
T2

Many slides by D. Hoiem

Human Body Recognition and Tracking:
How the Kinect Works

Kinect RGB-D Camera

• Microsoft Kinect (Nov. 2010)

– Color video camera + laser-projected IR dot
pattern + IR camera

• $120 (April 2012)

• Kinect 1.5 due 5/2012

IR laser projector
color camera

IR camera

640 x 480, 30 fps

What the Kinect Does
Get Depth Image

Estimate body parts and joint poses

Application (e.g., game)

How Kinect Works: Overview

IR Projector

IR Sensor
Projected Light Pattern

Depth Image

Stereo

Algorithm

Segmentation,

Part Prediction

Body parts and joint positions

Part 1: Stereo from Projected Dots

IR Projector

IR Sensor
Projected Light Pattern

Depth Image

Stereo

Algorithm

Segmentation,

Part Prediction

Body parts and joint positions

Part 1: Stereo from Projected Dots

1. Overview of depth from stereo

2. How it works for a projector/sensor pair

3. Stereo algorithm used by PrimeSense
(Kinect)

Depth from Stereo Images

image 1 image 2

Dense depth map

Some of following slides adapted from Steve Seitz and Lana Lazebnik

Depth from Stereo Images

• Goal: recover depth by finding image coordinate x’
that corresponds to x

f

x x’

Baseline

B

z

C C’

X

f

X

x

x'

Basic Stereo Matching Algorithm

• For each pixel in the first image
– Find corresponding epipolar line in the right image
– Examine all pixels on the epipolar line and pick the best

match
– Triangulate the matches to get depth information

Depth from Disparity

f

x’

Baseline

B

z

O O’

X

f

z

fB
xxdisparity




Disparity is inversely proportional to depth, z

x z

f

OO

xx





Basic Stereo Matching Algorithm

• If necessary, rectify the two stereo images to transform
epipolar lines into scanlines

• For each pixel x in the first image
– Find corresponding epipolar scanline in the right image
– Examine all pixels on the scanline and pick the best match x’
– Compute disparity x-x’ and set depth(x) = fB/(x-x’)

Matching cost

disparity

Left Right

scanline

Correspondence Search

• Slide a window along the right scanline and
compare contents of that window with the
reference window in the left image

• Matching cost: SSD or normalized correlation

Results with Window Search

Window-based matching Ground truth

Data

Add Constraints and Solve with Graph Cuts

Graph cuts Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo/

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy

Minimization via Graph Cuts, PAMI 2001

Before

Failures of Correspondence Search

Textureless surfaces Occlusions, repeated structures

Non-Lambertian surfaces, specularities

Structured Light

• Basic Principle

– Use a projector to create known features (e.g., points, lines)

• Light projection

– If we project distinctive points, matching is easy

http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Example: Book vs. No Book
Source: http://www.futurepicture.org/?p=97

Example: Book vs. No Book
Source: http://www.futurepicture.org/?p=97

Kinect’s Projected Dot Pattern Projected Dot Pattern (2)

http://www.futurepicture.org/?p=97
http://www.futurepicture.org/?p=97

Same Stereo Algorithms Apply

Projector Sensor

Region-Growing Random Dot Matching

1. Detect dots (“speckles”) and label them unknown

2. Randomly select a region anchor: a dot with unknown
depth

a. Windowed search via normalized cross correlation along
scanline

– Check that best match score is greater than threshold; if not,
mark as “invalid” and go to 2

b. Region growing
1. Neighboring pixels are added to a queue

2. For each pixel in queue, initialize by anchor’s shift; then search
small local neighborhood; if matched, add neighbors to queue

3. Stop when no pixels are left in the queue

3. Stop when all dots have known depth or are marked
“invalid”

http://www.wipo.int/patentscope/search/en/WO2007043036

Kinect RGB-D Camera Implementation

• In-camera ASIC computes 11-bit 640 x 480
depth map at 30 Hz

• Range limit for tracking: 0.7 – 6 m (2.3’ to 20’)

• Practical range limit: 1.2 – 3.5 m

http://www.wipo.int/patentscope/search/en/WO2007043036

Part 2: Pose from Depth

IR Projector

IR Sensor
Projected Light Pattern

Depth Image

Stereo

Algorithm

Segmentation,

Part Prediction

Body parts and joint positions

Goal: Estimate Pose from Depth Image

Real-Time Human Pose Recognition in Parts from a Single Depth Image,

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,

and A. Blake, Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011

Goal: Estimate Pose from Depth Image

RGB Depth Part Label Map Joint Positions

http://research.microsoft.com/apps/video/default.aspx?id=144455

Step 1. Find body parts

Step 2. Compute joint positions

Challenges

• Lots of variation in bodies, orientations, poses
• Needs to be very fast (their algorithm runs at 200

fps on the Xbox 360 GPU)

Pose Examples

Examples of

one part

http://research.microsoft.com/apps/video/default.aspx?id=144455

Finding Body Parts

• What should we use for a feature?

– Difference in depth

• What should we use for a classifier?

– Random Decision Forests

Extract Body Pixels by Thresholding Depth

Features

dI(x) is depth image,  = (u, v) is offset to second pixel

• Difference of depth at two pixel

• Offset is scaled by depth at reference pixel

Part Classification with Random Forests

• Randomized decision forest: collection of
independently-trained binary decision trees

• Each tree is a classifier that predicts the likelihood of a
pixel x belonging to body part class c
– Non-leaf node corresponds to a thresholded feature

– Leaf node corresponds to a conjunction of several features

– At leaf node store learned distribution P(c|I, x)

Classification

Learning Phase:

1. For each tree, pick a randomly sampled subset of training data

2. Randomly choose a set of features and thresholds at each node

3. Pick the feature and threshold that give the largest information gain

4. Recurse until a certain accuracy is reached or tree-depth is obtained

Classification

Testing Phase:

1. Classify each pixel x in image I using all
decision trees and average the results at
the leaves:

Classification Forest: An Ensemble Model

Tree t=1 t=2 t=3

Forest output probability

The ensemble model

Implementation

• 31 body parts

• 3 trees (depth 20)

• 300,000 training images per tree randomly
selected from 1M training images

• 2,000 training example pixels per image

• 2,000 candidate features

• 50 candidate thresholds per feature

• Decision forest constructed in 1 day on 1,000
core cluster

Get Lots of Training Data

• Capture and sample 500K mocap frames of
people kicking, driving, dancing, etc.

• Get 3D models for 15 bodies with a variety of
weights, heights, etc.

• Synthesize mocap data for all 15 body types

Synthetic Body Models

Synthetic Data for Training and Testing Real Data for Testing

Results

Classification Accuracy vs. # Training Examples

Classification Accuracy Comparison with Nearest-Neighbor
Matching of Whole Body

Step 2: Joint Position Estimation

• Joints are estimated using the mean-shift
clustering algorithm applied to the labeled
pixels

• Gaussian-weighted density estimator for each
body part to find its mode 3D position

• “Push back in depth” each cluster mode to lie
at approx. center of the body part

• 73% joint prediction accuracy (on head,
shoulders, elbows, hands)

Mean Shift Clustering Algorithm
1. Choose a search window size

2. Choose the initial location of the search window

3. Compute the mean location (centroid of the data) in the search

window

4. Center the search window at the mean location computed in Step 3

5. Repeat Steps 3 and 4 until convergence

The mean shift algorithm seeks the mode, i.e., point of highest

density of a data distribution:

Intuitive Description

Distribution of identical billiard balls

Region of

interest

Center of

mass

Mean Shift

vector

Objective : Find the densest region

Intuitive Description

Distribution of identical billiard balls

Region of

interest

Center of

mass

Mean Shift

vector

Objective : Find the densest region

Intuitive Description

Distribution of identical billiard balls

Region of

interest

Center of

mass

Mean Shift

vector
Objective : Find the densest region

Intuitive Description

Distribution of identical billiard balls

Region of

interest

Center of

mass

Mean Shift

vector

Objective : Find the densest region

Intuitive Description

Distribution of identical billiard balls

Region of

interest

Center of

mass

Mean Shift

vector

Objective : Find the densest region

Intuitive Description

Distribution of identical billiard balls

Region of

interest

Center of

mass

Mean Shift

vector

Objective : Find the densest region

Intuitive Description

Distribution of identical billiard balls

Region of

interest

Center of

mass

Objective : Find the densest region

Clustering

Attraction basin : the region for which all trajectories lead

to the same mode

Cluster : All data points in the attraction basin of a mode

Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer

Results Failures

Runtime Implementation

• Uses Xbox 360’s Xenon CPU with 3 cores

• 500 MHz GPU with 10 MB DRAM

Applications

• Gesture recognition

– http://www.youtube.com/watch?v=e0c2B3PBvRw

• Robot SLAM

– http://www.youtube.com/watch?v=aiNX-vpDhMo

– http://www.youtube.com/watch?v=58_xG8AkcaE

• Object recognition

– http://www.youtube.com/watch?v=KAWLwzGdSwQ

• Nano helicoptors

– http://www.youtube.com/watch?v=YQIMGV5vtd4

Applications

• Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg

• Robot Control:
http://www.youtube.com/watch?v=w8BmgtMKFbY

• Capture for holography:
http://www.youtube.com/watch?v=4LW8wgmfpTE

• Virtual dressing room:
http://www.youtube.com/watch?v=1jbvnk1T4vQ

• Fly wall:
http://vimeo.com/user3445108/kiwibankinteractivewall

• 3D Scanner:
http://www.youtube.com/watch?v=V7LthXRoESw

Uses of Kinect: Gesture Recognition

http://www.youtube.com/watch?v=e0c2B3PBvRw
http://www.youtube.com/watch?v=e0c2B3PBvRw
http://www.youtube.com/watch?v=aiNX-vpDhMo
http://www.youtube.com/watch?v=aiNX-vpDhMo
http://www.youtube.com/watch?v=aiNX-vpDhMo
http://www.youtube.com/watch?v=aiNX-vpDhMo
http://www.youtube.com/watch?v=58_xG8AkcaE
http://www.youtube.com/watch?v=58_xG8AkcaE
http://www.youtube.com/watch?v=KAWLwzGdSwQ
http://www.youtube.com/watch?v=KAWLwzGdSwQ
http://www.youtube.com/watch?v=YQIMGV5vtd4
http://www.youtube.com/watch?v=YQIMGV5vtd4
http://www.youtube.com/watch?v=8CTJL5lUjHg
http://www.youtube.com/watch?v=8CTJL5lUjHg
http://www.youtube.com/watch?v=w8BmgtMKFbY
http://www.youtube.com/watch?v=w8BmgtMKFbY
http://www.youtube.com/watch?v=w8BmgtMKFbY
http://www.youtube.com/watch?v=4LW8wgmfpTE
http://www.youtube.com/watch?v=4LW8wgmfpTE
http://www.youtube.com/watch?v=1jbvnk1T4vQ
http://www.youtube.com/watch?v=1jbvnk1T4vQ
http://www.youtube.com/watch?v=1jbvnk1T4vQ
http://vimeo.com/user3445108/kiwibankinteractivewall
http://vimeo.com/user3445108/kiwibankinteractivewall
http://vimeo.com/user3445108/kiwibankinteractivewall
http://www.youtube.com/watch?v=V7LthXRoESw

Uses of Kinect: Robot SLAM Uses of Kinect: Robot SLAM (2)

Nano Helicoptors Uses of Kinect: Object Recognition

