Two Applications of Probabilistic Reasoning

- · Object tracking in video
- Robot localization and mapping

Approximate Inference by Sampling

- Inference can be done approximately by sampling
- General sampling approach:
 - Generate many, many samples (each sample is a complete assignment of all variables)
 - Count the fraction of samples matching query and evidence
 - As the number of samples approaches ∞, the fraction converges to the desired posterior:

P(query | evidence)

1

Problem

- Track the (hidden) state, **X**, of a system as it changes over time
- Given: A sequence of noisy observations (i.e., features), **Z**
- Goal: Compute best estimate of the hidden variables specifying the state, X, of the system. That is, compute

 $\underset{\mathbf{X}}{\operatorname{argmax}} P(\mathbf{X} \mid \mathbf{Z})$

Also known as: • Sequential Monte Carlo filter • Condensation • Soution filter • Survival of the fittest • Bootstrap filter • Survival of the fittest • Sampling-based approach rather than trying to calculate the exact posterior • Represent belief by a set of random samples • Represent posterior distribution • Approximate solution to an exact model (rather than an optimal solution to an approximate model)

Applications Tracking of aircraft positions from radar Estimating communications signals from noisy measurements Predicting financial data Tracking of people or

 Tracking of people or cars in surveillance videos

Application

 Model-based visual tracking in <u>dense</u> <u>clutter</u> at near video <u>frame rates</u>

Tracking using Particle Filters: CONDENSATION (<u>Cond</u>itional <u>Dens</u>ity Propagation)

M. Isard and A. Blake, CONDENSATION – Conditional density propagation for visual tracking, *Int. J. Computer Vision* **29**(1), 1998, pp. 4-28

Approach

- Probabilistic (Bayesian) framework for tracking objects such as curves in clutter using an iterative Monte Carlo sampling algorithm
- Model motion and shape of target
- Top-down approach
- Simulation using discrete samples instead of analytic solution

Monte Carlo Samples (Particles)

- The posterior distribution P(x|z) may be difficult or impossible to compute in closed form
- An alternative is to represent *P*(*x*|*z*) using Monte Carlo *samples* (particles):
 - Each particle has a value and a weight

Monte Carlo Methods

- A class of numerical methods involving statistical sampling processes for finding approximate solutions to quantitative problems
- In 1864 O. Fox estimated π by dropping a needle onto a ruled board
- S. Ulam used computers in 1940s to automate the statistical sampling process for developing nuclear weapons at Los Alamos
- S. Ulam, J. von Neuman, and N. Metropolis developed algorithms to convert non-random problems into random forms so that statistical sampling can be used for their solution; named them "Monte Carlo" methods after the casino

Samples \Leftrightarrow Densities

- Density ⇒ samples Obvious
- Samples ⇒ density Histogram, Kernel Density Estimation

Obtaining State Estimates from Samples

 Any estimate of a function f(xt) can be calculated by discrete PDF-approximation

$$E[f(x_t)] = \frac{1}{N} \sum_{j=1}^{N} w_t^{(j)} f(x_t^{(j)})$$

- Mean: $E[x_t] = \frac{1}{N} \sum_{j=1}^{N} w_t^{(j)} x_t^{(j)}$
- MAP-estimate: particle with largest weight
- Robust mean: mean within window around MAP-estimate

Probabilistic Framework

- Object dynamics form a temporal (first-order) Markov chain $P(x_t | X_{t-1}) = P(x_t | x_{t-1})$
- Observations, z_t, are independent (mutually and wrt process)

$$P(Z_{t-1}, x_t \mid X_{t-1}) = P(x_t \mid X_{t-1}) \prod_{i=1}^{t-1} P(z_i \mid x_i)$$

• Uses Bayes's rule

Tracking as Estimation

- Compute state posterior, P(X|Z), and select next state to be the one that maximizes this maximum a posteriori (MAP) estimate
- Measurements are complex and noisy, so
 posterior cannot be evaluated in closed form
- Particle filter (iterative sampling) idea: Stochastically approximate the state posterior with a set of *N* weighted particles, (s, π), where s is a sample state and π is its weight
- Use Bayes's rule to compute P(X | Z)

Estimating Target State

State samples

Mean of weighted

state samples

CONDENSATION Algorithm

- **1. Select**: Randomly select *N* particles from $\{s_{t-1}^{(n)}\}$ based on weights $\pi_{t-1}^{(n)}$; same particle may be picked multiple times (*factored sampling*)
- 2. Predict: Move particles according to deterministic dynamics of motion model (*drift*), then perturb individually (*diffuse*)
- **3. Measure**: Get a likelihood for each new sample by comparing it with the image's local appearance, i.e., based on $P(z_t | x_t)$; then update weight accordingly to obtain $\{(s_t^{(n)}, \pi_t^{(n)})\}$

Object Motion Model

- For video tracking we need a way to propagate probability densities, so we need a "motion model" such as
 - $\mathbf{X}_{t+1} = \mathbf{A} \mathbf{X}_t + \mathbf{B} \mathbf{W}_t$ where **W** is a noise term and **A** and **B** are state transition matrices that can be learned from training sequences
- The state, X, of an object, e.g., a B-spline curve, can be represented as a point in a 6D state space of possible 2D affine transformations of the object

Dancing Example

Hand Example

Pointing Hand Example

Glasses Example

- 6D state space of affine transformations of a spline curve
- Edge detector applied along normals to the spline
- Autoregressive motion model

2D Articulated Models for Tracking

(Bregler '93)

3D Models are More Accurate...

... when they are right
[BTW, why is she wearing a black shirt?]

3D Model-based Example

- 3D state space: image position + angle
- Polyhedral model of object

Probabilistic Robotics: SLAM (Simultaneous Localization and Mapping)

- Given no map
- · No independent means of localization
- Unknown location and environment
- Robot must build a map *and* localize itself on this map

SLAM Problems

- The robot cannot (completely) trust its observations to build an accurate map
- Without an accurate map, it cannot localize itself accurately
- Without accurate localization, how can the robot build the map?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Etc.
- Actions are never carried out with absolute certainty
- In contrast to measurements, actions generally increase uncertainty

Modeling Actions

• To incorporate the outcome of an action, *u*, into the current "belief," we compute the conditional probability:

P(*x* | *u*, *x*')

 Specifies that executing u changes the state from x' to x

Advantages of Particle Filtering

- Nonlinear dynamics, measurement model easily incorporated
- · Copes with lots of false positives
- Multi-modal posterior okay (unlike Kalman filter)
- Multiple samples provides multiple hypotheses
- · Fast and simple to implement
- Representing uncertainty using samples is powerful, fast, and simple