Genetic Algorithms

Chapter 4.1.4

Introduction to Genetic Algorithms

• Another Local Search method
• Inspired by natural evolution:
 – Living things evolved into more successful organisms
 – offspring exhibit some traits of each parent
 – hereditary traits are determined by genes
 – genetic instructions are contained in chromosomes
 – chromosomes are strands of DNA
 – DNA is composed of base pairs (A,C,G,T), when in meaningful combinations, encode hereditary traits

Introduction to Genetic Algorithms

• Keep a population of individuals that are complete solutions (or partial solutions)
• Explore solution space by having these individuals interact and compete
 – interaction produces new individuals
 – competition eliminates weak individuals
• After multiple generations a strong individual (i.e., solution) should be found
• “Simulated Evolution” via a form of Randomized Beam Search

Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 – Crossover: the (random) exchange of 2 parents’ chromosomes during reproduction resulting in offspring that have some traits of each parent

• Crossover requires genetic diversity among the parents to ensure sufficiently varied offspring
Introduction to Genetic Algorithms

• Mechanisms of evolutionary change:
 – **Mutation**: the rare occurrence of errors during the process of copying chromosomes resulting in
 • changes that are nonsensical/deadly, producing organisms that can’t survive
 • changes that are beneficial, producing "stronger" organisms
 • changes that aren’t harmful or beneficial, producing organisms that aren’t improved

• **Natural selection**: the fittest survive in a competitive environment resulting in better organisms
 • individuals with better survival traits generally survive for a longer period of time
 • this provides a better chance for reproducing and passing the successful traits on to offspring
 • over many generations the species improves since better traits will out number weaker ones

Representation of Individuals

Solutions represented as a **vector** of values

– Satisfiability problem (SAT)
 • determine if a statement in propositional logic is satisfiable, for example:
 \[(P_1 \lor P_2) \land (P_1 \lor \neg P_3) \land (P_1 \lor \neg P_4) \land (\neg P_3 \lor \neg P_4)\]
 • each element corresponds to a symbol having a truth value of either true (i.e., 1) or false (i.e., 0)
 • vector: \(P_1 P_2 P_3 P_4\)
 • values: 1 0 1 1 rep. of 1 individual

– Traveling salesperson problem
 • Tour can be represented as a sequence of cities visited

Gene遗传算法

- 创造初始随机群体
- 评估每个个体的适应度
- 终止条件满足否？
 - 是，停止
 - 否，选择根据适应度的父母
- 重组父母生成后代
- 突变后代
- 用新后代替换群体
Genetic Algorithm (1 version*)

1. Let \(s = \{s_1, \ldots, s_N\} \) be the current population
2. Let \(p[i] = f(s_i)/\text{SUM}_j f(s_j) \) be the fitness probabilities
3. for \(k = 1; k < N; k += 2 \)
 • Parent1 = randomly pick \(s \) with prob. \(p[i] \)
 • Parent2 = randomly pick another \(s \) with prob. \(p[j] \)
 • Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate children \(t[k] \) and \(t[k+1] \)
4. for \(k = 1; k \leq N; k++ \)
 • Randomly mutate each position in \(t[k] \) with a small prob.
5. New generation replaces old generation: \(s = t \)

*different than in book

Initialization: Seeding the Population

• Initialization sets the beginning population of individuals from which future generations are produced

• Issues:
 – size of the initial population
 • experimentally determined for problem
 – diversity of the initial population (genetic diversity)
 • a common issue resulting from the lack of diversity is premature convergence to a non-optimal solution

Initialization: Seeding the Population

• How is a diverse initial population generated?
 – uniformly random: generate individuals randomly from a solution space with uniform distribution
 – grid initialization: choose individuals at regular "intervals" from the solution space
 – non-clustering: require individuals to be a predefined "distance" away from those already in the population
 – local optimization: use another technique (e.g. HC) to find initial population of local optima; doesn’t ensure diversity but guarantees solution to be no worse than the local optima

Evaluation: Ranking by Fitness

• Evaluation ranks the individuals using some fitness measure that corresponds with the quality of the individual solutions

• For example, given individual \(i \):
 – classification: \((\text{correct}(i))^2\)
 – TSP: \(1/\text{distance}(i)\)
 – SAT: \# ofTermsSatisfied(i)
 – walking animation: subjective rating
Selection: Finding the Fittest

- **Choose which individuals survive and possibly reproduce in the next generation**
- Selection depends on the evaluation/fitness function
 - if too dependent, then, like greedy search, a non-optimal solution may be found
 - if not dependent enough, then may not converge to a solution at all
- Nature doesn’t eliminate all "unfit" genes; they usually become recessive for a long period of time, and then may mutate to something useful

Selection Techniques

- **Proportional Fitness Selection**
 - each individual is selected proportionally to their fitness score
 - even the worst individual has a chance to survive
 - this helps prevent stagnation in the population
- Two approaches:
 - **rank selection**: individual selected with a probability proportional to its rank in population sorted by fitness
 - **proportional selection**: individual selected with a probability: \(\frac{\text{Fitness(individual)}}{\sum \text{Fitness for all individuals}} \)

Selection Techniques

Proportional selection example:

- Given the following fitness values for population:
- **Sum all the Fitneses**
 \(5 + 20 + 11 + 8 + 6 = 50 \)
- **Determine probabilities**
 \(\frac{\text{Fitness(i)}}{50} \)

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>12%</td>
</tr>
</tbody>
</table>

Selection Techniques

- **Tournament Selection**
 - randomly select two individuals and the one with the highest rank goes on and reproduces
 - cares only about the one with the higher rank, not the spread between the two fitness scores
 - puts an upper and lower bound on the chances that any individual has to reproduce for the next generation equal to \(\frac{(2s - 2r + 1)}{s^2} \)
 - \(s \) is the size of the population
 - \(r \) is the rank of the "winning" individual
 - can be generalized to select best of \(n \) individuals
Selection Techniques

Tournament selection example:
- Given the following population and fitness:
 - **Select B and D**
 - **B wins**
 - **Probability:**
 \[\frac{2s - 2r + 1}{s^2} \]

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1/25 = 4%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>9/25 = 36%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>7/25 = 28%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>5/25 = 20%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>3/25 = 12%</td>
</tr>
</tbody>
</table>

B: s=5, r=1 D: s=5, r=3

Crowding: a potential problem associated with the selection
- occurs when the individuals that are most-fit quickly reproduce so that a large percentage of the entire population looks very similar
- reduces diversity in the population
- may hinder the long-run progress of the algorithm

Alteration: Producing New Individuals

- Alteration is used to produce new individuals
- **Crossover** for vector representations:
 - Pick pairs of individuals as parents and randomly swap their segments
 - also known as "cut and splice"
- Parameters:
 - crossover rate
 - number of crossover points
 - positions of the crossover points

1-point crossover
- pick a dividing point in the parents’ vectors and swap the segments

Example
- given parents: 1101101101 and 0001001000
 - crossover point: after the 4th digit
- children produced are:
 1101 + 001000 and 0001 + 101101
Altering: Producing New Individuals

- **N-point crossover**
 - generalization of 1-point crossover
 - pick \(n \) dividing points in the parents’ vectors and splice together alternating segments
- **Uniform crossover**
 - the value of each element of the vector is randomly chosen from the values in the corresponding elements of the two parents
- Techniques also exist for permutation representations

Genetic Algorithm (1 version*)

1. Let \(s = \{s_1, \ldots, s_N\} \) be the current population
2. Let \(p[i] = f(s_i)/\sum_j f(s_j) \) be the fitness probabilities
3. for \(k = 1; \ k < N; \ k++ \)
 - Parent1 = randomly pick \(s_i \) with prob. \(p[i] \)
 - Parent2 = randomly pick another \(s_j \) with prob. \(p[j] \)
 - Randomly select 1 crossover point, and swap strings of parents 1 and 2 to generate children \(t[k] \) and \(t[k+1] \)
4. for \(k = 1; \ k \leq N; \ k++ \)
 - Randomly mutate each position in \(t[k] \) with a small prob.
5. New generation replaces old generation: \(s = t \)

*different than in book

GA Solving TSP

![Diagram of GA Solving TSP](image)
Genetic Algorithm Applications

Genetic Algorithms as Search

Problem of Local Maxima
- individuals get stuck at pretty good but not optimal solutions
 - any small mutation gives worse fitness
 - crossover can help them get out of a local maximum
 - mutation is a random process, so it is possible that we may have a sudden large mutation to get these individuals out of this situation

Summary
- Easy to apply to a wide range of problems
 - optimizations like TSP
 - inductive concept learning
 - scheduling
 - layout
- The results can be very good on some problems, and rather poor on others
- GA is very slow if only mutation is used; crossover makes the algorithm significantly faster

Genetic Algorithms as Search

- GA is a kind of hill-climbing search
- Very similar to a randomized beam search
- One significant difference between GAs and HC is that, it is generally a good idea in GAs to “fill the local maxima up with individuals”
- Overall, GAs have less problems with local maxima than HC or neural networks