Gene$c	
 Algorithms

Chapter 4.1.4

Introduction to Genetic Algorithms

• Another Local Search method
• Inspired by natural evolution:
 – Living things evolved into more successful organisms
 – offspring exhibit some traits of each parent
 – hereditary traits are determined by genes
 – genetic instructions are contained in chromosomes
 – chromosomes are strands of DNA
 – DNA is composed of base pairs (A,C,G,T), when in meaningful combinations, encode hereditary traits

Introduction to Genetic Algorithms

• Keep a population of individuals that are complete solutions (or partial solutions)
• Explore solution space by having these individuals interact and compete
 – interaction produces new individuals
 – competition eliminates weak individuals
• After multiple generations a strong individual (i.e., solution) should be found
• “Simulated Evolution” via a form of Randomized Beam Search

Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 – Crossover: the (random) exchange of 2 parents’ chromosomes during reproduction resulting in offspring that have some traits of each parent

• Crossover requires genetic diversity among the parents to ensure sufficiently varied offspring
Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 – **Mutation**: the rare occurrence of errors during the process of copying chromosomes resulting in
 • changes that are nonsensical/deadly, producing organisms that can't survive
 • changes that are beneficial, producing "stronger" organisms
 • changes that aren't harmful or beneficial, producing organisms that aren't improved

• Natural selection: the fittest survive in a competitive environment resulting in better organisms
 • individuals with better survival traits generally survive for a longer period of time
 • this provides a better chance for reproducing and passing the successful traits on to offspring
 • over many generations the species improves since better traits will out number weaker ones

Representation of Individuals

• Solutions that can be represented as a **vector** of values
 – Satisfiability problem (SAT)
 • determine if a statement in propositional logic is satisfiable, for example:
 \((P_1 \lor P_2) \land (P_1 \lor \neg P_3) \land (P_1 \lor P_4) \land (P_5 \lor P_6)\)
 • each element corresponds with a proposition having a truth value of either true (i.e., 1) or false (i.e., 0)
 • vector: \(P_1 \ P_2 \ P_3 \ P_4\)
 • values: \(1 \ 0 \ 1 \ 1\) \(\Rightarrow\) rep. of 1 individual
 – Traveling salesperson problem
 • Tour can be represented as a sequence of cities visited

Genetic Algorithm

1. Create initial random population
2. Evaluate fitness of each individual
3. Termination criteria satisfied?
 yes -> stop
 no -> Select parents according to fitness
4. Recombine parents to generate offspring
5. Mutate offspring
6. Replace population by new offspring
Gene Algorithm (1 version*)

1. Let \(s = \{s_1, \ldots, s_N\} \) be the current population
2. Let \(p[i] = f(s_i)/\text{SUM}_j f(s_j) \) be the fitness probabilities
3. for \(k = 1; k < N; k += 2 \)
 - Parent1 = randomly pick \(s_i \) with prob. \(p[i] \)
 - Parent2 = randomly pick another \(s_j \) with prob. \(p[j] \)
 - Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate children \(t[k] \) and \(t[k+1] \)
4. for \(k = 1; k \leq N; k++ \)
 - Randomly mutate each position in \(t[k] \) with a small prob.
5. New generation replaces old generation: \(s = t \)

*different than in book

Initialization: Seeding the Population

- Initialization sets the beginning population of individuals from which future generations are produced
- Concerns:
 - size of the initial population
 - experimentally determined for problem
 - diversity of the initial population (genetic diversity)
 - a common issue resulting from the lack of diversity is premature convergence to non-optimal solution

Initialization: Seeding the Population

- How is a diverse initial population generated?
 - uniformly random: generate individuals randomly from a solution space with uniform distribution
 - grid initialization: choose individuals at regular “intervals” from the solution space
 - non-clustering: require individuals to be a predefined “distance” away from those already in the population
 - local optimization: use another technique (e.g. HC) to find initial population of local optima; doesn’t ensure diversity but guarantees solution to be no worse than the local optima

Evaluation: Ranking by Fitness

- Evaluation ranks the individuals by some fitness measure that corresponds with the quality of the individual solutions
- For example, given individual \(i \):
 - classification: \((\text{correct}(i))^2 \)
 - TSP: \(1/\text{distance}(i) \)
 - SAT: \(\#\text{ofTermsSatisfied}(i) \)
 - walking animation: subjective rating
Selection: Finding the Fittest

• **Choose which individuals survive and possibly reproduce in the next generation**
• Selection depends on the evaluation/fitness function
 – if too dependent, then, like greedy search, a non-optimal solution may be found
 – if not dependent enough, then may not converge to a solution at all
• Nature doesn’t eliminate all "unfit" genes; they usually become recessive for a long period of time, and then may mutate to something useful

Selection Techniques

• **Proportional Fitness Selection**
 – each individual is selected proportionally to their fitness score
 – even the worst individual has a chance to survive
 – this helps prevent stagnation in the population
• Two approaches:
 – rank selection: individual selected with a probability proportional to its rank in population sorted by fitness
 – proportional selection: individual selected with a probability:
 \[
 \frac{\text{Fitness}(\text{individual})}{\text{SUM Fitness for all individuals}}
 \]

Proportional selection example:

- **Sum the Fitness**
 \[5 + 20 + 11 + 8 + 6 = 50\]
- **Determine probabilities**
 \[\frac{\text{Fitness}(\text{individual})}{50}\]

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>12%</td>
</tr>
</tbody>
</table>

• **Tournament Selection**
 – randomly select two individuals and the one with the highest rank goes on and reproduces
 – cares only about the one with the higher rank, not the spread between the two fitness scores
 – puts an upper and lower bound on the chances that any individual has to reproduce for the next generation equal to \(\frac{2s - 2r + 1}{s^2}\)
 • \(s\) is the size of the population
 • \(r\) is the rank of the "winning" individual
 – can be generalized to select best of \(n\) individuals
Selection Techniques

Tournament selection example:
- Given the following population and fitness:
- **Select B and D**
- **B wins**
- **Probability:**
 \[
 \frac{(2s - 2r + 1)}{s^2}\]

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1/25 = 4%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>9/25 = 36%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>7/25 = 28%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>5/25 = 20%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>3/25 = 12%</td>
</tr>
</tbody>
</table>

B: \(s=5, r=1 \) D: \(s=5, r=3 \)

Alteration: Producing New Individuals

- Alteration is used to produce new individuals

- **Crossover** for vector representations:
 - pick one or more pairs of individuals as parents and randomly swap their segments
 - also known as "cut and splice"

- Parameters:
 - crossover rate
 - number of crossover points
 - positions of the crossover points

Selection Techniques

- **Crowding**
 a potential problem associated with the selection
 - occurs when the individuals that are most-fit quickly reproduce so that a large percentage of the entire population looks very similar
 - reduces diversity in the population
 - may hinder the long-run progress of the algorithm

Alteration: Producing New Individuals

- **1-point crossover**
 - pick a dividing point in the parents’ vectors and swap the segments

- **Example**
 - given parents: 1101101101 and 0001001000
 - crossover point: after the 4th digit
 - children produced are:
 1101 + 001000 and 0001 + 101101
Alteration: Producing New Individuals

- **N-point crossover**
 - generalization of 1-point crossover
 - pick \(n \) dividing points in the parents' vectors and splice together alternating segments
- **Uniform crossover**
 - the value of each element of the vector is randomly chosen from the values in the corresponding elements of the two parents
- Techniques also exist for permutation representations

Mutation
- randomly change an individual
- e.g. TSP: two-swap, two-interchange
- e.g. SAT: bit flip

Parameters
- mutation rate
- size of the mutation

Genetic Algorithm (1 version*)

1. Let \(s = \{s_1, \ldots, s_N\} \) be the current population
2. Let \(p[i] = f(s_i)/\text{SUM}_j f(s_j) \) be the fitness probabilities
3. for \(k = 1; k < N; k += 2 \)
 - Parent1 = randomly pick \(s_i \) with prob. \(p[i] \)
 - Parent2 = randomly pick another \(s_j \) with prob. \(p[j] \)
 - Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate children \(t[k] \) and \(t[k+1] \)
4. for \(k = 1; k \leq N; k++ \)
 - Randomly mutate each position in \(t[k] \) with a small prob.
5. New generation replaces old generation: \(s = t \)

*different than in book

Genetic Algorithm Applications
Gene\-\algorithms as Search

- **Problem of Local Maxima**
 - individuals get stuck at pretty good but not optimal solutions
 - any small mutation gives worse fitness
 - crossover can help them get out of a local maximum
 - mutation is a random process, so it is possible that we may have a sudden large mutation to get these individuals out of this situation

- **GA is a kind of hill-climbing search**
- **Very similar to a randomized beam search**
- **One significant difference between GAs and HC is that, it is generally a good idea in GAs to “fill the local maxima up with individuals”**
- **Overall, GAs have less problems with local maxima than back-propagation neural networks**

Summary

- **Easy to apply to a wide range of problems**
 - optimizations like TSP
 - inductive concept learning
 - scheduling
 - layout
- **The results can be very good on some problems, and rather poor on others**
- **GA is very slow if only mutation is used; crossover makes the algorithm significantly faster**