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Two Applications of  

Probabilistic Reasoning 

• Object tracking in video 

• Robot localization and mapping 

Approximate Inference by Sampling 

• Inference can be done approximately by sampling 

• General sampling approach: 

– Generate many, many samples (each sample is a 

complete assignment of all variables) 

– Count the fraction of samples matching query and 

evidence 

– As the number of samples approaches , the 

fraction converges to the desired posterior:  

P(query | evidence) 

Simple Sampling 
• This BN defines a joint distribution 

• Can you generate a set of samples that have the same 

underlying joint distribution? 
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P(J|A)=0.9 

P(J|~A)=0.05 

P(M|A)=0.7 

P(M|~A)=0.01 

Simple Sampling 

1. Sample B: x=rand(0,1).  If (x<0.001) B=true else B=false  

2. Sample E: x=rand(0,1).  If (x<0.002) E=true else E=false 

3. If (B==true and E==true) sample A ~ {0.95, 0.05} 

 elseif (B==true and E==false) sample A ~ {0.94, 0.06} 

 elseif (B==false and E==false) sample A ~ {0.29, 0.71} 

 else sample A ~ {0.001, 0.999} 

4. Similarly sample J  

5. Similarly sample M 

 

This generates  

one sample. 

 

Repeat to generate  

more samples 
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• Say we want to infer B, given E, M, i.e., P(B | E, M) 

• We generate tons of samples 

• Keep those samples with E=true and M=true, throw 

away the others 

• In the ones we keep (n of them), count the ones with 

B=true, i.e., those that fit our query (n1) 

• We return an estimate of  

       P(B | E, M)  n1 / n 

• The quality of this estimate improves  

 as we sample more 

• Can generalize the method to 

     an arbitrary BN  

Inference with Simple Sampling 
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Problem 

• Track the (hidden) state, X, of a system as 

it changes over time 

• Given:  A sequence of noisy observations 

(i.e., features), Z 

• Goal:  Compute best estimate of the 

hidden variables specifying the state, X, of 

the system.  That is, compute 

argmax P(X | Z) 
X 

• Sequential Monte 

Carlo filter 

• Bootstrap filter 

 

• Condensation 

• Survival of the fittest 

Particle Filters 

Also known as: 

• Sampling-based approach rather than trying to 
calculate the exact posterior 

• Represent belief by a set of random samples 

• Represent posterior distribution 

• Approximate solution to an exact model (rather than 
an optimal solution to an approximate model) 

Applications 

• Tracking of aircraft 
positions from radar 

• Estimating 
communications signals 
from noisy 
measurements 

• Predicting financial data 

• Tracking of people or 
cars in surveillance 
videos 
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Application 

• Model-based visual tracking in dense 

clutter at near video frame rates 

Tracking using Particle Filters: 

CONDENSATION (Conditional 

Density Propagation) 

 

M. Isard and A. Blake, CONDENSATION – Conditional density 

propagation for visual tracking, Int. J. Computer Vision 29(1), 

1998, pp. 4-28 

Example of 

CONDENSATION Algorithm 
 

Particle Filtering Algorithm (1) 
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Particle Filtering (2) Particle Filtering (3) 

Particle Filtering (4) Particle Filtering (5) 
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Approach 

• Probabilistic (Bayesian) framework for 

tracking objects such as curves in 

clutter using an iterative Monte Carlo 

sampling algorithm 

• Model motion and shape of target 

• Top-down approach 

• Simulation using discrete samples 

instead of analytic solution 

Monte Carlo Samples (Particles) 

• The posterior distribution P(x|z) may be 

difficult or impossible to compute in closed 

form 

• An alternative is to represent P(x|z) using 

Monte Carlo samples (particles): 

– Each particle has a value and a weight 

x 

x 

[ http://www.fulton.asu.edu/~morrell/581/ ] 

Monte Carlo Methods 

• A class of numerical methods involving statistical 
sampling processes for finding approximate 
solutions to quantitative problems 

• In 1864 O. Fox estimated  by dropping a 
needle onto a ruled board 

• S. Ulam used computers in 1940s to automate 
the statistical sampling process for developing 
nuclear weapons at Los Alamos 

• S. Ulam, J. von Neuman, and N. Metropolis 
developed algorithms to convert non-random 
problems into random forms so that statistical 
sampling can be used for their solution; named 
them “Monte Carlo” methods after the casino 

Samples  Densities 

• Density  samples 

Obvious 

 

• Samples  density 

Histogram, Kernel Density Estimation 
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Drawing Samples from a Probability Distribution 
Function 
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•Take P(x)=Gamma(4,1) 

•Generate some random samples 

•Plot basic approximation to pdf 

•Each sample is called a ‘particle’ 

• Concept of samples and their weights 

In 2D it looks like this 

 

[http://www.ite.uni-karlsruhe.de/METZGER/DIPLOMARBEITEN/dipl2.html] 

Obtaining State Estimates from Samples 

• Any estimate of a function f(xt) can be 

calculated by discrete PDF-approximation 

 

 

 

• Mean: 

 

• MAP-estimate: particle with largest weight 

• Robust mean: mean within window around 

MAP-estimate 
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Probabilistic Framework 

• Object dynamics form a temporal (first-order) 

Markov chain 

    

• Observations, zt , are independent (mutually 

and wrt process) 

 

 

• Uses Bayes’s rule 
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Tracking as Estimation 

• Compute state posterior, P(X|Z), and select next 
state to be the one that maximizes this 
maximum a posteriori (MAP) estimate 

• Measurements are complex and noisy, so 
posterior cannot be evaluated in closed form 

• Particle filter (iterative sampling) idea:  
Stochastically approximate the state 
posterior with a set of N weighted particles, 
(s, ), where s is a sample state and  is its 
weight 

• Use Bayes’s rule to compute P(X | Z) 

Factored Sampling 

• Generate a set of samples that 

approximates the posterior, P(X|Z) 

• Sample set                        generated from 

P(X); each sample has a weight 

(“probability”) 
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Factored Sampling  

• CONDENSATION for one image 

N=15 

X 

Estimating Target State 

From Isard & Blake, 1998 

State samples 
Mean of weighted  

state samples 
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This is what you want. Knowing 

P(X|Z) will tell us the most likely 

state X 

This is what you may 

know a priori, or what 

you can predict 
This is what you can 

evaluate 

Bayes’s Rule 

This is a constant for a 

given image 

CONDENSATION Algorithm 

1. Select: Randomly select N particles from {st-1
(n)} 

based on weights t-1
(n); same particle may be 

picked multiple times (factored sampling) 

2. Predict: Move particles according to 

deterministic dynamics of motion model (drift), 

then perturb individually (diffuse) 

3. Measure: Get a likelihood for each new sample 

by comparing it with the image’s local 

appearance, i.e., based on P(zt | xt); then 

update weight accordingly to obtain {(st
(n), t

(n))} 

Posterior  

at time k-1 

Predicted state 

at time k  

Posterior  

at time k 

observation 

density 

drift 

diffuse 

measure 
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Particle Filter Demo 1 

moving Gaussian + uniform, N=100 
particles 
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Particle Filter Demo 2 

moving Gaussian + uniform, N=1000 
particles 

State Posterior 

From Isard & Blake, 1998 

Object Motion Model 

• For video tracking we need a way to 

propagate probability densities, so we need 

a “motion model” such as 

Xt+1 = A Xt + B Wt  where W is a noise term 

and A and B are state transition matrices 

that can be learned from training sequences 

• The state, X, of an object, e.g., a B-spline 

curve, can be represented as a point in a 

6D state space of possible 2D affine 

transformations of the object 

Dancing Example 
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Hand Example Pointing Hand Example 

Glasses Example 
• 6D state space of affine transformations of a spline curve 

• Edge detector applied along normals to the spline 

• Autoregressive motion model 

(Bregler ‘93) 

2D Articulated Models for Tracking 
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3D Models are More Accurate… 

•… when they are right 

• [BTW, why is she wearing a 

black shirt?] 
(Isard & Blake ‘99) 

3D Model-based Example 

• 3D state space: image position + angle 

• Polyhedral model of object 

Probabilistic Robotics:  SLAM 
(Simultaneous Localization and Mapping) 

• Given no map 

• No independent means of localization 

• Unknown location and environment 

• Robot must build a map and localize itself 

on this map 

SLAM  Problems 

• The robot cannot (completely) trust its 

observations to build an accurate map 

 

• Without an accurate map, it cannot localize 

itself accurately 

 

• Without accurate localization, how can the 

robot build the map? 
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Simple Example of State Estimation 

• Suppose a robot obtains measurement z 

• What is P(open | z)? 

Actions 

• Often the world is dynamic since 

– actions carried out by the robot, 

– actions carried out by other agents, 

– or just the time passing by 

 change the world 

 

• How can we incorporate such actions? 

 

Typical Actions 

• The robot turns its wheels to move 

• The robot uses its manipulator to grasp an 

object 

• Etc. 

• Actions are never carried out with absolute 

certainty 

• In contrast to measurements, actions generally 

increase uncertainty  

 

Modeling Actions 

• To incorporate the outcome of an action, 
u, into the current “belief,” we compute the 
conditional probability:  

 

P(x | u, x) 

 

• Specifies that executing u changes the 
state from x to x 



13 

Example:  Closing the Door State Transitions 

P(x|u,x’) for u = “close door”: 

 

 

 

 

 

 

If the door is open, the action “close door” 
succeeds in 90% of all cases 

open closed0.1 1

0.9

0

Bayesian  Framework 

• Given: 

– Stream of observations, z, and action data, u: 

 

– Sensor model:  P(z | x) 

– Action model:  P(x | u, x) 

– Prior:  probability of the system state P(x) 

• Wanted:  

– Estimate the state, x, of a dynamical system 

– The posterior of the state is also called Belief: 

),,,|()( 11 tttt zuzuxPxBel 

},,,{ 11 ttt zuzud 

Markov Assumption 

Assumptions: 

• Static world 

• Independent noise 

• Perfect model, no approximation errors 

),|(),,|( 1:1:11:1 ttttttt uxxpuzxxp  

)|(),,|( :1:1:0 tttttt xzpuzxzp 
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Probability of Robot Location 

P(Robot Location) 

X 

Y 

State space = 2D, infinite #states 

Sampling as Representation 

P(Robot Location) 

X 

Y 

1. Prediction Phase 

u 

Motion Model 

P(xt|   ,u) 

2. Measurement Phase 

Sensor Model 

P(z|xt) 
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3. Resampling Step 

O(N) 

118 

119 120 
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121 122 

123 124 
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127 128 
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131 132 
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135 137 

Initial Distribution 
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After Incorporating Ten 

Ultrasound Scans 

139 

After Incorporating 65 Ultrasound 

Scans 
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Estimated Path Advantages of Particle Filtering 

• Nonlinear dynamics, measurement model easily 

incorporated 

• Copes with lots of false positives 

• Multi-modal posterior okay (unlike Kalman filter) 

• Multiple samples provides multiple hypotheses 

• Fast and simple to implement 

• Representing uncertainty using 

samples is powerful, fast, and simple 

 


