontier
{S}

S not goal {A,B,C}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

68

4

5 2

9
6

4

6 2
1

7

of nodes tested: 2, expanded: 2

Depth-First Search (DFS)

expnd. node Frontier
{S}

S {A,B,C}
A not goal {D,E,B,C}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

69

5 2

9
6

4

4

6 2
1

7

of nodes tested: 3, expanded: 3

Depth-First Search (DFS)

expnd. node Frontier
{S}

S {A,B,C}
A {D,E,B,C}
D not goal {H,E,B,C}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

15

70

5 2

9
6

4

4

6 2
1

7

of nodes tested: 4, expanded: 4

Depth-First Search (DFS)

expnd. node Frontier
{S}

S {A,B,C}
A {D,E,B,C}
D {H,E,B,C}
H not goal {E,B,C}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

71

5 2

9
6

4

4

6 2
1

7

of nodes tested: 5, expanded: 5

Depth-First Search (DFS)

expnd. node Frontier
{S}

S {A,B,C}
A {D,E,B,C}
D {H,E,B,C}
H {E,B,C}
E not goal {G,B,C}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

72

5 2

9
6

4

4

6 2
1

7

of nodes tested: 6, expanded: 5

Depth-First Search (DFS)

expnd. node Frontier
{S}

S {A,B,C}
A {D,E,B,C}
D {H,E,B,C}
H {E,B,C}
E {G,B,C}
G goal {B,C} no expand

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

73

4

5 2

9
6

4

6 2
1

7

of nodes tested: 6, expanded: 5

Depth-First Search (DFS)

expnd. node Frontier
{S}

S {A,B,C}
A {D,E,B,C}
D {H,E,B,C}
H {E,B,C}
E {G,B,C}
G {B,C}

S
start

A

ED F

B

G
goal

C

H

generalSearch(problem, stack)

path: S,A,E,G
cost: 15

16

76

Depth-First Search (DFS)

l May not terminate without a depth bound
i.e., cutting off search below a fixed depth, D

l Not complete
– with or without cycle detection
– and, with or without a depth cutoff

l Not optimal / admissible

l Can find long solutions quickly if lucky

77

Depth-First Search (DFS)

l Time complexity: O(bd) exponential
Space complexity: O(bd) linear

– d is the depth of the solution
– b is the branching factor at each non-leaf node

l Performs “chronological backtracking”
– i.e., when search hits a dead end, backs up one

level at a time
– problematic if the mistake occurs because of a bad

action choice near the top of search tree

78

Uniform-Cost Search (UCS)

l Use a Priority Queue to order nodes in Frontier,
sorted by path cost

l Let g(n) = cost of path from start node s to current
node n

l Sort nodes by increasing value of g

79

of nodes tested: 0, expanded: 0
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S} 5 2

9
6

4

4

6 2
1

7

S
start

A

ED F

B

G
goal

C

H

17

80

5 2

9
6

4

4

6 2
1

7

of nodes tested: 1, expanded: 1
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S:0}

S not goal {B:2,C:4,A:5}

S
start

A

ED F

B

G
goal

C

H
81

6

5 2

9
6

4

4

2
1

7

of nodes tested: 2, expanded: 2
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S}

S {B:2,C:4,A:5}
B not goal {C:4,A:5,G:2+6}

S
start

A

ED F

B

G
goal

C

H

82

5 2

9
6

4

4

6 2
1

7

of nodes tested: 3, expanded: 3
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S}

S {B:2,C:4,A:5}
B {C:4,A:5,G:8}
C not goal {A:5,F:4+2,G:8}

S
start

A

ED F

B

G
goal

C

H
83

5 2

9
6

4

4

6 2
1

7

of nodes tested: 4, expanded: 4
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S}

S {B:2,C:4,A:5}
B {C:4,A:5,G:8}
C {A:5,F:6,G:8}
A not goal {F:6,G:8,E:5+4,

D:5+9}

S
start

A

ED F

B

G
goal

C

H

18

84

2
1

5 2

9
6

4

4

6

7

of nodes tested: 5, expanded: 5
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S}

S {B:2,C:4,A:5}
B {C:4,A:5,G:8}
C {A:5,F:6,G:8}
A {F:6,G:8,E:9,D:14}
F not goal {G:4+2+1,G:8,E:9,

D:14}

S
start

A

ED F

B

G
goal

C

H
85

5 2

9
6

4

4

6 2
1

7

of nodes tested: 6, expanded: 5
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S}

S {B:2,C:4,A:5}
B {C:4,A:5,G:8}
C {A:5,F:6,G:8}
A {F:6,G:8,E:9,D:14}
F {G:7,G:8,E:9,D:14}
G goal {G:8,E:9,D:14}

no expand

S
start

A

ED F

B

G
goal

C

H

86

5 2

9
6

4

4

6 2
1

7

of nodes tested: 6, expanded: 5
generalSearch(problem, priorityQueue)

Uniform-Cost Search (UCS)

expnd. node Frontier list
{S}

S {B:2,C:4,A:5}
B {C:4,A:5,G:8}
C {A:5,F:6,G:8}
A {F:6,G:8,E:9,D:14}
F {G:7,G:8,E:9,D:14}
G {G:8,E:9,D:14}

S
start

A

ED F

B

G
goal

C

H
path: S,C,F,G
cost: 7

89

Uniform-Cost Search (UCS)

l Called Dijkstra's Algorithm in the algorithms
literature

l Similar to Branch and Bound Algorithm
in Operations Research literature

l Complete
l Optimal / Admissible

– requires that the goal test is done when a node is
removed from the Frontier rather than when the
node is generated by its parent node

19

90

Uniform-Cost Search (UCS)

l Time and space complexity: O(bd) (i.e., exponential)
– d is the depth of the solution
– b is the branching factor at each non-leaf node

l More precisely, time and space complexity is
O(bC*/ε) where all edge costs are ε, ε > 0, and C* is
the best goal path cost

91

Iterative-Deepening Search (IDS)

l requires modification to DFS search algorithm:
– do DFS to depth 1

and treat all children of the start node as leaves
– if no solution found, do DFS to depth 2
– repeat by increasing “depth bound” until a solution

found

l Start node is at depth 0

92

deepeningSearch(problem)
depth: 1, # of nodes expanded: 0, tested: 0

Iterative-Deepening Search (IDS)

expnd. node Frontier
{S} 5 2

9
6

4

4

6 2
1

7

S
start

A

ED F

B

G
goal

C

H
93

5 2

9
6

4

4

6 2
1

7

deepeningSearch(problem)
depth: 1, # of nodes tested: 1, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S not goal {A,B,C}

20

94

5 2

9
6

4

4

6 2
1

7

deepeningSearch(problem)
depth: 1, # of nodes tested: 2, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A not goal {B,C} no expand

95

5 2

9
6

4

4

6 2
1

7

deepeningSearch(problem)
depth: 1, # of nodes tested: 3, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B not goal {C} no expand

96

5 2

9
6

4

4

6 2
1

7

deepeningSearch(problem)
depth: 1, # of nodes tested: 4, expanded: 1

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C not goal { } no expand-FAIL

97

4

5 2

9
6

4

6 2
1

7

deepeningSearch(problem)
depth: 2, # of nodes tested: 4(1), expanded: 2

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C { }
S no test {A,B,C}

21

98

4

5 2

9
6

4

6 2
1

7

deepeningSearch(problem)
depth: 2, # of nodes tested: 4(2), expanded: 3

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C { }
S {A,B,C}
A no test {D,E,B,C}

99

4

5 2

9
6

4

6 2
1

7

deepeningSearch(problem)
depth: 2, # of nodes tested: 5(2), expanded: 3

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C { }
S {A,B,C}
A {D,E,B,C}
D not goal {E,B,C} no expand

10
0

4

5 2

9
6

4

6 2
1

7

deepeningSearch(problem)
depth: 2, # of nodes tested: 6(2), expanded: 3

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C { }
S {A,B,C}
A {D,E,B,C}
D {E,B,C}
E not goal {B,C} no expand

10
1

64

5 2

9
6

4

2
1

7

deepeningSearch(problem)
depth: 2, # of nodes tested: 6(3), expanded: 4

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C { }
S {A,B,C}
A {D,E,B,C}
D {E,B,C}
E {B,C}
B no test {G,C}

22

10
2

64

5 2

9
6

4

2
1

7

deepeningSearch(problem)
depth: 2, # of nodes tested: 7(3), expanded: 4

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C { }
S {A,B,C}
A {D,E,B,C}
D {E,B,C}
E {B,C}
B {G,C}
G goal {C} no expand

10
3

64

5 2

9
6

4

2
1

7

deepeningSearch(problem)
depth: 2, # of nodes tested: 7(3), expanded: 4

Iterative-Deepening Search (IDS)

S
start

A

ED F

B

G
goal

C

H

expnd. node Frontier
{S}

S {A,B,C}
A {B,C}
B {C}
C { }
S {A,B,C}
A {D,E,B,C}
D {E,B,C}
E {B,C}
B {G,C}
G {C}

path: S,B,G
cost: 8

10
4

Iterative-Deepening Search (IDS)

l Has advantages of BFS
– completeness
– optimality as stated for BFS

l Has advantages of DFS
– limited space
– in practice, even with redundant effort it still finds

longer paths more quickly than BFS

10
5

Iterative-Deepening Search (IDS)

l Space complexity: O(bd) (i.e., linear like DFS)

l Time complexity is a little worse than BFS or DFS
– because nodes near the top of the search tree

are generated multiple times (redundant effort)

l Worst case time complexity: O(bd) exponential
– because most nodes are near the bottom of tree

23

10
6

Iterative-Deepening Search (IDS)

How much redundant effort is done?
l The number of times the nodes are generated:

1bd + 2b(d-1) + ... + db ≤ bd / (1 – 1/b)2 = O(bd)
– d: the solution's depth
– b: the branching factor at each non-leaf node

l For example: b = 4
4d / (1 – ¼)2 = 4d / (.75)2 = 1.78 × 4d

– in the worst case, 78% more nodes are
searched (redundant effort) than exist at depth d

– as b increases, this % decreases

Iterative-Deepening Search
l Trades a little time for a huge reduction in space

– lets you do breadth-first search with (more space
efficient) depth-first search

l “Anytime” algorithm: good for response-time
critical applications, e.g., games

l An “anytime” algorithm is an algorithm that can return a
valid solution to a problem even if it's interrupted at any
time before it ends. The algorithm is expected to find
better and better solutions the longer it runs.

Bidirectional Search

start

l Breadth-first search from both start and goal
l Stop when Frontiers meet
l Generates O(bd/2) instead of O(bd) nodes

goal

If State Space is Not a Tree

l The problem: repeated states

l Ignoring repeated states: wasteful (BFS) or
impossible (DFS). Why?

l How to prevent these problems?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Problem

24

If State Space is Not a Tree
l We have to remember already-expanded states

(called Explored (aka Closed) set) too

l When we pick a node from Frontier
– Remove it from Frontier
– Add it to Explored
– Expand node, generating all successors
– For each successor, child,

l If child is in Explored or in Frontier, throw child
away // for BFS and DFS

l Otherwise, add it to Frontier

l Called Graph-Search algorithm in Figure 3.7
and Uniform-Cost-Search in Figure 3.14

function Uniform-Cost-Search (problem)
loop do

if Empty?(frontier) then return failure
node = Pop(frontier)
if Goal?(node) then return Solution(node)
Insert node in explored
foreach child of node do

if child not in frontier or explored then
Insert child in frontier

else if child in frontier with higher cost then
Remove that old node from frontier
Insert child in frontier

This is the algorithm in Figure 3.14 in the textbook; note that if
child is not in frontier but is in explored, this algorithm will
throw away child

Example

S

A B C

D E G

1 5 8

3 7 9 4 5 How are nodes expanded by

• Depth First Search
• Breadth First Search
• Uniform Cost Search
• Iterative Deepening

Are the solutions the same?

Nodes Expanded by:

l Depth-First Search: S A D E G
Solution found: S A G

l Breadth-First Search: S A B C D E G
Solution found: S A G

l Uniform-Cost Search: S A D B C E G
Solution found: S B G

l Iterative-Deepening Search: S A B C S A D E G
Solution found: S A G

