Representing Uncertainty

Chapter 13

Uncertainty

• Say we have a rule:

 \textit{if} toothache \textit{then} problem is cavity

• But not all patients have toothaches due to cavities, so we could set up rules like:

 \textit{if} toothache and \textit{not} gum-disease and \textit{not} filling and ... \textit{then} problem = cavity

• This gets complicated; better method:

 \textit{if} toothache \textit{then} problem is cavity with 0.8 probability

 \textit{or} \quad P(\text{cavity} \mid \text{toothache}) = 0.8

 \textit{the probability of cavity is 0.8 given toothache is observed}

Uncertainty in the World

• An agent can often be uncertain about the state of the world/domain since there is often ambiguity and uncertainty

• Plausible/probabilistic inference

 • I’ve got this evidence; what’s the chance that this conclusion is true?

 • I’ve got a sore neck; how likely am I to have meningitis?

 • A mammogram test is positive; what’s the probability that the patient has breast cancer?

Uncertainty in the World and our Models

• True uncertainty: rules are probabilistic in nature

 – quantum mechanics

 – rolling dice, flipping a coin

• Laziness: too hard to determine exception-less rules

 – takes too much work to determine all of the relevant factors

 – too hard to use the enormous rules that result

• Theoretical ignorance: don’t know all the rules

 – problem domain has no complete, consistent theory (e.g., medical diagnosis)

• Practical ignorance: do know all the rules BUT

 – haven’t collected all relevant information for a particular case
Logics

Logics are characterized by what they commit to as "primitives"

<table>
<thead>
<tr>
<th>Logic</th>
<th>What Exists in World</th>
<th>Knowledge States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-Order</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability Theory</td>
<td>facts</td>
<td>degree of belief 0..1</td>
</tr>
<tr>
<td>Fuzzy</td>
<td>degree of truth</td>
<td>degree of belief 0..1</td>
</tr>
</tbody>
</table>

Probability Theory

- Probability theory serves as a formal means for
 - Representing and reasoning with uncertain knowledge
 - Modeling degrees of belief in a proposition (event, conclusion, diagnosis, etc.)

- Probability is the “language” of uncertainty
 - A key modeling method in modern AI

Sample Space

- A space of events in which we assign probabilities
- Events can be binary, multi-valued, or continuous
- Events are mutually exclusive
- Examples
 - Coin flip: {head, tail}
 - Die roll: {1,2,3,4,5,6}
 - English words: a dictionary
 - Temperature tomorrow: {-100, ..., 100}

Random Variable

- A variable, X, whose domain is a sample space, and whose value is (somewhat) uncertain
- Examples:
 - \(X = \) coin flip outcome
 - \(X = \) first word in tomorrow’s NYT newspaper
 - \(X = \) tomorrow’s temperature
- For a given task, the user defines a set of random variables for describing the world
Random Variable

- **Random Variables (RV):**
 - are capitalized (usually) e.g., Sky, Weather, Temperature
 - refer to attributes of the world whose "status" is unknown
 - have one and only one value at a time
 - have a domain of values that are possible states of the world:
 - **Boolean:**
 - domain = \(<true, false>\)
 - Cavity = true (often abbreviated as cavity)
 - Cavity = false (often abbreviated as ¬cavity)
 - **Discrete:**
 - domain is countable (includes Boolean)
 - values are mutually exclusive and exhaustive
 - e.g. Sky domain = \(<clear, partly_cloudy, overcast>\)
 - Sky = clear abbreviated as \(\overline{\text{clear}}\)
 - **Continuous:**
 - domain is real numbers (beyond scope of CS 540)

Probability for Discrete Events

- An agent’s uncertainty is represented by
 \(P(A=a)\) or simply \(P(a)\)
 - the agent’s degree of belief that variable \(A\) takes on
 value \(a\) given no other information relating to \(A\)
 - a single probability called an unconditional or prior probability

Probability for Discrete Events

- **Examples**
 - \(P(\text{head}) = P(\text{tail}) = 0.5\) fair coin
 - \(P(\text{head}) = 0.51, P(\text{tail}) = 0.49\) slightly biased coin
 - \(P(\text{first word} = \text{"the" when flipping to a random page in R\&N}) = ?\)

- **Book: The Book of Odds**

Probability Table

<table>
<thead>
<tr>
<th>Weather</th>
<th>sunny</th>
<th>cloudy</th>
<th>rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200/365</td>
<td>100/365</td>
<td>65/365</td>
</tr>
</tbody>
</table>

- \(P(\text{Weather} = \text{sunny}) = P(\text{sunny}) = 200/365\)
- \(P(\text{Weather}) = (200/365, 100/365, 65/365)\)

- For now we’ll be satisfied with obtaining the probabilities by counting frequencies from data
Probability for Discrete Events

- Probability for more complex events, \(A \)
 - \(P(A = \text{“head or tail”}) = ? \) fair coin
 - \(P(A = \text{“even number”}) = ? \) fair 6-sided die
 - \(P(A = \text{“two dice rolls sum to 2”}) = ? \)

Source of Probabilities

- Frequentists
 - probabilities come from experiments
 - if 10 of 100 people tested have a cavity, \(P(\text{cavity}) = 0.1 \)
 - probability means the fraction that would be observed in the limit of infinitely many samples
- Objectivists
 - probabilities are real aspects of the world
 - objects have a propensity to behave in certain ways
 - coin has propensity to come up heads with probability 0.5
- Subjectivists
 - probabilities characterize an agent’s belief
 - have no external physical significance

Probability for Discrete Events

- Probability for more complex events, \(A \)
 - \(P(A = \text{“head or tail”}) = 0.5 + 0.5 = 1 \) fair coin
 - \(P(A = \text{“even number”}) = 1/6 + 1/6 + 1/6 = 0.5 \)
 - \(P(A = \text{“two dice rolls sum to 2”}) = 1/6 * 1/6 = 1/36 \)

Probability Distributions

Given \(A \) is a RV taking values in \(\langle a_1, a_2, \ldots, a_n \rangle \)
e.g., if \(A \) is Sky, then \(a \) is one of \(\langle \text{clear, partly cloudy, overcast} \rangle \)

- \(P(a) \) represents a single probability where \(A=a \)
e.g., if \(A \) is Sky, then \(P(a) \) means any one of \(P(\text{clear}), P(\text{partly cloudy}), P(\text{overcast}) \)
- \(P(A) \) represents a probability distribution
 - the set of values: \(\langle P(a_1), P(a_2), \ldots, P(a_n) \rangle \)
 - if \(A \) takes \(n \) values, then \(P(A) \) is a set of \(n \) probabilities
 - e.g., if \(A \) is Sky, then \(P(Sky) \) is the set of probabilities: \(\langle P(\text{clear}), P(\text{partly cloudy}), P(\text{overcast}) \rangle \)
 - Property: \(\sum P(a_i) = P(a_1) + P(a_2) + \ldots + P(a_n) = 1 \)
 - sum over all values in the domain of variable \(A \) is 1 because domain is mutually exclusive and exhaustive
The Axioms of Probability

1. $0 \leq P(A) \leq 1$
2. $P(\text{true}) = 1, P(\text{false}) = 0$
3. $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Note: Here
$P(A)$ means $P(A=a)$ for some value a
and $P(A \lor B)$ means $P(A=a \lor B=b)$

The Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P(\text{true}) = 1, P(\text{false}) = 0$
- $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Sample space

Valid sentence: e.g., "X=head or X=tail"
The Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P(\text{true}) = 1$, $P(\text{false}) = 0$
- $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Some Theorems Derived from the Axioms

- $P(\neg A) = 1 - P(A)$
- If A can take k different values a_1, \ldots, a_k: $P(A=a_1) + \ldots + P(A=a_k) = 1$
- $P(B) = P(B \land \neg A) + P(B \land A)$, if A is a binary event
- $P(B) = \sum_{i=1}^{k} P(B \land A=a_i)$, if A can take k values

Joint Probability

- The joint probability $P(A=a, B=b)$ is shorthand for $P(A=a \land B=b)$, i.e., the probability of both $A=a$ and $B=b$ happening
- $P(A=a)$, e.g., $P(1^{st} \text{ word on a random page} = \text{"San"}) = 0.001$ (possibly: San Francisco, San Diego, ...
- $P(B=b)$, e.g., $P(2^{nd} \text{ word} = \text{"Francisco"}) = 0.0008$ (possibly: San Francisco, Don Francisco, Pablo Francisco, ...
- $P(A=a, B=b)$, e.g., $P(1^{st} = \text{"San"}, 2^{nd} = \text{"Francisco"}) = 0.0007$
Full Joint Probability Distribution

<table>
<thead>
<tr>
<th>Temp</th>
<th>Weather</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sunny</td>
<td>150/365</td>
</tr>
<tr>
<td></td>
<td>cloudy</td>
<td>40/365</td>
</tr>
<tr>
<td></td>
<td>rainy</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>sunny</td>
<td>50/365</td>
</tr>
<tr>
<td></td>
<td>cloudy</td>
<td>60/365</td>
</tr>
<tr>
<td></td>
<td>rainy</td>
<td>60/365</td>
</tr>
</tbody>
</table>

- \(P(\text{Temp}=\text{hot}, \text{Weather}=\text{rainy}) = P(\text{hot}, \text{rainy}) = \frac{5}{365} = 0.014 \)
- The full joint probability distribution table for \(n \) random variables, each taking \(k \) values, has \(k^n \) entries

Computing from the FJPD

- **Marginal Probabilities**
 - \(P(\text{Bird}=\text{T}) = P(\text{bird}) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25 \)
 - \(P(\text{bird}, \neg \text{flier}) = 0.04 + 0.01 = 0.05 \)
 - \(P(\text{bird} \lor \text{flier}) = 0.0 + 0.2 + 0.04 + 0.01 + 0.01 = 0.27 \)
- Sum over all other variables
- “Summing Out”
- “Marginalization”

Full Joint Probability Distribution

<table>
<thead>
<tr>
<th>Bird</th>
<th>Flier</th>
<th>Young</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.04</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.23</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3 Boolean random variables \(\Rightarrow 2^3 - 1 = 7 \)

“degrees of freedom” or “independent values”

Unconditional / Prior Probability

- One’s uncertainty or original assumption about an event prior to having any data about it or anything else in the domain
- \(P(\text{Coin} = \text{heads}) = 0.5 \)
- \(P(\text{Bird} = \text{T}) = 0.0 + 0.2 + 0.04 + 0.01 = 0.22 \)
- Compute from the FJPD by marginalization
Marginal Probability

The name comes from the old days when the sums were written in the margin of a page.

<table>
<thead>
<tr>
<th>Weather</th>
<th>sunny</th>
<th>cloudy</th>
<th>rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
<tr>
<td>∑</td>
<td>200/365</td>
<td>100/365</td>
<td>65/365</td>
</tr>
</tbody>
</table>

\[P(\text{Weather}) = \langle 200/365, 100/365, 65/365 \rangle \]

Conditional Probability

- **Conditional probabilities**
 - formalizes the process of accumulating evidence and updating probabilities based on new evidence
 - specifies the belief in a proposition (event, conclusion, diagnosis, etc.) that is conditioned on a proposition (evidence, feature, symptom, etc.) being true
- \(P(a \mid e) \): conditional probability of \(A=a \) given \(E=e \) evidence is all that is known true
 - \(P(a \mid e) = P(a \land e) / P(e) = P(a, e) / P(e) \)
 - conditional probability can viewed as the joint probability \(P(a, e) \) normalized by the prior probability, \(P(e) \)

\[P(\neg a \mid e) = 1 - P(a \mid e) \]

Conditional Probability

Conditional probabilities behave exactly like standard probabilities; for example:

\[0 \leq P(a \mid e) \leq 1 \]

c Conditional probabilities are between 0 and 1 inclusive

\[P(a_1 \mid e) + P(a_2 \mid e) + \ldots + P(a_k \mid e) = 1 \]

Conditional probabilities sum to 1 where \(a_1, ..., a_k \) are all values in the domain of random variable \(A \)

\[P(\neg a \mid e) = 1 - P(a \mid e) \]

e Negation for conditional probabilities
Conditional Probability

- $P(\text{conjunction of events } \mid e)$

 $P(a \land b \land c \mid e)$ or as $P(a, b, c \mid e)$ is the agent’s belief in the sentence $a \land b \land c$ conditioned on e being true

- $P(a \mid \text{conjunction of evidence})$

 $P(a \mid e \land f \land g)$ or as $P(a \mid e, f, g)$ is the agent’s belief in the sentence a conditioned on $e \land f \land g$ being true

Conditional Probability

- The conditional probability $P(A=a \mid B=b)$ is the fraction of time $A=a$, within the region where $B=b$.

- $P(A=a)$, e.g. $P(\text{1st word on a random page } = \text{“San”}) = 0.001$

- $P(B=b)$, e.g. $P(\text{2nd word } = \text{“Francisco”}) = 0.0008$

- $P(A=a \mid B=b)$, e.g. $P(\text{1st} = \text{“San”} \mid \text{2nd} = \text{“Francisco”}) = 0.875$

 Although “San” is rare and “Francisco” is rare, given “Francisco” then “San” is quite likely! (possibly: San, Don, Pablo …)

Full Joint Probability Distribution

<table>
<thead>
<tr>
<th>Bird</th>
<th>Flier</th>
<th>Young</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.04</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.23</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3 Boolean random variables $\Rightarrow 2^3 - 1 = 7$

“degrees of freedom” or “independent values”

Sums to 1
Compu'ng Condi'onal Probability

\[P(\neg B \mid F) \quad ? \]

\[P(F) \quad ? \]

Note: \(P(\neg B \mid F) \) means \(P(B=\text{false} \mid F=\text{true}) \) and \(P(F) \) means \(P(F=\text{true}) \)

Compu'ng Condi'onal Probability

\[P(\neg B \mid F) = \frac{P(\neg B, F)}{P(F)} \]

\[= \frac{(P(\neg B, F, Y) + P(\neg B, F, \neg Y))/P(F)}{P(F)} \]

\[= (0.01 + 0.01)/P(F) \]

\[P(F) = P(F, B, Y) + P(F, B, \neg Y) + P(F, \neg B, Y) + P(F, \neg B, \neg Y) \]

\[= 0.0 + 0.2 + 0.01 + 0.01 \]

\[= 0.22 \]

Computing Conditional Probability

• Instead of using Marginalization to compute \(P(F) \), can alternatively use “Normalization”:
 • \(P(B \mid F) = P(B, F)/P(F) = (0.0 + 0.2)/P(F) \)
 • \(P(\neg B \mid F) + P(B \mid F) = 1 \)
 • So, \(0.2/P(F) + 0.02/P(F) = 1 \)
 • Hence, \(P(F) = 0.22 \)

Normaliz'ing

• In general, \(P(A \mid B) = \alpha P(A, B) \)
 where \(\alpha = 1/P(B) = 1/(P(A, B) + P(\neg A, B)) \)

\[P(Q \mid E_1, \ldots, E_k) = \alpha P(Q, E_1, \ldots, E_k) \]

\[= \alpha \sum_{\gamma} P(Q, E_1, \ldots, E_k, \gamma) \]
Conditional Probability with Multiple Evidence

- \(P(\neg B \mid F, \neg Y) = \frac{P(\neg B, F, \neg Y)}{P(F, \neg Y)} \)

 \(= \frac{P(\neg B, F, \neg Y)}{P(\neg B, F, \neg Y) + P(B, F, \neg Y)} \)

 \(= .01 / (.01 + .2) \)

 \(= 0.048 \)

Conditional Probability

- In general, the conditional probability is
 \[
 P(A = a \mid B) = \frac{P(A = a, B)}{P(B)} = \frac{\sum_{a_i} P(A = a_i, B)}{P(B)}
 \]

- We can have everything \textit{conditioned} on some other event(s), \(C \), to get a conditionalized version of conditional probability:
 \[
 P(A \mid B, C) = \frac{P(A, B \mid C)}{P(B \mid C)}
 \]

\(''\mid'' \ has \ low \ precedence. This \ should \ read: \(P(A \mid (B,C)) \)"

The Chain Rule

- From the definition of conditional probability we have the \textbf{chain rule}:
 \[
 P(A, B) = P(B) \cdot P(A \mid B) = P(A \mid B) \cdot P(B)
 \]

- It also works the other way around:
 \[
 P(A, B) = P(A) \cdot P(B \mid A) = P(B \mid A) \cdot P(A)
 \]

- It works with more than 2 events too:
 \[
 P(A_1, A_2, ..., A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1, A_2) \cdot ... \\
 \cdot P(A_n \mid A_1, A_2, ..., A_{n-1})
 \]

\(\text{Called} \quad "\text{Product Rule}" \)
Probabilistic Reasoning

How do we use probabilities in AI?
• You wake up with a headache
• Do you have the flu?
• $H =$ headache, $F =$ flu

Logical Inference: if H then F
(but the world is often not this clear cut)

Statistical Inference: compute the probability of a query/diagnosis/decision given (conditioned on) evidence/symptom/observation, i.e., $P(F | H)$

Inference with Bayes’s Rule: Example 1

Statistical Inference: Compute the probability of a diagnosis, F, given symptom, H, where $H =$ “has a headache” and $F =$ “has flu”
That is, compute $P(F | H)$

You know that
• $P(H) = 0.1$ “one in ten people has a headache”
• $P(F) = 0.01$ “one in 100 people has flu”
• $P(H | F) = 0.9$ “90% of people who have flu have a headache”

Inference with Bayes’s Rule

Thomas Bayes, “Essay Towards Solving a Problem in the Doctrine of Chances,” 1764

$P(F | H) = \frac{P(F, H)}{P(H)} = \frac{P(H | F) P(F)}{P(H)}$

Def of cond. prob. Chain rule

Bayes’s Rule

• Bayes’s Rule is the basis for probabilistic reasoning given a prior model of the world, $P(Q)$, and a new piece of evidence, E, Bayes’s rule says how this piece of evidence decreases our ignorance about the world
• Initially, know $P(Q)$ (“prior”)
• Update after knowing E (“posterior”):

$$P(Q|E) = P(Q) \frac{P(E|Q)}{P(E)}$$
Inference with Bayes’s Rule

• \(P(A \mid B) = P(B \mid A)P(A) / P(B) \)
 Bayes’s rule

• Why do we make things this complicated?
 – Often \(P(B \mid A) \), \(P(A) \), \(P(B) \) are easier to get
 – Some names:
 • Prior \(P(A) \): probability of \(A \) before any evidence
 • Likelihood \(P(B \mid A) \): assuming \(A \), how likely is the evidence
 • Posterior \(P(A \mid B) \): probability of \(A \) after knowing evidence \(B \)
 • (Deductive) Inference: deriving an unknown probability from known ones

• If we have the full joint probability table, we can simply compute \(P(A \mid B) = P(A,B) / P(B) \)

Bayes’s Rule in Practice

Summary of Important Rules

• Conditional Probability: \(P(A \mid B) = P(A,B)/P(B) \)
• Product rule: \(P(A,B) = P(A \mid B)P(B) \)
• Chain rule: \(P(A,B,C,D) = P(A \mid B,C,D)P(B \mid C,D)P(C \mid D)P(D) \)
• Conditionalized version of Chain rule:
 \[P(A,B \mid C) = P(A,B \mid C)P(B \mid C) \]
• Bayes’s rule: \(P(A \mid B) = P(B \mid A)P(A) / P(B) \)
• Conditionalized version of Bayes’s rule:
 \[P(A \mid B,C) = P(B \mid A,C)P(A \mid C) / P(B \mid C) \]
• Addition / Conditioning rule: \(P(A) = P(A,B) + P(A,\neg B) \)
 \[P(A) = P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B) \]
Common Mistake

- $P(A) = 0.3$ so $P(\neg A) = 1 - P(A) = 0.7$

- $P(A|B) = 0.4$ so $P(\neg A|B) = 1 - P(A|B) = 0.6$

 because $P(A|B) + P(\neg A|B) = 1$

 but $P(A|\neg B) \neq 0.6$ (in general)

 because $P(A|B) + P(A|\neg B) \neq 1$ in general

Quiz

- A doctor performs a test that has 99% reliability, i.e., 99% of people who are sick test positive, and 99% of people who are healthy test negative. The doctor estimates that 1% of the population is sick.

- Question: A patient tests positive. What is the chance that the patient is sick?

- 0-25%, 25-75%, 75-95%, or 95-100%?

- Common answer: 99%; Correct answer: 50%
\[P(\text{TP} \mid S) = 0.99 \]
\[P(\neg \text{TP} \mid \neg S) = 0.99 \]
\[P(S) = 0.01 \]

\[P(S \mid TP) = \frac{P(\text{TP} \mid S) \cdot P(S)}{P(\text{TP})} = \frac{(0.99)(0.01)}{(0.999999)} = 0.0099 \]

\[P(\neg S \mid TP) = \frac{P(\text{TP} \mid \neg S) \cdot P(\neg S)}{P(\text{TP})} = \frac{(1 - 0.99)(1 - 0.01)}{(0.999999)} = 0.0099 \]

\[P(S) = 0.01 \]

\[P(S \mid TP) = \frac{P(\text{TP} \mid S) \cdot P(S)}{P(\text{TP})} = \frac{(0.99)(0.01)}{0.0198} = 0.5 \]

Inference with Bayes’s Rule: Example 2

- In a bag there are two envelopes
 - one has a red ball (worth $100) and a black ball
 - one has two black balls. Black balls are worth nothing

- You randomly grab an envelope, and randomly take out one ball – it’s black
- At this point you’re given the option to switch envelopes. To switch or not to switch?

Similar to the “Monty Hall Problem”

Example 3

- 1% of women over 40 who are tested have breast cancer. 85% of women who really do have breast cancer have a positive mammography test (true positive rate). 8% who do not have cancer will have a positive mammography (false positive rate).
- Question: A patient gets a positive mammography test. What is the chance she has breast cancer?

Inference with Bayes’s Rule: Example 2

\[E: \text{envelope}, 1=\{R,B\}, 2=\{B,B\} \]
\[B: \text{the event of drawing a black ball} \]

Given: \(P(B \mid E=1) = 0.5, P(B \mid E=2) = 1, P(E=1) = P(E=2) = 0.5 \)

Query: Is \(P(E=1 \mid B) > P(E=2 \mid B) \)?

Use Bayes’s rule: \(P(E \mid B) = P(B \mid E) \cdot P(E) / P(B) \)

\[P(B) = P(B \mid E=1) \cdot P(E=1) + P(B \mid E=2) \cdot P(E=2) = (0.5)(0.5) + (1)(0.5) = 0.75 \]

\[P(E=1 \mid B) = P(B \mid E=1) \cdot P(E=1) / P(B) = (0.5)(0.5) / 0.75 = 0.33 \]

\[P(E=2 \mid B) = P(B \mid E=2) \cdot P(E=2) / P(B) = (1)(0.5) / 0.75 = 0.67 \]

After seeing a black ball, the posterior probability of this envelope being #1 (thus worth $100) is smaller than it being #2

Thus you should switch!
• Let Boolean random variable M mean “positive mammography test”
• Let Boolean random variable C mean “has breast cancer”
• Given:
 $P(C) = 0.01$
 $P(M|C) = 0.85$
 $P(M|\neg C) = 0.08$

• Compute the posterior probability: $P(C|M)$

• $P(C|M) = P(M|C)P(C)/P(M)$ by Bayes’s rule
 $= (.85)(.01)/P(M)$
• $P(M) = P(M|C)P(C) + P(M|\neg C)P(\neg C)$ by the Addition rule
• So, $P(C|M) = .0085/[(.85)(.01) + (.08)(1-.01)]$
 $= 0.097$
• So, there is (only) a 9.7% chance that if you have a positive test you really have cancer!

Bayes with Multiple Evidence

• Say the same patient goes back and gets a second mammography and it too is positive. Now, what is the chance she has cancer?
• Let M_1, M_2 be the 2 positive tests
• Compute posterior: $P(C|M_1, M_2)$
Bayes with Multiple Evidence

- \(P(C|M_1, M_2) = \frac{P(M_1, M_2|C)P(C)}{P(M_1, M_2)} \) by Bayes’s rule

Assuming \(M_1 \) and \(M_2 \) are independent means

\[
P(M_1, M_2) = P(M_1)P(M_2) \quad \text{and} \quad P(M_1|M_2, C) = P(M_1|C)
\]

- From before, \(P(M_1) = P(M_2) = 0.0877 \)
- So, \(P(C|M_1, M_2) = (0.85)(0.85)(0.01)/(0.0877)(0.0877) \)
 \[= 0.9395 \quad \text{or} \quad 93.95\%
\]

Inference Ignorance

- “Inferences about Testosterone Abuse Among Athletes,” 2004
 – Mary Decker Slaney doping case

- “Justice Flunks Math,” 2013
 – Amanda Knox trial in Italy

Independence

- Two events \(A, B \) are independent if the following hold:
 - \(P(A, B) = P(A) \cdot P(B) \)
 - \(P(A, \neg B) = P(A) \cdot P(\neg B) \)
 - ...
 - \(P(A | B) = P(A) \)
 - \(P(B | A) = P(B) \)
 - \(P(A | \neg B) = P(A) \)
 - ...

Independence

- Independence is a kind of domain knowledge
 – Needs an understanding of causation
 – Very strong assumption

- Example: \(P(\text{burglary}) = 0.001, \ P(\text{earthquake}) = 0.002. \) Let’s say they are independent. The full joint probability table = ?
Independence

- Given: \(P(B) = 0.001, P(E) = 0.002, P(B|E) = P(B) \)
- The full joint probability distribution table is:

<table>
<thead>
<tr>
<th>Burglary</th>
<th>Earthquake</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>(E)</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>(\neg E)</td>
<td></td>
</tr>
<tr>
<td>(\neg B)</td>
<td>(E)</td>
<td></td>
</tr>
<tr>
<td>(\neg B)</td>
<td>(\neg E)</td>
<td></td>
</tr>
</tbody>
</table>

- Need only 2 numbers to fill in entire table
- Now we can do anything, since we have the joint

Conditional Independence

- Random variables can be dependent, but
 conditionally independent
- Example: Your house has an alarm
 - Neighbor John will call when he hears the alarm
 - Neighbor Mary will call when she hears the alarm
 - Assume John and Mary don’t talk to each other
- Is JohnCall independent of MaryCall?
 - No – If John called, it is likely the alarm went off, which increases the probability of Mary calling
 - \(P(\text{MaryCall} | \text{JohnCall}) \neq P(\text{MaryCall}) \)

Conditional Independence

- But, if we **know** the status of the **alarm**, JohnCall will **not** affect whether or not Mary calls
 \(P(\text{MaryCall} | \text{Alarm, JohnCall}) = P(\text{MaryCall} | \text{Alarm}) \)
- We say JohnCall and MaryCall are **conditionally independent** given Alarm
- In general, “A and B are conditionally independent given C” means:
 \[
 P(A | B, C) = P(A | C) \\
 P(B | A, C) = P(B | C) \\
 P(A, B | C) = P(A | C) P(B | C)
 \]
Independence vs. Conditional Independence

• Say Alice and Bob each toss separate coins. A represents “Alice’s coin toss is heads” and B represents “Bob’s coin toss is heads”
• A and B are independent
• Now suppose Alice and Bob toss the same coin. Are A and B independent?
 – No. Say the coin may be biased towards heads. If A is heads, it will lead us to increase our belief in B being heads. That is, \(P(B | A) > P(A) \)

Revisiting Example 3

• Let Boolean random variable M mean “positive mammography test”
• Let Boolean random variable C mean “has breast cancer”
• Given:
 \[P(C) = 0.01 \]
 \[P(M | C) = 0.85 \]
 \[P(M | \neg C) = 0.08 \]

Bayes’s Rule with Multiple Evidence

• Say we add a new variable, C: “the coin is biased towards heads”
• The values of A and B are dependent on C
• But if we know for certain the value of C (true or false), then any evidence about A cannot change our belief about B
 • That is, \(P(B | C) = P(B | A, C) \)
 • A and B are conditionally independent given C

• \[P(C | M_1, M_2) = \frac{P(M_1, M_2 | C)P(C)}{P(M_1, M_2)} \] by Bayes’s rule
 \[= P(M_1 | M_2, C)P(M_2 | C)P(C) / P(M_1, M_2) \] by Conditionalized Chain rule

• \[P(M_1, M_2) = P(M_1, M_2 | C)P(C) + P(M_1, M_2 | \neg C)P(\neg C) \] by Addition rule
 \[= P(M_1 | M_2, C)P(M_2 | C)P(C) + P(M_1 | M_2, \neg C)P(M_2 | \neg C)P(\neg C) \] by Conditionalized Chain rule
Cancer “causes” a positive test, so \(M_1 \) and \(M_2 \) are conditionally independent given \(C \), so

- \(P(M_1 | M_2, C) = P(M_1 | C) = 0.85 \)
- \(P(M_1, M_2) = P(M_1 | M_2, C)P(M_2 | C)P(C) + P(M_1 | M_2, \neg C)P(M_2 | \neg C)P(\neg C) \)
 \[= P(M_1 | C)P(M_2 | C)P(C) + P(M_1 | \neg C)P(M_2 | \neg C) \] by cond. indep.
 \[= (.85)(.85)(.01) + (.08)(.08)(1-.01)\]
 \[= 0.01356\]

So, \(P(C | M_1, M_2) = \frac{(.85)(.85)(.01)}{.01356} = 0.533 \) or 53.3%

Example 3

- Prior probability of having breast cancer: \(P(C) = 0.01 \)
- Posterior probability of having breast cancer after 1 positive mammography: \(P(C | M_1) = 0.097 \)
- Posterior probability of having breast cancer after 2 positive mammographies (and cond. independence assumption):
 \[P(C | M_1, M_2) = 0.533\]

Bayes with Multiple Evidence

- Say the same patient goes back and gets a second mammography and it is negative. Now, what is the chance she has cancer?
- Let \(M_1 \) be the positive test and \(\neg M_2 \) be the negative test
- Compute posterior: \(P(C | M_1, \neg M_2) \)

Bayes’s Rule with Multiple Evidence

- \(P(C | M_1, \neg M_2) = \frac{P(M_1, \neg M_2 | C)P(C)}{P(M_1, \neg M_2)} \)
 by Bayes’s rule
 \[= \frac{P(M_1 | C)P(\neg M_2 | C)P(C)P(M_1, \neg M_2)}{P(M_1, \neg M_2)} \]
 \[= (.85)(1-.85)(.01)/P(M_1, \neg M_2)\]
- \(P(M_1, \neg M_2) = P(M_1, \neg M_2 | C)P(C) + P(M_1, \neg M_2 | \neg C)P(\neg C) \)
 by Addition rule
 \[= P(M_1 | \neg M_2, C)P(\neg M_2 | C)P(C) + P(M_1 | \neg M_2, \neg C)P(\neg M_2 | \neg C)P(\neg C) \]
 by Conditionalized Chain rule
Cancer “causes” a positive test, so **M1 and M2 are conditionally independent given C**, so

\[
P(M1|\neg M2, C)P(\neg M2|C)P(C) +
P(M1|\neg M2, \neg C)P(\neg M2|\neg C)P(\neg C)
\]

\[= P(M1|C)P(\neg M2|C)P(C) +
P(M1|\neg C)P(\neg M2|\neg C)P(\neg C)\]
by cond. indep.

\[= (0.85)(1 - 0.85)(0.01) + (1 - 0.08)(0.08)(1 - 0.01)
\]

\[= 0.066219 \quad (= P(M1, \neg M2))
\]
So, \(P(C|M1, \neg M2) = (0.85)(1 - 0.85)(0.01)/0.066219 \]
\[= 0.019 \text{ or } 1.9\%
\]

Naïve Bayes Classifier

- Say we have one class/diagnosis/decision variable, A
- Goal is to find the value of A that is most likely given evidence B, C, D, ... :

\[\arg\max_a P(A=a)P(B|A=a)P(C|A=a)P(D|A=a)/P(B, C, D)
\]

But \(P(B, C, D)\) is a constant here for all \(a\), so instead compute:

\[\arg\max_a P(A=a)P(B|A=a)P(C|A=a)P(D|A=a)
\]

Bayes’s Rule with Multiple Evidence and Conditional Independence

- Assume all evidence variables, B, C and D, are conditionally independent given the diagnosis variable, A

\]

\[= P(B|A)P(C|A)P(D|A)P(A)/P(D|B,C)P(C|B)P(B)
\]

\[= P(A)P(B|A)P(C|A)P(D|A)/P(B)P(C|B)P(D|B,C)
\]

\[\text{Conditionalized Chain rule + conditional independence}
\]

\[\text{Chain rule}
\]

Naïve Bayes Classifier

- Find \(v = \arg\max_v P(Y = v) \prod_{i=1}^n P(X_i = u_i|Y = v)
\]

- Assumes all evidence variables are conditionally independent of each other given the class variable
- Robust since it gives the right answer as long as the correct class is more likely than all others
Naïve Bayes Classifier

• Assume k classes and n evidence variables, each with r possible values
• $k-1$ values needed for computing $P(Y=v)$
• rk values needed for computing $P(X_i=u_i \mid Y=v)$ for each evidence variable X_i
• So, $(k-1) + nrk$ values needed instead of exponential size FJPD table

Naïve Bayes Classifier

• Conditional probabilities can be very, very small, so instead use logarithms to avoid underflow:

$$\arg\max_v \log P(Y = v) + \sum_{i=1}^n \log P(X_i = u_i \mid Y = v)$$

Summary of Important Rules

• Conditional Probability: $P(A \mid B) = P(A,B)/P(B)$
• Product rule: $P(A,B) = P(A \mid B)P(B)$
• Chain rule: $P(A,B,C,D) = P(A \mid B,C,D)P(B \mid C,D)P(C \mid D)P(D)$
• Conditionalized version of Chain rule:
 $$P(A,B \mid C) = P(A \mid B,C)P(B \mid C)$$
• Bayes’s rule: $P(A \mid B) = P(B \mid A)P(A) / P(B)$
• Conditionalized version of Bayes’s rule:
 $$P(A,B,C) = P(B \mid A,C)P(A \mid C)/P(B \mid C)$$
• Addition / Conditioning rule: $P(A) = P(A \mid B) + P(A, \neg B)$
 $$P(A) = P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B)$$