Representing Uncertainty

Chapter 13

Uncertainty in the World

- An agent can often be uncertain about the state of the world/domain since there is often ambiguity and uncertainty
- Plausible/probabilistic inference
 - I've got this evidence; what's the chance that this conclusion is true?
 - I've got a sore neck; how likely am I to have meningitis?
 - A mammogram test is positive; what's the probability that the patient has breast cancer?

Uncertainty

- Say we have a rule:
 \[\text{if toothache then problem is cavity} \]
- But not all patients have toothaches due to cavities, so we could set up rules like:
 \[\text{if toothache and } \neg \text{gum-disease and } \neg \text{filling and } \ldots \text{ then problem } = \text{cavity} \]
- This gets complicated; better method:
 \[\text{if toothache then problem is cavity with 0.8 probability} \]
 \[\text{or } \Pr(\text{cavity | toothache}) = 0.8 \]
 \[\text{the probability of cavity is 0.8 given toothache is observed} \]

Uncertainty in the World and our Models

- True uncertainty: rules are probabilistic in nature
 - quantum mechanics
 - rolling dice, flipping a coin
- Laziness: too hard to determine exception-less rules
 - takes too much work to determine all of the relevant factors
 - too hard to use the enormous rules that result
- Theoretical ignorance: don't know all the rules
 - problem domain has no complete, consistent theory (e.g., medical diagnosis)
- Practical ignorance: do know all the rules BUT
 - haven't collected all relevant information for a particular case
Logics are characterized by what they use as "primitives"

<table>
<thead>
<tr>
<th>Logic</th>
<th>What Exists in World</th>
<th>Knowledge States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-Order</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability Theory</td>
<td>facts</td>
<td>degree of belief 0..1</td>
</tr>
<tr>
<td>Fuzzy</td>
<td>degree of truth</td>
<td>degree of belief 0..1</td>
</tr>
</tbody>
</table>

Probability Theory

- **Probability theory** serves as a formal means for
 - Representing and reasoning with uncertain knowledge
 - Modeling **degrees of belief** in a proposition (event, conclusion, diagnosis, etc.)

- **Probability is the “language” of uncertainty**
 - A key modeling tool in modern AI

Sample Space

- A space of **events** in which we assign probabilities
- Events can be binary, multi-valued, or continuous
- Events are **mutually exclusive**
- Examples
 - Coin flip: {head, tail}
 - Die roll: {1,2,3,4,5,6}
 - English words: a dictionary
 - High temperature tomorrow: {-100, ..., 100}

Random Variable

- A variable, X, whose domain is a sample space, and whose value is (somewhat) uncertain
- Examples:
 - $X =$ coin flip outcome
 - $X =$ tomorrow’s high temperature
- For a given task, the user defines a set of random variables for describing the world
- Each variable has a set of mutually exclusive and exhaustive possible values
Probability for Discrete Events

- An agent’s uncertainty is represented by $P(A=a)$ or simply $P(a)$
 - the agent’s degree of belief that variable A takes on value a given no other information related to A
 - a single probability called an unconditional or prior probability

Source of Probabilities

- Frequentists
 - probabilities come from experiments
 - if 10 of 100 people tested have a cavity, $P(\text{cavity}) = 0.1$
 - probability means the fraction that would be observed in the limit of infinitely many samples
- Objectivists
 - probabilities are real aspects of the world
 - objects have a propensity to behave in certain ways
 - coin has propensity to come up heads with probability 0.5
- Subjectivists
 - probabilities characterize an agent’s belief
 - have no external physical significance

Probability for Discrete Events

- Examples
 - $P(\text{head}) = P(\text{tail}) = 0.5$ fair coin
 - $P(\text{head}) = 0.51$, $P(\text{tail}) = 0.49$ slightly biased coin
 - $P(\text{first word} = \text{“the” when flipping to a random page in R&N}) = ?$
- Book: *The Book of Odds*
Probability Distributions

Given A is a RV taking values in $\langle a_1, a_2, \ldots, a_n \rangle$
e.g., if A is Sky, then value is one of "clear, partly_cloudy, overcast"

- $P(a)$ represents a single probability where $A=a$
e.g., if A is Sky, then $P(a)$ means any one of $P(\text{clear}), P(\text{partly}_\text{cloudy}), P(\text{overcast})$

- $P(A)$ represents a probability distribution
 - the set of values: $\langle P(a_1), P(a_2), \ldots, P(a_n) \rangle$
 - If A takes n values, then $P(A)$ is a set of n probabilities
 e.g., if A is Sky, then $P(\text{Sky})$ is the set of probabilities: $\langle P(\text{clear}), P(\text{partly}_\text{cloudy}), P(\text{overcast}) \rangle$
 - Property: $\sum P(a_i) = P(a_1) + P(a_2) + \ldots + P(a_n) = 1$
 - sum over all values in the domain of variable A is 1 because the domain is mutually exclusive and exhaustive

The Axioms of Probability

1. $0 \leq P(A) \leq 1$
2. $P(\text{true}) = 1$, $P(\text{false}) = 0$
3. $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Note: Here $P(A)$ means $P(A=a)$ for some value a and $P(A \lor B)$ means $P(A=a \lor B=b)$

Probability Table

<table>
<thead>
<tr>
<th>Weather</th>
<th>sunny</th>
<th>cloudy</th>
<th>rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200/365</td>
<td>100/365</td>
<td>65/365</td>
</tr>
</tbody>
</table>

- $P(\text{Weather} = \text{sunny}) = P(\text{sunny}) = 200/365$
- $P(\text{Weather}) = \langle 200/365, 100/365, 65/365 \rangle$
- For now we’ll be satisfied with obtaining the probabilities by counting frequencies from data

The Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P(\text{true}) = 1$, $P(\text{false}) = 0$
- $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Sample space

The fraction of A can’t be smaller than 0
The Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P(\text{true}) = 1$, $P(\text{false}) = 0$
- $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Valid sentence: e.g., "$X=$head or $X=$tail"

Sample space

Invalid sentence: e.g., "$X=$head AND $X=$tail"

Sample space
Some Theorems Derived from the Axioms

• \(P(\neg A) = 1 - P(A) \)

• If \(A \) can take \(k \) different values \(a_1, \ldots, a_k \):
 \[P(A=a_1) + \ldots + P(A=a_k) = 1 \]

• \(P(B) = P(B \land \neg A) + P(B \land A) \), if \(A \) is a binary event

• \(P(B) = \sum_{i=1}^{k} P(B \land A=a_i) \), if \(A \) can take \(k \) values

Joint Probability

• The joint probability \(P(A=a, B=b) \) is shorthand for \(P(A=a \land B=b) \), i.e., the probability of both \(A=a \) and \(B=b \) happening.

\(P(A=a) \), e.g., \(P(1^{st} \text{ word on a random page} = \text{"San"}) = 0.001 \)

(possibly: San Francisco, San Diego, …)

\(P(B=b) \), e.g., \(P(2^{nd} \text{ word} = \text{"Francisco"}) = 0.0008 \)

(possibly: San Francisco, Don Francisco, Pablo Francisco, …)

\(P(A=a, B=b) \), e.g., \(P(1^{st} =\text{"San"}, \ 2^{nd} =\text{"Francisco"}) = 0.0007 \)

Full Joint Probability Distribution (FJPD)

<table>
<thead>
<tr>
<th>Temp</th>
<th>(\text{Weather})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{sunny})</td>
<td>(\text{cloudy})</td>
</tr>
<tr>
<td>hot</td>
<td>150/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
</tr>
</tbody>
</table>

\(P(\text{Temp}=\text{hot}, \ \text{Weather}=\text{rainy}) = P(\text{hot}, \ \text{rainy}) = 5/365 = 0.014 \)

The full joint probability distribution table for \(n \) random variables, each taking \(k \) values, has \(k^n \) entries

Full Joint Probability Distribution (FJPD)

<table>
<thead>
<tr>
<th>Bird</th>
<th>Flier</th>
<th>Young</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.04</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.23</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3 Boolean random variables \(\Rightarrow 2^3 - 1 = 7 \) “degrees of freedom” (DOF) or “independent values”
Computing from the FJPD

- **Marginal Probabilities**
 - $P(Bird=T) = P(bird) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25$
 - $P(bird, \neg flier) = 0.04 + 0.01 = 0.05$
 - $P(bird \lor flier) = 0.0 + 0.2 + 0.04 + 0.01 + 0.01 = 0.27$
- Sum over all other variables
- “**Summing Out**”
- “**Marginalization**”

Unconditional / Prior Probability

- One’s uncertainty or original assumption about an event prior to having any data about it or anything else in the domain
 - $P(Coin = \text{heads}) = 0.5$
 - $P(Bird = T) = 0.0 + 0.2 + 0.04 + 0.01 = 0.22$
- Compute from the FJPD by marginalization

Marginal Probability

<table>
<thead>
<tr>
<th>Temp</th>
<th>sunny</th>
<th>cloudy</th>
<th>rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
<tr>
<td>Σ</td>
<td>200/365</td>
<td>100/365</td>
<td>65/365</td>
</tr>
</tbody>
</table>

$P(\text{Weather}) = \langle 200/365, 100/365, 65/365 \rangle$

The name comes from the old days when the sums were written in the margin of a page

Marginal Probability

<table>
<thead>
<tr>
<th>Temp</th>
<th>sunny</th>
<th>cloudy</th>
<th>rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
<tr>
<td>Σ</td>
<td>195/365</td>
<td>170/365</td>
<td></td>
</tr>
</tbody>
</table>

$P(\text{Temp}) = \langle 195/365, 170/365 \rangle$

This is nothing but $P(B) = \sum_{i=1\ldots k}P(B \land A=a_i)$, if A can take k values
Conditional Probability

• Conditional probabilities
 – formalizes the process of accumulating evidence and updating probabilities based on new evidence
 – specifies the belief in a proposition (event, conclusion, diagnosis, etc.) that is conditioned on a proposition (evidence, feature, symptom, etc.) being true

• \(P(a \mid e) \): conditional probability of \(A=a \) given \(E=e \) evidence is all that is known true
 – \(P(a \mid e) = P(a \land e) / P(e) = P(a,e) / P(e) \)
 – conditional probability can viewed as the joint probability \(P(a,e) \) normalized by the prior probability, \(P(e) \)

The conditional probability \(P(A=a \mid B=b) \) is the fraction of time \(A=a \), within the region where \(B=b \)

\[
P(A=a), \text{ e.g. } P(1^{\text{st}} \text{ word on a random page } = \text{“San”}) = 0.001
\]

\[
P(B=b), \text{ e.g. } P(2^{\text{nd}} \text{ word } = \text{“Francisco”}) = 0.0008
\]

\[
P(A=a \mid B=b), \text{ e.g. } P(1^{\text{st}} = \text{“San”} \mid 2^{\text{nd}} = \text{“Francisco”}) = 0.875
\]

(possibly: San, Don, Pablo …)

Conditional Probability

- \(P(\text{san} \mid \text{francisco}) \)
 - \(= \frac{\#(1^{\text{st}}=s \text{ and } 2^{\text{nd}}=f)}{\#(2^{\text{nd}}=f)} \)
 - \(= P(\text{san} \land \text{francisco}) / P(\text{francisco}) \)
 - \(= 0.0007 / 0.0008 \)
 - \(= 0.875 \)

Although “San” is rare and “Francisco” is rare, given “Francisco” then “San” is quite likely!

Conditional Probability

Conditional probabilities behave exactly like standard probabilities; for example:

\[
0 \leq P(a \mid e) \leq 1
\]

conditional probabilities are between 0 and 1 inclusive

\[
P(a_1 \mid e) + P(a_2 \mid e) + \ldots + P(a_k \mid e) = 1
\]

conditional probabilities sum to 1 where \(a_1, \ldots, a_k \) are all values in the domain of random variable \(A \)

\[
P(\neg a \mid e) = 1 - P(a \mid e)
\]

negation for conditional probabilities
Computing Conditional Probability

\[P(\neg B \mid F) = ? \]

\[P(F) = ? \]

Note: \(P(\neg B \mid F) \) means \(P(B=\text{false} \mid F=\text{true}) \)
and \(P(F) \) means \(P(F=\text{true}) \)

Full Joint Probability Distribution

<table>
<thead>
<tr>
<th>Bird (B)</th>
<th>Flier (F)</th>
<th>Young (Y)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.04</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.23</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3 Boolean random variables \(\Rightarrow 2^3 - 1 = 7 \)
“degrees of freedom” or “independent values”

3 Marginalization

Computing Conditional Probability

\[P(\neg B \mid F) = \frac{P(\neg B, F)}{P(F)} \]
\[= \frac{(P(\neg B, F, Y) + P(\neg B, F, \neg Y))}{P(F)} \]
\[= \frac{(0.01 + 0.01)}{P(F)} \]

\[P(F) = P(F, B, Y) + P(F, B, \neg Y) + P(F, \neg B, Y) + P(F, \neg B, \neg Y) \]
\[= 0.0 + 0.2 + 0.01 + 0.01 \]
\[= 0.22 \]

• Instead of using Marginalization to compute \(P(F) \), can alternatively use Normalization:
 • \(P(\neg B \mid F) + P(B \mid F) = 1 \)
 • \(P(B \mid F) = \frac{P(B,F)}{P(F)} = \frac{(0.0 + 0.2)}{P(F)} \)
 • So, \(0.02/P(F) + 0.2/P(F) = 1 \)
 • Hence, \(P(F) = 0.22 \)
Normalization

• In general, \(P(A \mid B) = \alpha P(A, B) \)
 where \(\alpha = 1/P(B) = 1/(P(A, B) + P(\neg A, B)) \)

• \(P(Q \mid E_1, \ldots, E_k) = \alpha P(Q, E_1, \ldots, E_k) = \alpha \sum_Y P(Q, E_1, \ldots, E_k, Y) \)

Conditional Probability

• \(P(X_1=x_1, \ldots, X_k=x_k \mid X_{k+1}=x_{k+1}, \ldots, X_n=x_n) = \)
 sum of all entries in FJPD where
 \(X_1=x_1, \ldots, X_n=x_n \) divided by sum of all entries where \(X_{k+1}=x_{k+1}, \ldots, X_n=x_n \)

• But this means in general we need the entire FJPD table, requiring an exponential number of values to do probabilistic inference (i.e., compute conditional probabilities)

Conditional Probability with Multiple Evidence

\[
P(\neg B \mid F, \neg Y) = \frac{P(\neg B, F, \neg Y)}{P(F, \neg Y)} = \frac{P(\neg B, F, \neg Y)}{P(\neg B, F, \neg Y) + P(B, F, \neg Y)} = 0.01 / (0.01 + 0.2) = 0.048
\]

The Chain Rule

• From the definition of conditional probability we have
 \[
P(A, B) = P(B) \cdot P(A \mid B) = P(A \mid B) \cdot P(B)
\]
 • It also works the other way around:
 \[
P(A, B) = P(A) \cdot P(B \mid A) = P(B \mid A) \cdot P(A)
\]
 • It works with more than 2 events too:
 \[
P(A_1, A_2, \ldots, A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1, A_2) \cdot \ldots \cdot P(A_n \mid A_1, A_2, \ldots, A_{n-1})
\]
Probabilistic Reasoning

How do we use probabilities in AI?
• You wake up with a headache
• Do you have the flu?
• $H = \text{headache}, F = \text{flu}$

Logical Inference: if H then F
(but the world is usually not this simple)

Statistical Inference: compute the probability of a query/diagnosis/decision given (i.e., conditioned on) evidence/symptom/observation, i.e., $P(F | H)$

[Example from Andrew Moore]

Example

Statistical Inference: Compute the probability of a diagnosis, F, given symptom, H, where $H = \text{“has a headache”}$ and $F = \text{“has flu”}$
That is, compute $P(F | H)$

You know that
• $P(H) = 0.1$ “one in ten people has a headache”
• $P(F) = 0.01$ “one in 100 people has flu”
• $P(H | F) = 0.9$ “90% of people who have flu have a headache”

[Example from Andrew Moore]

Inference with Bayes’s Rule

Thomas Bayes, “Essay Towards Solving a Problem in the Doctrine of Chances,” 1764

$P(F | H) = \frac{P(F, H)}{P(H)} = \frac{P(H | F)P(F)}{P(H)}$

• $P(H) = 0.1$ “one in ten people has a headache”
• $P(F) = 0.01$ “one in 100 people has flu”
• $P(H | F) = 0.9$ “90% of people who have flu have a headache”

• $P(F | H) = 0.9 * 0.01 / 0.1 = 0.09$
• So, there’s a 9% chance you have flu – much less than 90%
• But it’s higher than $P(F) = 1\%$, since you have a headache

Bayes’s Rule

• Bayes’s Rule is the basis for probabilistic reasoning given a prior model of the world, $P(Q)$, and a new piece of evidence, E, Bayes’s rule says how this piece of evidence decreases our ignorance about the world
• Initially, know $P(Q)$ (“prior”)
• Update after knowing E (“posterior”):

$$P(Q|E) = P(Q) \frac{P(E|Q)}{P(E)}$$
Inference with Bayes’s Rule

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad \text{Bayes’s rule} \]

- Why do we make things this complicated?
 - Often \(P(B|A), P(A), P(B) \) are easier to get
 - Some names:
 - **Prior** \(P(A) \): probability of \(A \) before any evidence
 - **Likelihood** \(P(B|A) \): assuming \(A \), how likely is the evidence
 - **Posterior** \(P(A|B) \): probability of \(A \) after knowing evidence \(B \)
 - **(Deductive) Inference**: deriving an unknown probability from known ones
- If we have the full joint probability table, we can simply compute \(P(A|B) = \frac{P(A,B)}{P(B)} \)

Bayes’s Rule in Practice

Summary of Important Rules

- **Conditional Probability**: \(P(A|B) = P(A,B)/P(B) \)
- **Product rule**: \(P(A,B) = P(A|B)P(B) \)
- **Chain rule**: \(P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D) \)
- **Conditionalized version of Chain rule**:
 \[P(A,B|C) = P(A,B,C)P(B|C) \]
- **Bayes’s rule**: \(P(A|B) = \frac{P(B|A)P(A)}{P(B)} \)
- **Conditionalized version of Bayes’s rule**:
 \[P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)} \]
- **Addition / Conditioning rule**: \(P(A) = P(A,B) + P(A,\neg B) \)
 \[P(A) = P(A|B)P(B) + P(A|\neg B)P(\neg B) \]
Common Mistake

- $P(A) = 0.3$ so $P(\neg A) = 1 - P(A) = 0.7$

- $P(A|B) = 0.4$ so $P(\neg A|B) = 1 - P(A|B) = 0.6$
 because $P(A|B) + P(\neg A|B) = 1$

 \textit{but} $P(A|\neg B) \neq 0.6$ (in general)
 because $P(A|B) + P(A|\neg B) \neq 1$ in general

Quiz

- A doctor performs a test that has 99% reliability, i.e., 99% of people who are sick test positive, and 99% of people who are healthy test negative. The doctor estimates that 1% of the population is sick.
- Question: A patient tests positive. What is the chance that the patient is sick?
- 0-25%, 25-75%, 75-95%, or 95-100%?
- Common answer: 99%; Correct answer: 50%
Thus you should switch! The envelope being #1 (thus worth $100)

Inference with Bayes’s Rule

\[P(TP \mid S) = 0.99 \]
\[P(\neg TP \mid \neg S) = 0.99 \]
\[P(S) = 0.01 \]
\[P(S \mid TP) = \frac{P(TP \mid S) \cdot P(S)}{P(TP)} = \frac{(0.99)(0.01)}{0.0099/P(TP)} \]
\[P(\neg S \mid TP) = \frac{P(TP \mid \neg S) \cdot P(\neg S)}{P(TP)} = \frac{(1 - 0.99)(1 - 0.01)}{0.0099/P(TP)} \]

You randomly grab an envelope, and randomly take out one ball – it’s black

At this point you’re given the option to switch envelopes. Should you switch or not?

Similar to the “Monty Hall Problem”

Summary of Important Rules

- **Conditional Probability:** \(P(A \mid B) = \frac{P(A, B)}{P(B)} \)
- **Product rule:** \(P(A, B) = P(A \mid B)P(B) \)
- **Chain rule:** \(P(A, B, C, D) = P(A \mid B, C, D)P(B \mid C, D)P(C \mid D)P(D) \)
- **Conditionalized version of Chain rule:**
 \[P(A, B \mid C) = P(A \mid B, C)P(B \mid C) \]
- **Bayes’s rule:** \(P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \)
- **Conditionalized version of Bayes’s rule:**
 \[P(A \mid B, C) = \frac{P(B \mid A, C)P(A \mid C)}{P(B \mid C)} \]
- **Addition / Conditioning rule:**
 \[P(A) = P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B) \]

In a bag there are two envelopes
- one has a red ball (worth $100) and a black ball
- one has two black balls. Black balls are worth nothing

So, \(P(S \mid TP) = 0.0099 / 0.0198 = 0.5 \)

Inference with Bayes’s Rule

\(E \): envelope, 1=(R,B), 2=(B,B)
\(B \): the event of drawing a black ball

Given: \(P(B \mid E=1) = 0.5, P(B \mid E=2) = 1, P(E=1) = P(E=2) = 0.5 \)

Query: Is \(P(E=1 \mid B) > P(E=2 \mid B) \)?

Use Bayes’s rule:
\[P(E \mid B) = \frac{P(B \mid E) \cdot P(E)}{P(B)} \]
\[P(B) = P(B \mid E=1)P(E=1) + P(B \mid E=2)P(E=2) = (0.5)(0.5) + (1)(0.5) = 0.75 \]
\[P(E=1 \mid B) = \frac{P(B \mid E=1)P(E=1)}{P(B)} = \frac{(0.5)(0.5)}{0.75} = 0.33 \]
\[P(E=2 \mid B) = \frac{P(B \mid E=2)P(E=2)}{P(B)} = \frac{(1)(0.5)}{0.75} = 0.67 \]

After seeing a black ball, the posterior probability of this envelope being #1 (thus worth $100) is smaller than it being #2.

Thus you should switch!
Another Example

- 1% of women over 40 who are tested have breast cancer. 85% of women who really do have breast cancer have a positive mammography test (true positive rate). 8% who do not have cancer will have a positive mammography (false positive rate).
- Question: A patient gets a positive mammography test. What is the chance she has breast cancer?

Let Boolean random variable M mean “positive mammography test”
Let Boolean random variable C mean “has breast cancer”

Given:
- $P(C) = 0.01$
- $P(M|C) = 0.85$
- $P(M|\neg C) = 0.08$

Compute the posterior probability: $P(C|M)$

- $P(C|M) = P(M|C)P(C)/P(M)$ by Bayes’s rule
- $P(M) = P(M|C)P(C) + P(M|\neg C)P(\neg C)$ by the Addition rule
- So, $P(C|M) = 0.0085/[(0.85)(0.01) + (0.08)(1-0.01)]$
 $= 0.097$
- So, there is only a 9.7% chance that if you have a positive test you really have cancer!
Independence

Two events A, B are **independent** if the following hold:

- $P(A, B) = P(A) \cdot P(B)$
- $P(A, \neg B) = P(A) \cdot P(\neg B)$
- ...
- $P(A \mid B) = P(A)$
- $P(B \mid A) = P(B)$
- $P(A \mid \neg B) = P(A)$
- ...

Independence

- Independence is a kind of domain knowledge
 - Needs an understanding of **causation**
 - Very strong assumption
- Example: $P(\text{burglary}) = 0.001$ and $P(\text{earthquake}) = 0.002$
 - Let’s say they are independent
 - The full joint probability table = ?

Independence

Given $P(B) = 0.001$, $P(E) = 0.002$, $P(B\mid E) = P(B)$

The full joint probability distribution table (FJPD) is:

<table>
<thead>
<tr>
<th>Burglary</th>
<th>Earthquake</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>E</td>
<td>$= P(B)P(E)$</td>
</tr>
<tr>
<td>B</td>
<td>$\neg E$</td>
<td></td>
</tr>
<tr>
<td>$\neg B$</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>$\neg B$</td>
<td>$\neg E$</td>
<td></td>
</tr>
</tbody>
</table>

- Need only 2 numbers to fill in entire table
- Now we can do anything, since we have the FJPD

Independence

- Given n independent, Boolean random variables, the FJPD has 2^n entries, but we only need n numbers (degrees of freedom) to fill in entire table
- Given n independent random variables, where each can take k values, the FJPD table has:
 - k^n entries
 - Only $n(k-1)$ numbers needed (DOFs)
Conditional Independence

• Random variables can be dependent, but conditionally independent
• Example: Your house has an alarm
 – Neighbor John calls when he hears the alarm
 – Neighbor Mary calls when she hears the alarm
 – Assume John and Mary don’t talk to each other
• Is JohnCall independent of MaryCall?
 – No – if John called, it is likely the alarm went off, which increases the probability of Mary calling
 – $P(\text{MaryCall} \mid \text{JohnCall}) \neq P(\text{MaryCall})$

Independence vs. Conditional Independence

• Say Alice and Bob each toss separate coins. A represents “Alice’s coin toss is heads” and B represents “Bob’s coin toss is heads”
• A and B are independent
• Now suppose Alice and Bob toss the same coin. Are A and B independent?
 – No. Say the coin may be biased towards heads. If A is heads, it will lead us to increase our belief in B being heads. That is, $P(B \mid A) > P(A)$

Conditional Independence

• But, if we know the status of the alarm, JohnCall will not affect whether or not Mary calls
 $P(\text{MaryCall} \mid \text{Alarm, JohnCall}) = P(\text{MaryCall} \mid \text{Alarm})$
• We say JohnCall and MaryCall are conditionally independent given Alarm
• In general, “A and B are conditionally independent given C” means:
 $P(A \mid B, C) = P(A \mid C)$
 $P(B \mid A, C) = P(B \mid C)$
 $P(A, B \mid C) = P(A \mid C) P(B \mid C)$

• Say we add a new variable, C: “the coin is biased towards heads”
• The values of A and B are dependent on C
• But if we know for certain the value of C (true or false), then any evidence about A cannot change our belief about B
 • That is, $P(B \mid C) = P(B \mid A, C)$
 • A and B are conditionally independent given C
Revisiting Earlier Example

• Let Boolean random variable M mean “positive mammography test”
• Let Boolean random variable C mean “has breast cancer”
• Given:
 \[P(C) = 0.01 \]
 \[P(M|C) = 0.85 \]
 \[P(M|\neg C) = 0.08 \]

Bayes’s Rule with Multiple Evidence

• Say the same patient goes back and gets a second mammography and it too is positive. Now, what is the chance she has Cancer?
• Let M_1, M_2 be the 2 positive tests
• Compute posterior: \[P(C|M_1, M_2) \]

Bayes’s Rule with Multiple Evidence

\[P(C|M_1, M_2) = P(M_1, M_2|C)P(C)/P(M_1, M_2) \]
\[= P(M_1|M_2, C)P(M_2|C)P(C)/P(M_1, M_2) \]
\[\text{by Bayes’s rule} \]

\[P(M_1, M_2) = P(M_1, M_2|C)P(C) + P(M_1, M_2|\neg C)P(\neg C) \]
\[= P(M_1|M_2, C)P(M_2|C)P(C) + P(M_1|M_2, \neg C)P(M_2|\neg C)P(\neg C) \]
\[\text{by Addition rule} \]

Cancer “causes” a positive test, so M_1 and M_2 are conditionally independent given C, so

\[P(M_1|M_2, C) = P(M_1|C) = 0.85 \]

\[P(M_1, M_2) = P(M_1|M_2, C)P(M_2|C)P(C) + P(M_1|M_2, \neg C)P(M_2|\neg C)P(\neg C) \]
\[= P(M_1|M_2, C)P(M_2|C)P(C) + P(M_1|\neg C)P(M_2|\neg C)P(\neg C) \]
\[\text{by cond. indep.} \]
\[= (.85)(.85)(.01) + (.08)(.08)(1-.01) \]
\[= 0.01356 \]

So, \[P(C|M_1, M_2) = (.85)(.85)(.01)/.01356 \]
\[= 0.533 \text{ or } 53.3\% \]
Example

• Prior probability of having breast cancer:
 \[P(C) = 0.01 \]
• Posterior probability of having breast cancer after 1 positive mammography:
 \[P(C | M_1) = 0.097 \]
• Posterior probability of having breast cancer after 2 positive mammographies (and cond. independence assumption):
 \[P(C | M_1, M_2) = 0.533 \]

Bayes’s Rule with Multiple Evidence

• Say the same patient goes back and gets a second mammography and it is **negative**. Now, what is the chance she has cancer?
• Let \(M_1 \) be the positive test and \(\neg M_2 \) be the negative test
• Compute posterior:
 \[P(C | M_1, \neg M_2) \]

\[
\begin{align*}
P(C | M_1, \neg M_2) &= P(M_1, \neg M_2 | C)P(C)/P(M_1, \neg M_2) \\
&= P(M_1 | C)P(\neg M_2 | C)P(C)/P(M_1, \neg M_2) \\
&= (.85)(1-.85)(.01)/P(M_1, \neg M_2) \\
P(M_1, \neg M_2) &= P(M_1, \neg M_2 | C)P(C) + P(M_1, \neg M_2 | \neg C)P(\neg C) \\
&= (.85)(1 - .85)(.01) + (1 - .08)(.08)(1 - .01) \\
&= 0.074139 \quad (= P(M_1, \neg M_2)) \\
\text{So, } P(C | M_1, \neg M_2) &= (.85)(1 - .85)(.01)/.074139 \\
&= 0.017 \text{ or } 1.7%
\end{align*}
\]
Bayes’s Rule with Multiple Evidence and Conditional Independence

- Assume all evidence variables, B, C and D, are conditionally independent given the diagnosis variable, A
- \[P(A | B, C, D) = P(B, C, D | A)P(A) / P(B, C, D) \]
 \[= P(B | A)P(C | A)P(D | A)P(A) / P(D | B, C)P(C | B)P(B) \]

Inference Ignorance

- “Inferences about Testosterone Abuse Among Athletes,” 2004
 - Mary Decker Slaney doping case
- “Justice Flunks Math,” 2013
 - Amanda Knox trial in Italy

Summary of Important Rules

- **Conditional Probability:** \[P(A | B) = P(A, B) / P(B) \]
- **Product rule:** \[P(A, B) = P(A | B)P(B) \]
- **Chain rule:** \[P(A, B, C, D) = P(A | B, C, D)P(B | C, D)P(C | D)P(D) \]
- **Conditionalized version of Chain rule:**
 \[P(A, B | C) = P(A | B, C)P(B | C) \]
- **Bayes’s rule:** \[P(A | B) = P(B | A)P(A) / P(B) \]
- **Conditionalized version of Bayes’s rule:**
 \[P(A | B, C) = P(B | A, C)P(A | C) / P(B | C) \]
- **Addition / Conditioning rule:** \[P(A) = P(A | B) + P(A, \neg B) \]
 \[P(A) = P(A | B)P(B) + P(A | \neg B)P(\neg B) \]

Naïve Bayes Classifier

- Classification problem: Find the value of class/decision/diagnosis variable Y that is most likely given evidence/measurements/attributes \(X_i = v_i \)
- Use Bayes’s rule and conditional independence:
 \[P(Y = c | X_1 = v_1, X_2 = v_2, ..., X_n = v_n) \]
 \[= P(Y = c)P(X_1 = v_1 | Y = c) ... P(X_n = v_n | Y = c) / P(X_1 = v_1, ..., X_n = v_n) \]
- Try all possible values of Y and pick the value that gives the maximum probability
- But denominator, \(P(X_1=v_1, ..., X_n=v_n) \), is a constant for all values of Y, so it won’t affect which value of Y is best
Naive Bayes Classifier Testing Phase

- For a given test instance defined by $X_1 = v_1, \ldots, X_n = v_n$, compute

$$\arg\max_c P(Y = c) \prod_{i=1}^n P(X_i = v_i | Y = c)$$

- Assumes all evidence variables are conditionally independent of each other given the class variable
- Robust because it gives the right answer as long as the correct class is more likely than all others

Naive Bayes Classifier

- Assume k classes and n evidence (i.e., attribute) variables, each with m possible values
- $k-1$ values needed for computing $P(Y=c)$
- $(m-1)k$ values needed for computing $P(X_i = v_i | Y=c)$ for each evidence variable X_i
- So, $(k-1) + n(m-1)k$ values needed instead of exponential size FJPD table

Naïve Bayes Classifier Training Phase

Compute from the Training set all the necessary Prior and Conditional probabilities

Naïve Bayes Classifier

- Person is Junior
- Brought coat to class
- Lives in zipcode 53706
- Saw “Hunger Games 1” more than once

<table>
<thead>
<tr>
<th>J</th>
<th>Person is Junior</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Brought coat to class</td>
</tr>
<tr>
<td>Z</td>
<td>Lives in zipcode 53706</td>
</tr>
<tr>
<td>H</td>
<td>Saw “Hunger Games 1” more than once</td>
</tr>
</tbody>
</table>
Naïve Bayes Classifier

- Conditional probabilities can be very, very small, so instead use logarithms to avoid underflow:

\[
\arg \max_c \log P(Y = c) + \sum_{i=1}^n \log P(X_i = v_i | Y = c)
\]

Add-1 Smoothing

- Unseen event problem: Training data may not include some cases
 - flip a coin 3 times, all heads → one-sided coin?
- “Add-1 Smoothing” ensures that each conditional probability > 0
- Assume \(k \) possible classes for class variable \(Y \)
- Assume attribute \(A \) has \(m \) possible values

Add-1 Smoothing

- Let \(n_{ic} \) = number of times attribute \(A \) has value \(i \) in all training instances with class \(c \)
- Let \(n_c \) = number of training instances with class \(c \)
- Compute **Conditional probabilities** as

\[
P(A = i | Y = c) = \frac{n_{ic} + 1}{n_c + m}
\]

- Note: \(\sum_{i=1}^m P(A = i | Y = c) = 1 \)

Add-1 Smoothing

- Compute **Prior probabilities** as

\[
P(X = c) = \frac{n_c + 1}{n + k}
\]

where \(n \) = size of the training set