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Supervised Learning Methods

• k-nearest-neighbors
• Decision trees
• Neural networks
• Naïve Bayes
• Support vector machines (SVM)
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Support Vector Machines

Chapter 18.9 and the optional paper “Support 
vector machines” by M. Hearst, ed., 1998

Acknowledgments:  These slides combine and modify ones 
provided by Andrew Moore (CMU), Carla Gomes (Cornell), 
Mingyue Tan (UBC), Jerry Zhu (Wisconsin), Glenn Fung 
(Wisconsin), and Olvi Mangasarian (Wisconsin)
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What are Support Vector Machines 
(SVMs) Used For?

• Classification
• Regression and data-fitting
• Supervised and unsupervised learning
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Lake Mendota, Madison, WI
• Identify areas of land cover (land, ice, 

water, snow) in a scene
• Two methods:

• Scientist manually-derived
• Support Vector Machine (SVM)

Visible 
Image

Expert 
Labeled

Expert 
Derived

Automated 
Ratio

SVM

Lake Mendota, Wisconsin 

Classifier Expert 
Derived

SVM

cloud 45.7% 58.5%

ice 60.1% 80.4%

land 93.6% 94.0%

snow 63.5% 71.6%

water 84.2% 89.1%

unclassified 45.7%

Courtesy of Steve Chien of NASA/JPL
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Linear Classifiers
f x y

denotes +1
denotes -1

How would you 
classify this data?
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Linear Classifiers
(aka Linear Discriminant Functions)

• Definition:
A function that is a linear combination of the components 
of the input (column vector) x:

where w is the weight (column vector) and b is the bias
• A 2-class classifier then uses the rule:

Decide class c1 if f(x) ≥ 0 and class c2 if f(x) < 0
or, equivalently, decide c1 if wTx ≥ -b and c2 otherwise

f (x) = wj
j=1

d

∑ x j + b = w
Tx + b
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w is the plane’s normal vector

b is the distance from the origin
Planar decision surface 
in d dimensions is 
parameterized by (w, b)

w 

b  
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Linear Classifiers
f x y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

How would you 
classify this data?

21
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Linear Classifiers
fx y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

How would you 
classify this data?
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Linear Classifiers
fx y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

How would you 
classify this data?
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Linear Classifiers
f x y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

Any of these 
would be fine …

… but which is 
best?
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Classifier Margin
f x y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

Define the margin
of a linear classifier 
as the width that 
the decision 
boundary could be 
expanded before 
hitting a data point

25
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Maximum Margin
fx y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the maximum 
margin

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM
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Maximum Margin
fx y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the maximum 
margin

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 
are those data 
points that the 
margin pushes 
against

Linear SVM
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Why the Maximum Margin?

denotes +1
denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 
are those data 
points that the 
margin pushes 
against

1. Intuitively this feels safest
2. If we’ve made a small error in the 

location of the boundary (it’s been 
jolted in its perpendicular direction) 
this gives us least chance of causing a 
misclassification

3. Robust to outliers since the model is 
immune to change/removal of any 
non-support-vector data points

4. There’s some theory (using “VC 
dimension”) that is related to (but not 
the same as) the proposition that this 
is a good thing

5. Empirically it works very well
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Specifying a Line and Margin

• How do we represent this mathematically?
• … in d input dimensions?  
• An example x = (x1, …, xd)T

Plus-Plane

Minus-Plane
Classifier Boundary

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone

29
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Specifying a Line and Margin

• Plus-plane   =     wT x + b = +1
• Minus-plane =     wT x + b = -1

Plus-Plane

Minus-Plane
Classifier Boundary

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone

Classify as +1 if wT x + b ≥ 1

-1 if wT x + b ≤ -1

? if -1 < wT x + b < 1

wx+b=1

wx+b=0

wx+b=-1

Weight vector: w = (w1 , …, wd)T

Bias or threshold:  b
The dot product 

is a scalar: x’s 
projection onto w

wT ⋅x = wj
j=1

d

∑ x j

30

Computing the Margin

• Plus-plane   =    wT x + b = +1 
• Minus-plane =   wT x + b = -1 

Claim: The vector w is perpendicular to the Plus-Plane and 
the Minus-Plane

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone
w

T x+b=1

w
T x+b=0

w
T x+b=-1

M = Margin (width)

How do we compute 
M in terms of w
and b?

w

31

Computing the Margin

• Plus-plane   =     wT x + b = +1 
• Minus-plane =     wT x + b = -1 
• The vector w is perpendicular to the Plus-Plane
• Let x− be any point on the Minus-Plane
• Let x+ be the closest Plus-Plane-point to x−

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin

How do we compute 
M in terms of w
and b?

x−

x+

Any location in 
�m: not 
necessarily a 
datapoint

Any location in 
Rd  ; not 
necessarily a 
data point

w

33

Computing the Margin

• Plus-plane   =     wT x + b = +1 
• Minus-plane =    wT x + b = -1 
• The vector w is perpendicular to the Plus-Plane
• Let x− be any point on the Minus-Plane
• Let x+ be the closest Plus-Plane-point to x−

• Claim: x+ = x− + λw for some value of λ

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin

How do we compute 
M in terms of w
and b?

x−

x+

w

34
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Computing the Margin

• Plus-plane   =    wT x + b = +1
• Minus-plane =     wT x + b = -1 
• The vector w is perpendicular to the Plus-Plane
• Let x− be any point on the Minus-Plane
• Let x+ be the closest Plus-Plane-point to x−

• Claim: x+ = x− + λw for some value of λ Why?

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin

How do we compute 
M in terms of w
and b?

x−

x+

The line from x− to x+ is 
perpendicular to the 
planes

So to get from  x− to x+

travel some distance in 
direction w

w
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Computing the Margin

What we know:
• wT x+ + b = +1
• wT x- + b = -1
• x+ = x− + λw
• ||x+ - x− || = M

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin

x−

x+

w
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Computing the Margin

What we know:
• wT x+ + b = +1
• wT x− + b  = -1
• x+ = x− + λw
• ||x+ - x− || = M
It’s now easy to get M

in terms of w and b

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin

wT (x− + λw) + b = 1 

⇒
wT x− + b + λwTw = 1

⇒
-1 + λwTw = 1

⇒

x−

x+

w

wwT
2

=l
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Computing the Margin

What we know:
• wT x+ + b = +1
• wT x− + b = -1
• x+ = x− + λw
• ||x+ - x− || = M 

  
λ = 2

wTw
“Predict C

lass 
= +1” 

zone

“Predict C
lass 

= -1” 

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin =

M = ||x+ - x− || = || λw ||

x−

x+

  
= 2 wTw

wTw
 =  2

wTw

  =  λ w  =  λ wTw

  

2

wTw

w

w
2

= = M, margin size

38
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Learning the Maximum Margin Classifier

Given a guess of w and b, we can
1. Compute whether all data points in the correct half-planes
2. Compute the margin
So now we just need to write a program to search the space 

of w’s and b’s to find the widest margin that correctly 
classifies all the data points    How?

“Predict C
lass 

= +1” 

zone

“Predict C
lass 

= -1” 

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin =

x−

x+
  

2

wTw

w

39

SVM as Constrained Optimization
• Unknowns: w, b
• Objective function: maximize the margin:               

M = 2 / ||w||
• Equivalent to minimizing ||w|| or ||w||2 = wTw

• N training points: (xk , yk), yk = +1 or -1
• Subject to each training point correctly classified, 

i.e.,
subject to yk(wTxk + b) ≥ 1 for all k

This is a quadratic optimization problem 
(QP), which can be solved efficiently

N constraints

42

Classification with SVMs
Given a new point x, we can classify it by

• Computing score:  wTx + b
• Deciding class based on whether < 0 or > 0

• If desired, can set confidence threshold t

-1
0
1

Score > t : yes

Score < -t : no

Else: don’t know

Sec. 15.1

43

SVMs:  More than Two Classes
• SVMs can only handle two-class problems
• k-class problem: Split the task into k binary

tasks and learn k SVMs:
• Class 1 vs. the rest (classes 2 — k)
• Class 2 vs. the rest (classes 1, 3 — k)
• …
• Class k vs. the rest

• Pick the class that puts the point farthest into 
its positive region

44
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from Statnikov et al.

I vs II & III

III vs I & II

45

SVMs: Non Linearly-Separable Data

What if the data are not linearly separable?

46

SVMs:  Non Linearly-Separable Data
Two approaches:

§ Allow a few points on the wrong side (slack variables)
§ Map data to a higher dimensional space, and do linear 

classification there (kernel trick)
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Non Linearly-Separable Data

Approach 1:  Allow a few points on the wrong 
side (slack variables)

“Soft Margin Classification”

48
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denotes +1
denotes -1

What Should We Do?

49

denotes +1
denotes -1

What Should We Do?
Idea:

Minimize
||w||2 + C (# train errors)

There’s a serious practical 
problem with this approach

Tradeoff  “penalty” 
parameter

51

What Should We Do?
Idea:

Minimize
||w||2 + C (# train errors)

There’s a serious practical 
problem with this approach

denotes +1
denotes -1

Tradeoff  “penalty” 
parameter

Can’t be expressed as a Quadratic 
Programming problem.

So solving it may be too slow.
(Also, doesn’t distinguish between 

disastrous errors and near misses)

52

denotes +1
denotes -1

What Should We Do?
Minimize
||w||2 + C (distance of all

“misclassified 
points” to their            
correct place)

53
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Choosing C, the Penalty Factor
Critical to choose a good value for the constant 
penalty parameter, C, because

• C too big means very similar to LSVM 
because we have a high penalty for non-
separable points, and we may use many 
support vectors and overfit

• C too small means we allow many 
misclassifications in the training data and we 
may underfit

54

Choosing C

from Statnikov et al.
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Learning Maximum Margin with Noise
Given guess of w, b, we can
1. Compute sum of distances 

of points to their correct 
zones

2. Compute the margin width
Assume N examples, each  

(xk , yk) where yk = +1 / -1

wx+b=1

wx+b=0

wx+b=-1

M =
2
wTw

What should our optimization 
criterion be?
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Learning Maximum Margin with Noise
Given guess of w, b, we can
1. Compute sum of distances 

of points to their correct 
zones

2. Compute the margin width
Assume N examples, each  

(xk , yk) where yk = +1 / -1

wx+b=1

wx+b=0

wx+b=-1

M =
2
wTw

What should our optimization 
criterion be?

Minimize
   

1
2

wTw+C ε k
k=1

N

∑

ε7

ε11

ε2

How many constraints will we 
have?  N

What should they be?

“slack variables”

yk(wTxk + b) ≥ 1-εk for all k

Note: εk = 0 for points in correct zone

57
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Given guess of w , b we can
1. Compute sum of distances 

of points to their correct 
zones

2. Compute the margin width
Assume R datapoints, each 

(xk,yk) where yk = +/- 1

Learning Maximum Margin with Noise

wx+b=1

wx+b=0

wx+b=-1

M =
2
×w w

What should our optimization 
criterion be?

Minimize
   

1
2

wTw +  C ε k
k=1

N

∑

e7

ε11ε2

Our original (noiseless data) QP had d +1
variables: w1, w2, … wd, and b

Our new (noisy data) QP has d +1+N 
variables: w1, w2, … wd, b, εk , ε1 ,… εN

d = # input 
dimensions

How many constraints will we 
have? N

What should they be?
wTxk + b ≥ 1- εk if yk = +1
wTxk + b ≤ -1+εk if yk = -1

N = # examples
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Learning Maximum Margin with Noise
Given guess of w , b we can
1. Compute sum of distances 

of points to their correct 
zones

2. Compute the margin width
Assume N examples, each 

(xk, yk) where yk = +1 / -1

wx+b=1

wx+b=0

wx+b=-1

M =

  

2

wTw

What should our optimization 
criterion be?

Minimize

How many constraints will we 
have?  2N

What should they be?
wTxk + b ≥ +1 - εk if yk = +1
wTxk + b ≤ -1 + εk if yk = -1
εk ≥ 0 for all k

   

1
2

wTw+C ε k
k=1

N

∑

ε7

ε11ε2

“slack variables”

60

Non Linearly-Separable Data

Approach 2:  Map data to a higher dimensional 
space, and then do linear classification there 
(called the kernel trick)

64

Suppose we’re in 1 Dimension

What would 
SVMs do with 
this data?

x=0

65
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Suppose we’re in 1 Dimension

Positive “plane” Negative “plane”

x=0

66

Harder 1D Dataset:
Not Linearly-Separable

What can be done 
about this?

x=0

67

Harder 1D Dataset

The Kernel Trick: 
Preprocess the 
data, mapping x
into a higher 
dimensional 
space, z = Φ(x)
For example:

x=0 ),()( 2xxx =F

Here, Φ maps data from 1D to 2D
In general, map from d-dimensional input space to k-dimensional z space

68

Harder 1D Dataset

x=0 ),()( 2xxx =F

The Kernel Trick: 
Preprocess the 
data, mapping x
into a higher 
dimensional 
space, z = Φ(x)

wT Φ(x) + b = +1

The data is linearly 
separable in the new 
space, so use a linear 
SVM in the new space

69
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Another Example
),,(),( 2

2
2
12121 xxxxxx +=F

Project examples into some higher dimensional space 
where the data is linearly separable, defined by z = Φ(x)

70

CS 540, University of Wisconsin-Madison, C. R. Dyer

Another Example                      

Project examples into some higher dimensional space where the 
data is linearly separable, defined by z = Φ(x)

71

Algorithm

1. Pick a Φ function
2. Map each training example, x, into the new 

higher-dimensional space using z = Φ(x)
3. Solve the optimization problem using the 

nonlinearly transformed training examples, 
z, to obtain a Linear SVM (with or without 
using the slack variable formulation) defined 
by w and b

4. Classify a test example, e, by computing:   
sign(wT · Φ(e) + b)

72

Improving Efficiency
• Time complexity of the original optimization 

formulation depends on the dimensionality, k, 
of z  (k >> d) 

• We can convert the optimization problem into 
an equivalent form, called the Dual Form, with 
time complexity O(N 3) that depends on N, 
the number of training examples, not k

• Dual Form will also allow us to rewrite the 
mapping functions in Φ in terms of “kernel 
functions” instead

73
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Dual Optimization Problem
Maximize

1 1 1

N N N

k k l kl
k k l
α α α Q

= = =

+å åå where ).( T
lklkkl yyQ xx=

subject to these 
constraints:

kCαk "££0

Then define:

1

N

k k k
k
α y

=

=åw x

k
k

KKKK

αK
εyb

maxarg where
.)1(

=
--= wx

Then classify with:
f(x,w,b) = sign(wTx - b)

1
0

N

k k
k
α y

=

=å

N examples: (xk, yk)
where yk = +1 / -1
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Dual Optimization Problem

N examples: (xk, yk)
where yk = +1 / -1

Maximize
1 1 1

N N N

k k l kl
k k l
α α α Q

= = =

+å åå where ).( T
lklkkl yyQ xx=

subject to these 
constraints:

kCαk "££0

Then define:

1

N

k k k
k
α y

=

=åw x

k
k

KKKK

αK
εyb

maxarg where
.)1(

=
--= wx

Then classify with:
f(x,w,b) = sign(wTx - b)

1
0

N

k k
k
α y

=

=å

New variables; Examples with αk > 0
will be the support vectors

Dot product of 
two examples
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Algorithm
• Compute N x N matrix Q by computing yi yj (xi

T xj)
between all pairs of training examples

• Solve the optimization problem to compute αi

for i = 1, …, N
• Each non-zero αi indicates that example xi is a 

support vector
• Compute w and b
• Then classify test example x with:

f(x) = sign(wT x – b)

76

Copyright © 2001, 2003, Andrew W. Moore

Dual Optimization Problem (After Mapping)
where Qkl = ykyl (Φ(xk )

TΦ(xl ))

Subject to these 
constraints:

kCαk "££0

Then define:

k
k

KKKK

αK
εyb

maxarg where
.)1(

=
--= wx

Then classify with:

f(x,w,b) = sign(wT Φ(x) - b)

0
1

=å
=

N

k
kk yα

å
>

=
0 s.t. 

)(
kαk

kkk yα xΦw

Maximize ååå
= ==

-
N

k

N

l
kllk

N

k
k Qααα

1 11 2
1

N examples: (xk, yk)
where yk = +1 / -1

80
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Dual Optimizzation Problem (After Mapping)
where Qkl = ykyl (Φ(xk )

TΦ(xl ))

Subject to these 
constraints:

kCαk "££0

Then define:

k
k

KKKK

αK
εyb

maxarg where
.)1(

=
--= wx

Then classify with:

f(x,w,b) = sign(wT Φ(x) - b)

0
1

=å
=

N

k
kk yα

å
>

=
0 s.t. 

)(
kαk

kkk yα xΦw

Maximize ååå
= ==

-
N

k

N

l
kllk

N

k
k Qααα

1 11 2
1

N examples: (xk, yk)
where yk = +1 / -1

N 2 dot products to 
compute this matrix

81

• Dual formulation of the optimization problem depends on 
the input data only in dot products of the form: 
Φ(xi)T · Φ(xj)   where xi and xj are two examples

• We can compute these dot products efficiently for certain 
types of Φ’s where K(xi, xj) = Φ(xi)T · Φ(xj)

• Example:

Φ(xi)T · Φ(xj) = (xiT · xj)2 = K(xi , xj )

• Since the data only appears as dot products, we do not
need to map the data to higher dimensional space (using 
Φ(x) ) because we can use the kernel function K instead

),2,()( 2
221

2
1 xxxx=F x

82

),2,()( 2
221

2
1 xxxx=F x

Φ xi( )T ⋅Φ x j( )
= xi1

2x j1
2 + 2xi1xi2 2x j1x j2 + xi2

2 x j2
2

= xi1
2x j1

2 + 2xi1xi2 x j1x j2 + xi2
2 x j2

2

= xi1x j1 + xi2 x j2( )2

= xi
T ⋅ x j( )2

83

Kernel Functions

• A kernel, K(xi, xj), is a dot product in some
feature space

• A kernel function is a function that can be 
applied to pairs of input examples to evaluate 
dot products in some corresponding (possibly 
infinite dimensional) feature space

• We do not need to compute Φ explicitly

84
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What’s Special about a Kernel?
• Say 1 example (in 2D) is:  s = (s1, s2)
• We decide to use a particular mapping into 6D space:

Φ(s)T = (s12, s22, √2s1s2, s1, s2, 1)
• Let another example be t = (t1, t2)
• Then,

Φ(s)T
� Φ(t) = s12 t12 + s22 t22 + 2s1s2t1t2 + s1t1 + s2t2 + 1

= (s1t1 + s2t2 + 1)2  

= (sT
�t +1)2

• So, define the kernel function to be K(s, t) = (sT�t +1)2

= Φ(s)T � Φ(t) 
• We save computation by using kernel K 

85

Some Commonly Used Kernels
• Linear kernel:  K(xi , xj) = xiT xj

• Quadratic kernel: K(xi , xj) = (xiT xj +1)2

• Polynomial of degree d kernel: K(xi , xj) = (xiT xj +1)d

• Radial-Basis Function (Gaussian) kernel:                                     
K(xi , xj) = exp(−||xi -xj ||2  / σ2)

• Many possible kernels; picking a good one is tricky
• Hacking with SVMs: create various kernels, hope their 

space Φ is meaningful, plug them into SVM, pick one 
with good classification accuracy

• Kernel usually combined with slack variables because 
no guarantee of linear separability in new space

86

Algorithm

• Compute N x N matrix Q by computing 
yi yj K(xi ,xj ) between all pairs of training points

• Solve optimization problem to compute αi

for i = 1, …, N
• Each non-zero αi indicates that example xi is a 

support vector
• Compute w and b
• Classify test example x using:

f(x) = sign(wT x – b)

89

Applications of SVMs

n Bioinformatics
n Machine Vision
n Text Categorization
n Ranking (e.g., Google searches)
n Handwritten Character Recognition
n Time series analysis

à Lots of very successful applications!

92
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Handwritten Digit Recognition

93

Example Application:
The Federalist Papers Dispute

• Written in 1787-1788 by Alexander Hamilton, John 
Jay, and James Madison to persuade the citizens of 
New York to ratify the U.S. Constitution

• Papers consisted of short essays, 900 to 3500 words 
in length  

• Authorship of 12 of those papers have been in 
dispute ( Madison or Hamilton); these papers are 
referred to as the disputed Federalist papers

94

Description  of  the  Data
• For every paper:

• Computed relative frequencies of 70 words that 
Mosteller-Wallace identified as good candidates for 
author-attribution studies

• Each document is represented as a vector containing the 
70 real numbers corresponding to the 70 word
frequencies

• The dataset consists of 118 papers:
• 50 Madison papers
• 56 Hamilton papers
• 12 disputed papers

“Bag of 
words”

95

70-Word Dictionary

96



18

Feature Selection for Classifying the 
Disputed Federalist Papers

• Apply the SVM algorithm for feature 
selection to:
• Train on the 106 Federalist papers with known 

authors
• Find a classification hyperplane (LSVM) that 

uses as few words as possible

• Use the hyperplane to classify the 12 
disputed papers
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Hyperplane Classifier Using 3 Words

• A hyperplane depending on three words 
was found:

0.537to + 24.663upon + 2.953would = 66.616

• All disputed papers ended up on the 
Madison side of the plane
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Results: 3D Plot of Hyperplane
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Summary
• Learning linear functions

• Pick separating hyperplane that maximizes margin
• Separating plane defined in terms of support vectors 

(small number of training examples) only
• Learning non-linear functions

• Project examples into a higher dimensional space
• Use kernel functions for efficiency

• Generally avoids overfitting problem
• Global optimization method; no local optima
• Can be expensive to apply, especially for multi-class 

problems
• Biggest Drawback: The choice of kernel function

• There is no “set-in-stone” theory for choosing a kernel function 
for any given problem

• Once a kernel function is chosen, there is only ONE modifiable 
parameter, the error penalty C

101
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Software
• A list of SVM implementations can be found at 
http://www.kernel-
machines.org/software.html

• Some implementations (such as LIBSVM) can 
handle multi-class classification

•SVMLight is one of the earliest and most 
frequently used implementations of SVMs

• Several Matlab toolboxes for SVMs are 
available
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