Genetic Algorithms

Chapter 4.1.4

Introduction to Genetic Algorithms

• Another Local Search method
• Inspired by natural evolution
 Living things evolved into more successful organisms
 — offspring exhibit some traits of each parent

Introduction to Genetic Algorithms

• Keep a population of individuals that are complete solutions (or partial solutions)
• Explore solution space by having these individuals “interact” and “compete”
 — interaction produces new individuals
 — competition eliminates weak individuals
• After multiple generations a strong individual (i.e., solution) should be found
• “Simulated Evolution” via a form of Randomized Beam Search

Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 — Alteration (Crossover): the (random)
 combination of 2 parents’ chromosomes during reproduction resulting in offspring that have some traits of each parent

• Alteration requires genetic diversity among the parents to ensure sufficiently varied offspring
Introduction to Genetic Algorithms

- Mechanisms of evolutionary change:
 - **Mutation**: the rare occurrence of errors during the process of copying chromosomes resulting in
 - changes that are nonsensical or deadly, producing organisms that can’t survive
 - changes that are beneficial, producing “stronger” organisms
 - changes that aren’t harmful or beneficial, producing organisms that aren’t improved

- **Natural selection**: the fittest survive in a competitive environment resulting in better organisms
 - individuals with better survival traits generally survive for a longer period of time
 - this provides a better chance for reproducing and passing the successful traits on to offspring
 - over many generations the species improves since better traits will out number weaker ones

Representation of Individuals

Solutions represented as a vector of values
- Satisfiability problem (SAT)
 - determine if a statement in propositional logic is satisfiable, for example:
 \[(P_1 \lor P_2) \land (P_3 \lor \neg P_4) \land (P_1 \lor \neg P_3) \land (\neg P_4 \lor \neg P_3)\]
 - each element corresponds to a symbol having a value of either true (i.e., 1) or false (i.e., 0)
 - vector: \[P_1 P_2 P_3 P_4\]
 - values: 1 0 1 1 \rightarrow rep. of 1 individual
- Traveling salesperson problem (TSP)
 - Tour can be represented as a sequence of cities visited

Genetic Algorithm

- Create initial random population
- Evaluate fitness of each individual
- Termination criterion satisfied?
- Select parents according to fitness
- Recombine parents to generate offspring
- Mutate offspring
- Replace population by new offspring
- Stop if yes, otherwise no
Gene Algorithm (1 version*)

1. Let \(s = \{ s_1, \ldots, s_N \} \) be the current population
2. Let \(p[i] = f(s_i) / \text{SUM} f(s_j) \) be the fitness probabilities
3. for \(k = 1; \ k < N; \ k += 2 \)
 - Parent1 = randomly pick \(s_i \) with prob. \(p[i] \)
 - Parent2 = randomly pick another \(s_j \) with prob. \(p[j] \)
 - Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate two children \(t[k] \) and \(t[k+1] \)
4. for \(k = 1; \ k \leq N; \ k++ \)
 - Randomly mutate each position in \(t[k] \) with a small probability
5. New generation replaces old generation: \(s = t \)

*different than in book

Initialization: Seeding the Population

- Initialization sets the beginning population of individuals from which future generations are produced
- Issues:
 - size of the initial population
 - experimentally determined for problem
 - diversity of the initial population (genetic diversity)
 - a problem resulting from lack of diversity is premature convergence to a non-optimal solution

Initialization: Seeding the Population

- How is a diverse initial population generated?
 - uniformly random: generate individuals randomly from a solution space with uniform distribution
 - grid initialization: choose individuals at regular "intervals" from the solution space
 - non-clustering: require individuals to be a predefined "distance" away from those already in the population
 - local optimization: use another technique (e.g. HC) to find initial population of local optima; doesn't ensure diversity but guarantees solution to be no worse than the local optima

Evaluation: Ranking by Fitness

- Evaluation ranks the individuals using some fitness measure that corresponds with the quality of the individual solutions
- For example, given individual \(i \):
 - classification: \((\text{correct}(i))^2 \)
 - TSP: \(1/\text{distance}(i) \)
 - SAT: \(\# \text{ofClausesSatisfied}(i) \)
 - walking animation: subjective rating
Selection: Finding the Fittest

• Choose which individuals survive and possibly reproduce in the next generation
• Selection depends on the evaluation/fitness function
 – if too dependent, then, like greedy search, a non-optimal solution may be found
 – if not dependent enough, then may not converge to a solution at all
• Nature doesn’t eliminate all "unfit" genes; they usually become recessive for a long period of time, and then may mutate to something useful

Selection Techniques

• Deterministic Selection
 – relies heavily on evaluation/fitness function
 – converges fast
• Two approaches:
 – next generation is parents and their children
 • parents are the best of the current generation
 • parents produce children and survive to next generation
 – next generation is only the children
 • parents are the best of the current generation
 • parents are used to produce children only
 • parents don’t survive (counters early convergence)

Selection Techniques

• Proportional Fitness Selection
 – each individual is selected proportionally to their fitness score
 – even the worst individual has a chance to survive
 – helps prevent “stagnation” in the population
• Two approaches:
 – rank selection: individual selected with a probability proportional to its rank in population sorted by fitness
 – proportional selection: individual selected with a probability: \(\frac{\text{Fitness}(\text{individual})}{\sum \text{Fitness for all individuals}} \)

Selection Techniques

• Proportional selection example:
 • Given the following fitness values for population:
 • Sum all the Fitnesses
 \[5 + 20 + 11 + 8 + 6 = 50 \]
 • Determine probabilities
 \(\frac{\text{Fitness}(i)}{50} \)

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>12%</td>
</tr>
</tbody>
</table>
Selection Techniques

• **Tournament Selection**
 – randomly select two individuals and the one with the highest rank goes on and reproduces
 – cares only about the one with the higher rank, not the difference between the two fitness scores
 – defines a probability on the chances that any individual has to reproduce for the next generation equal to
 \(\frac{2s - 2r + 1}{s^2} \)
 • \(s \) is the size of the population
 • \(r \) is the rank of the “winning” individual
 – can be generalized to select best \(n \) individuals

Tournament selection example:

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1/25 = 4%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>9/25 = 36%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>7/25 = 28%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>5/25 = 20%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>3/25 = 12%</td>
</tr>
</tbody>
</table>

Selection Techniques

Crowding: a potential problem associated with Selection
 – occurs when the individuals that are most-fit quickly reproduce so that a large percentage of the entire population looks very similar
 – reduces diversity in the population
 – may hinder the long-run progress of the algorithm

Alteration: Producing New Individuals

• Alteration is used to produce new individuals
 • **Crossover** for vector representations:
 – Pick pairs of individuals as parents and randomly swap their segments
 – also known as "cut and splice"
 • Parameters:
 – number of crossover points
 – positions of the crossover points
Alteration: Producing New Individuals

• **1-point Crossover**
 – pick a dividing point in the parents’ vectors and swap their segments

• **Example**
 – given parents: 1101101101 and 0001001000
 – crossover point: after the 4th digit
 – children produced are: 1101 + 001000 and 0001 + 101101

Alteration: Producing New Individuals

• Alteration is used to produce new individuals

• **Mutation**
 – randomly change an individual
 – e.g. TSP: two-swap, two-interchange
 – e.g. SAT: bit flip

• Parameters:
 – mutation rate
 – size of the mutation

Alteration: Producing New Individuals

• **N-point Crossover**
 – generalization of 1-point crossover
 – pick \(n \) dividing points in the parents’ vectors and splice together alternating segments

• **Uniform Crossover**
 – the value of each element of the vector is randomly chosen from the values in the corresponding elements of the two parents

• Techniques also exist for permutation representations

Genetic Algorithm (1 version*)

1. Let \(s = \{s_1, \ldots, s_N\} \) be the current population
2. Let \(p[i] = f(s_i)/\text{SUM}_j f(s_j) \) be the fitness probabilities
3. for \(k = 1; \ k < N; \ k += 2 \)
 • Parent1 = randomly pick \(s_i \) with prob. \(p[i] \)
 • Parent2 = randomly pick another \(s_j \) with prob. \(p[j] \)
 • Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate children \(t[k] \) and \(t[k+1] \)
4. for \(k = 1; \ k < N; \ k += 2 \)
 • Randomly mutate each position in \(t[k] \) with a small prob.
5. New generation replaces old generation: \(s = t \)

*different than in book
Genetic Algorithms as Search

Problem of Local Maxima

individuals get stuck at pretty good but not optimal solutions

– any small mutation gives worse fitness

– crossover can help get out of a local maximum

– mutation is a random process, so it is possible that we may have a sudden large mutation to get these individuals out of this situation

• GA is a kind of hill-climbing search

• Very similar to a randomized beam search

• One significant difference between GAs and HC is that, it is generally a good idea in GAs to “fill the local maxima up with individuals”

• Overall, GAs have less problems with local maxima than HC or neural networks
Summary

• Easy to apply to a wide range of problems
 – Optimization problems such as TSP
 – inductive concept learning
 – scheduling
 – Layout
• Results can be very good on some problems, and rather poor on others
• GA is very slow if only mutation is used; crossover makes the algorithm significantly faster