Two Applications of Probabilistic Reasoning

- Object tracking in video
- Robot localization and mapping

Approximate Inference by Sampling

- Inference can be done approximately by sampling
- General sampling approach:
- Generate many, many samples (each sample is a complete assignment of all variables)
- Count the fraction of samples matching query and evidence
- As the number of samples approaches ∞, the fraction converges to the desired posterior:

$$
P(\text { query | evidence })
$$

Simple Sampling

- This BN defines a joint distribution
- Can you generate a set of samples that have the same underlying joint distribution?

Simple Sampling

1. Sample B : $x=$ rand $(0,1)$. If $(x<0.001) B=$ true else $B=f a l s e$
2. Sample E : $x=r a n d(0,1)$. If $(x<0.002) E=$ true else $E=$ false
3. If ($B==$ true and $E==$ true) sample $A \sim\{0.95,0.05\}$
elseif ($B==$ true and $E==$ false) sample $A \sim\{0.94,0.06\}$
elseif ($B==$ false and $E==$ false) sample $A \sim\{0.29,0.71\}$ else sample A ~ \{0.001, 0.999\}
4. Similarly sample \downarrow
5. Similarly sample M

This generates
one sample.

Repeat to generate more samples

Inference with Simple Sampling

- Say we want to infer B, given E, M, i.e., $P(B \mid E, M)$
- We generate tons of samples
- Keep those samples with $E=$ true and $M=$ true, throw away the others
- In the ones we keep (n of them), count the ones with $\mathrm{B}=$ true, i.e., those that fit our query $\left(n_{1}\right)$
- We return an estimate of

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{E}, \mathrm{M}) \approx n_{1} / n
$$

- The quality of this estimate improves as we sample more
- Can generalize the method to an arbitrary BN

Particle Filters

Also known as:

- Sequential Monte
- Condensation

Carlo filter

- Survival of the fittest
- Bootstrap filter
- Sampling-based approach rather than trying to calculate the exact posterior
- Represent belief by a set of random samples
- Represent posterior distribution
- Approximate solution to an exact model (rather than an optimal solution to an approximate model)

Problem

- Track the (hidden) state, \mathbf{X}, of a system as it changes over time
- Given: A sequence of noisy observations (i.e., features), Z
- Goal: Compute best estimate of the hidden variables specifying the state, \mathbf{X}, of the system. That is, compute

$$
\underset{\mathbf{X}}{\operatorname{argmax}} P(\mathbf{X} \mid \mathbf{Z})
$$

Applications

- Tracking of aircraft positions from radar
- Estimating communications signals from noisy measurements
- Predicting financial data
- Tracking of people or cars in surveillance videos

Application

- Model-based visual tracking in dense clutter at near video frame rates

Tracking using Particle Filters: CONDENSATION (Conditional Density Propagation)

M. Isard and A. Blake, CONDENSATION - Conditional density propagation for visual tracking, Int. J. Computer Vision 29(1),
1998, pp. 4-28

Particle Filtering Algorithm (1)			
k-1	k	${ }^{k+1}$	time
			measurements (observed)
			states (cannot be observed and have to be estimer ave to be estimated)

Particle Filtering (5)

Approach

- Probabilistic (Bayesian) framework for tracking objects such as curves in clutter using an iterative Monte Carlo sampling algorithm
- Model motion and shape of target
- Top-down approach
- Simulation using discrete samples instead of analytic solution

Monte Carlo Samples (Particles)

- The posterior distribution $P(x \mid z)$ may be difficult or impossible to compute in closed form
- An alternative is to represent $P(x \mid z)$ using Monte Carlo samples (particles):
- Each particle has a value and a weight

Samples \Leftrightarrow Densities

- Density \Rightarrow samples

Obvious

- Samples \Rightarrow density

Histogram, Kernel Density Estimation

Monte Carlo Methods

- A class of numerical methods involving statistical sampling processes for finding approximate solutions to quantitative problems
- In 1864 O. Fox estimated π by dropping a needle onto a ruled board
- S. Ulam used computers in 1940s to automate the statistical sampling process for developing nuclear weapons at Los Alamos
- S. Ulam, J. von Neuman, and N. Metropolis developed algorithms to convert non-random problems into random forms so that statistical sampling can be used for their solution; named them "Monte Carlo" methods after the casino

Drawing Samples from a Probability Distribution Function

- Concept of samples and their weights

200 samples

- Take $P(\mathrm{x})=$ Gamma $(4,1)$
-Generate some random samples -Plot basic approximation to pdf -Each sample is called a 'particle

Obtaining State Estimates from Samples

- Any estimate of a function $f\left(x_{t}\right)$ can be calculated by discrete PDF-approximation

$$
E\left[f\left(x_{t}\right)\right]=\frac{1}{N} \sum_{j=1}^{N} w_{t}^{(j)} f\left(x_{t}^{(j)}\right)
$$

- Mean: $E\left[x_{t}\right]=\frac{1}{N} \sum_{j=1}^{N} w_{t}^{(j)} x_{t}^{(j)}$
- MAP-estimate: particle with largest weight
- Robust mean: mean within window around MAP-estimate

In 2D it looks like this

[http://www.ite.uni-karlsruhe.de/METZGER/DIPLOMARBEITEN/dipl2.html]

Probabilistic Framework

- Object dynamics form a temporal (first-order) Markov chain $P\left(x_{t} \mid \mathrm{X}_{t-1}\right)=P\left(x_{t} \mid x_{t-1}\right)$
- Observations, z_{t}, are independent (mutually and wrt process)

$$
P\left(Z_{t-1}, x_{t} \mid X_{t-1}\right)=P\left(x_{t} \mid X_{t-1}\right) \prod_{i=1}^{t-1} P\left(z_{i} \mid x_{i}\right)
$$

- Uses Bayes's rule

Tracking as Estimation

- Compute state posterior, $P(\mathbf{X} \mid \mathbf{Z})$, and select next state to be the one that maximizes this maximum a posteriori (MAP) estimate
- Measurements are complex and noisy, so posterior cannot be evaluated in closed form
- Particle filter (iterative sampling) idea: Stochastically approximate the state posterior with a set of N weighted particles, (s, π), where s is a sample state and π is its weight
- Use Bayes's rule to compute $P(\mathbf{X} \mid \mathbf{Z})$

Factored Sampling

- Generate a set of samples that approximates the posterior, $P(\mathbf{X} \mid \mathbf{Z})$
- Sample set $\mathbf{s}=\left\{s^{(1)}, \ldots, s^{(N)}\right\}$ generated from $P(\mathbf{X})$; each sample has a weight ("probability")

$$
\begin{aligned}
& \pi_{i}=\frac{P_{z}\left(s^{(i)}\right)}{\sum_{j=1}^{N} P_{z}\left(s^{(j)}\right)} \\
& P_{z}(x)=P(z \mid x)
\end{aligned}
$$

CONDENSATION Algorithm

1. Select: Randomly select N particles from $\left\{\mathrm{s}_{\mathrm{t}-1}{ }^{(\mathrm{n})}\right\}$ based on weights $\pi_{t-1}{ }^{(n)}$; same particle may be picked multiple times (factored sampling)
2. Predict: Move particles according to deterministic dynamics of motion model (drift), then perturb individually (diffuse)
3. Measure: Get a likelihood for each new sample by comparing it with the image's local appearance, i.e., based on $P\left(z_{t} \mid x_{t}\right)$; then update weight accordingly to obtain $\left\{\left(\mathrm{s}_{\mathrm{t}}{ }^{(\mathrm{n})}, \pi_{\mathrm{t}}^{(\mathrm{n})}\right)\right\}$

Particle Filter Demo 1

moving Gaussian + uniform, $\mathrm{N}=100$

Particle Filter Demo 2

moving Gaussian + uniform, N=1000 عصلصirt

Object Motion Model

- For video tracking we need a way to propagate probability densities, so we need a "motion model" such as
$\mathbf{X}_{t+1}=\mathbf{A} \mathbf{X}_{t}+\mathbf{B} \mathbf{W}_{t}$ where \mathbf{W} is a noise term and \mathbf{A} and \mathbf{B} are state transition matrices that can be learned from training sequences
- The state, X, of an object, e.g., a B-spline curve, can be represented as a point in a 6D state space of possible 2D affine transformations of the object

Glasses Example

- 6D state space of affine transformations of a spline curve
- Edge detector applied along normals to the spline
- Autoregressive motion model

Pointing Hand Example

2D Articulated Models for Tracking

(Bregler ‘93)

3D Models are More Accurate...

-... when they are right

- [BTW, why is she wearing a black shirt?]

Probabilistic Robotics: SLAM (Simultaneous Localization and Mapping)

- Given no map
- No independent means of localization
- Unknown location and environment
- Robot must build a map and localize itself on this map

3D Model-based Example

- 3D state space: image position + angle
- Polyhedral model of object

SLAM Problems

- The robot cannot (completely) trust its observations to build an accurate map
- Without an accurate map, it cannot localize itself accurately
- Without accurate localization, how can the robot build the map?

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P($ open $/ z)$?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Etc.
- Actions are never carried out with absolute certainty
- In contrast to measurements, actions generally increase uncertainty

Actions

- Often the world is dynamic since - actions carried out by the robot, - actions carried out by other agents,
- or just the time passing by change the world
- How can we incorporate such actions?

Modeling Actions

- To incorporate the outcome of an action, u, into the current "belief," we compute the conditional probability:

$$
P\left(x \mid u, x^{\prime}\right)
$$

- Specifies that executing u changes the state from X^{\prime} to x

Example: Closing the Door

Bayesian Framework

- Given:
- Stream of observations, z, and action data, u :

$$
d_{t}=\left\{u_{1}, z_{1} \ldots, u_{t}, z_{t}\right\}
$$

- Sensor model: $P(z \mid x)$
- Action model: $P\left(x \mid u, x^{\prime}\right)$
- Prior: probability of the system state $P(x)$
- Wanted:
- Estimate the state, x, of a dynamical system
- The posterior of the state is also called Belief:

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \ldots, u_{t}, z_{t}\right)
$$

State Transitions

$P\left(x \mid u, x^{\prime}\right)$ for $u=$ "close door":

If the door is open, the action "close door" succeeds in 90% of all cases

Assumptions:

- Static world
- Independent noise
- Perfect model, no approximation errors

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Advantages of Particle Filtering

- Nonlinear dynamics, measurement model easily incorporated
- Copes with lots of false positives
- Multi-modal posterior okay (unlike Kalman filter)
- Multiple samples provides multiple hypotheses
- Fast and simple to implement
- Representing uncertainty using samples is powerful, fast, and simple

