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First-Order Logic 

Chapters 8.1 – 8.3 and 9 

(not responsible for Chapter 9 on the 
Final Exam) 

General Logic 

Logics are characterized by 
  what they commit to as "primitives" 

Logic What Exists in World Knowledge States 

Propositional facts true/false/unknown 

First-Order facts, objects, relations true/false/unknown 

Temporal facts, objects, 

relations, times 

true/false/unknown 

Probability Theory facts degree of belief 0..1 

Markov facts, objects, relations degree of belief 0..1 

FOL Syntax: Basic 

• A term is used to denote an object in the world 
– constant: BobSmith, 2, Madison, Green, … 
– variable:   x, y, a, b, c, … 
– function(term1, …, termn): 

e.g., Sqrt(9), Distance(Madison, Milwaukee) 
• is a relation for which there is one answer 
• maps one or more objects to another single object 
• can be used  to refer to an unnamed object: 

e.g., LeftLegOf(John) 
• represents a user-defined functional relation 
• cannot be used with logical connectives 

• A ground term is a term with no variables 

FOL Syntax: Basic 

• An atom is smallest expression 
to which a truth value can be assigned 
– predicate(term1, …, termn): 

e.g., Teacher(John, Deb),  (Sqrt(2), Sqrt(7)) 
• is a relation for which there may be more than one answer 
• maps one or more objects to a truth value 
• represents a user defined relation 

– term1 = term2: 
e.g.,  Income(John) = 20K,  1 = 2 
• represents the equality relation when two terms refer to the 

same object 
• is a predicate in prefix form:   =(term1, term2) 
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FOL Syntax: Basic 

• A sentence represents a fact in the world 
that is assigned a truth value 

– atom 

– complex sentence using connectives: 

e.g., Friend(Deb,Jim)  Friend(Jim,Deb) 

e.g.,  >(11,22)  <(22,33) 

– complex sentence using quantified variables:  "$

FOL Semantics:  Assigning Truth 

• The atom predicate(term1, …, termn) is true 
iff the objects referred to by term1, …, termn 
are in the relation referred to by the predicate 

• What is the truth value for F(D, J)? 
– model:  

objects: Deb, Jim, Sue, Bob 

relation: Friend {<Deb,Sue>,<Sue,Deb>} 

– interpretation:  
D means Deb, J means Jim, S means Sue, B means Bob 

F(term1,term2) means term1 is friend of term2 

FOL Syntax:  Quantifiers 

Universal quantifier:  "<variable> <sentence> 
 

• Means the sentence is true for all values of x in the 
domain of variable x 

 

• Main connective typically forming if-then rules

–All humans are mammals  becomes in FOL 

 "x Human(x) Mammal(x) 

        i.e., for all x, if x is a human then x is a mammal 

–Mammals must have fur  becomes in FOL 

 "x Mammal(x) HasFur(x) 

        for all x, if x is a mammal then x has fur 

FOL Syntax:  Quantifiers 



"x (Human(x) Mammal(x)) 

 

• Equivalent to the conjunction of instantiations 
of x: 

 (Human(Jim) Mammal(Jim))  

(Human(Deb) Mammal(Deb))  

(Human(22)  Mammal(22) ) … 
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FOL Syntax:  Quantifiers 

• Common mistake is to use  as main connective 

– results in a blanket statement about everything 

 

• For example: "x (Human(x) Mammal(x)) 

– (Human(Jim) Mammal(Jim))  

(Human(Deb) Mammal(Deb))  

(Human(22)  Mammal(22) ) … 

 

– means everything is human and a mammal 

FOL Syntax:  Quantifiers 

Existential quantifier: $<variable> <sentence> 
• Means the sentence is true 

for some value of x in the domain of variable x 
 

• Main connective is typically 

–Some humans are old            becomes in FOL 

– $x Human(x) Old(x) 

    there exist an x such that x is a human and x is old 

–Mammals may have arms.     becomes in FOL 

– $x Mammal(x) HasArms(x) 

    there exist an x such that x is a mammal and x has arms 

FOL Syntax:  Quantifiers 



$x (Human(x) Old(x)) 

 

• Equivalent to the disjunction of instantiations 
of x: 

 (Human(Jim) Old(Jim))  

(Human(Deb) Old(Deb))  

(Human(22)  Old(22) ) … 

FOL Syntax:  Quantifiers 

• Common mistake is to use  as main connective 

– results in a weak statement 

 

• For example: $x (Human(x) Old(x)) 

– (Human(Jim) Old(Jim))  

(Human(Deb) Old(Deb))  

(Human(22)  Old(22) ) … 

 

– true if there is anything that isn't human 
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FOL Syntax:  Quantifiers 

• Properties of quantifiers: 
–  "x"y is the same as "y"x 

–  $x$y is the same as $y$x 

–  note: $x$y can be written as $x,y likewise with " 
 

• Examples 
–  "x"y Likes(x,y) is active voice: 

  Everyone likes everyone. 

–  "y"x Likes(x,y) is passive voice: 

  Everyone is liked by everyone. 

FOL Syntax:  Quantifiers 

• Properties of quantifiers: 
–  "x$y is not the same as $y"x 

–  $x"y is not the same as "y$x 

 

• Examples 
–  "x$y Likes(x,y) is active voice: 

  Everyone likes someone. 

–  $y"x Likes(x,y) is passive voice: 

  Someone is liked by everyone. 

FOL Syntax:  Quantifiers 

• Properties of quantifiers: 
–  "x P(x) is the same as $x P(x) 

–  $x P(x) is the same as "x P(x) 

 

• Examples 
–  "x Likes(x,IceCream) 

  Everyone likes ice cream. 

–  $x Likes(x,IceCream)  
 No one doesn't like ice cream. 

  It's a double negative! 

FOL Syntax:  Quantifiers 

• Properties of quantifiers: 
–  "x P(x) when negated is $x P(x) 
–  $x P(x) when negated is "x P(x) 
 

• Examples 
–  "x Likes(x,IceCream) 
  Everyone likes ice cream. 

–  $x Likes(x,IceCream) 
  Someone doesn't like ice cream. 
– This is from the application of de Morgan's law 

to the fully instantiated sentence 
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FOL Syntax:  Basics 

 

• A free variable is a variable that isn't bound by 
a quantifier 

–  $y Likes(x,y) 

  x is free, y is bound 

 

• A well-formed formula is a sentence where 
all variables are quantified 

 

Summary so Far 

• Constants: Bob, 2, Madison, … 

• Functions: Income, Address, Sqrt, … 

• Predicates: Sister, Teacher, <=, … 

• Variables: x, y, a, b, c, … 

• Connectives:  

• Equality:  = 

• Quantifiers: "$

Summary so Far 

• Term: Constant, variable, or Function(term1, …, termn) 

   denotes an object in the world 

   Ground Term has no variables 

• Atom: Predicate(term1, …, termn), term1 = term2 

   is smallest expression assigned a truth value 

• Sentence:  atom, quantified sentence with variables or 
     complex sentence using connectives is assigned   
     a truth value 

• Well-Formed Formula (wff): 
   sentence where all variables are quantified 

Fun with Sentences 

Convert the following English sentences into FOL 

 Bob is a fish. 

– What are the objects? 
Bob 

– What are the relations? 
is a fish 

Answer: Fish(Bob)      a unary relation or property 

 Deb and Sue are women.   we'll be casual about plurals 

 Deb or Sue isn't a plant.     ambiguous? 

 Deb and Sue are friends.   use a function? predicate? 
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Fun with Sentences 

Convert the following English sentences into FOL 

 America bought Alaska from Russia. 

– What are the objects? 
America, Alaska, Russia 

– What are the relations? 
bought(who, what, from) – an n-ary relation where n is 3 

Answer: Bought(America, Alaska, Russia) 

 Warm is between cold and hot. 

 Deb, Lynn, Jim, and Steve went together to APT. 

Fun with Sentences 

Convert the following English sentences into FOL 

 Jim collects everything. 

– What are the variables? 
everything x 

– How are they quantified? 
all, universal 

Answer: "x Collects(Jim,x) 

 Collects(Jim,Pencil)  Collects(Jim,Deb)  … 

 Jim collects something. 

 Somebody collects Jim.    How do you handle "body"? 

Fun with Sentences 

When to restrict the domain, e.g., to people: 

• All:                            "x (Person(x) 
– things: anything, everything, whatever 

– people: anybody, anyone, everybody, everyone, whoever 

• Some (at least one): $x Person(x) 
– things: something 

– people: somebody, someone 

• None:                       $x Person(x) 
– things: nothing 

– people: nobody, no one 

Fun with Sentences 

Convert the following English sentences into FOL 

 Somebody collects something. 

– What are the variables? 
somebody x and something y 

– How are they quantified? 
at least one, existential 

Answer: $x,y Person(x)  Collects(x,y) 

 Everybody collects everything. 

 Everybody collects something. 

 Something is collected by everybody. 
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Fun with Sentences 

Convert the following English sentences into FOL 

 Nothing collects anything. 

– What are the variables and quantifiers? 
nothing x and anything y 

not one (i.e., not existential) and all (universal) 

 Answer: $x "y Collects(x,y) 

– Equivalent? 

Everything does not collect anything. 

 Answer: "x,y  Collects(x,y) 

 Everything collects nothing. 

Fun with Sentences 

Convert the following English sentences into FOL 

 All hoarders collect everything. 

– How are ideas connected? 
being a hoarder implies collecting everything 

Answer: "x,y Horder(x) Collects(x,y) 

 Hoarders collect valuable things.    Ambiguous: 

– All hoarders collect all valuable things. 

– All hoarders collect some valuable things. 

– Some hoarders collect all valuable things. 

– Some hoarders collect some valuable things. 

Fun with Sentences 

Convert the following English sentences into FOL 

 All stinky shoes are allowed. 

– How are ideas connected? 
being a shoe and stinky implies it is allowed 

Answer: "x (Shoe(x)  Stinky(x))  Allowed(x) 

 No stinky shoes are allowed.   Is this negative of above? 

Answer: $x Shoe(x)  Stinky(x)  Allowed(x) 

– Equivalent (carry negation through)? 

(All) Stinky shoes are not allowed. 

 Answer: "x (Shoe(x)  Stinky(x))  Allowed(x) 

Fun with Sentences 

Convert the following English sentences into FOL 

 Any good amateur can beat some professional. 

1.  "x [ (x is a good amateur)  

  (x can beat some professional) ] 

2. (x can beat some professional) becomes 

$y [ (y is a professional)  (x can beat y) ] 

Answer: "x [(Amateur(x)  GoodPlayer(x))  

  $y (Professional(y)  Beat(x,y))] 

 Some professionals can beat all amateurs. 
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Fun with Sentences 

Convert the following English sentences into FOL 

 There is exactly one shoe. 

Answer: $x Shoe(x) "y(Shoe(y)(x=y)) 

 

 There are exactly two shoes. 

– Are quantities specified? 

– Are equalities implied? 

Answer: $x,y Shoe(x) Shoe(y) (x=y)
   "z (Shoe(z)(x=z)(y=z)) 

Fun with Sentences 

• Interesting words: always, sometimes, never 

– Good people always have friends. 

 could mean: All good people have friends. 
 "x Person(x) Good(x) $y(Friend(x,y)) 

– Busy people sometimes have friends. 

 could mean: Some busy people have friends. 
 $x Person(x) Busy(x) $y(Friend(x,y)) 

– Bad people never have friends. 

 could mean: Bad people have no friends. 
 "x Person(x) Bad(x) $y(Friend(x,y)) 

 or equivalently: No bad people have friends. 
 $x Person(x) Bad(x) $y(Friend(x,y)) 

Fun with Sentences 

 

• The "interesting words" are ambiguous in that 
they can quantify a variable as in the last slide, 
or they may refer to units of time 

 

• Temporal indicators:  while, when, whenever, … 
– are used to determine when "interesting words" refer to 

time 

– Jo always writes home when she is away from home. 
– "x (Time(x)Away(Jo,Home,x)) Writes(Jo,Home,x) 

Fun with Sentences 

Convert the following English sentences into FOL 

 X is above Y if X is directly on the top of Y or else there 

is a pile of one or more other objects directly on top of 

another starting with X and ending with Y. 

– Answer: "x "y Above(x,y)  [OnTop(x,y)   

            $z(OnTop(x,z)  Above(z,y))] 

 Lincoln: "You can fool some of the people all of the 

time, and all of the people some of the time, but you 

cannot fool all of the people all of the time.“ 

 Answer: ($x "t (person(x)time(t))  

CanFool(x,t))  … 
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Inference Rules for FOL 

 Universal Elimination  (UE) 

 variable substituted with ground term 

 "x Eats(Jim, x) infer Eats(Jim, Cake) 

 Existential Elimination  (EE) 

 variable substituted with a new constant 

 $x Eats(Jim, x) infer Eats(Jim, NewFood) 

"v α 
SUBST({v/g}, α) 

$v α 
SUBST({v/k}, α) 

 These two inference rules enable 

the knowledge base to be propositionalized 

 Then natural deduction can be done using 

inference rules for PL 

k is a new term 

may be 
many ways 
to do this! 

A Simple FOL Proof 
using Natural Deduction 

• Jim is a turtle. 
1. Turtle(Jim) 

• Deb is a rabbit. 
2. Rabbit(Deb) 

• Turtles outlast Rabbits. 
3 "x,y (Turtle(x)  Rabbit(y))  Outlast(x,y) 

• Query: Jim outlasts Deb. 
– Outlast(Jim,Deb) 

• Treat predicates like propositional symbols 

A Simple FOL Proof 
using Natural Deduction 

• And Introduction:  AI(1, 2) 
4. Turtle(Jim)  Rabbit(Deb) 

• Universal Elimination:  UE(3, {x/Jim, y/Deb}) 
5. Turtle(Jim)  Rabbit(Deb)  Outlast(Jim,Deb) 

• Modus Ponens:  MP(4, 5) 
6. Outlast(Jim,Deb) 

• AI, UE, MP is a common inference pattern 

• Automated inference is harder with FOL than PL 

 Variables can take on a potentially infinite number 
of possible values from their domain and thus UE 
can be applied in a potentially infinite number of 
ways to KB 

Proof as Search 
using Inference Rules 

• Operators are inference rules 
• States are the KB 
• Goal test checks if query in KB 

1 2 3 
4 5 6 

AI(1,2) 

1 2 3 

… … 

1 2 3 
4 

UE(3) 
… … 

1 2 3 
4 5 

… … 

MP(4,5) 

 Problem: 

huge branching factor, especially for 

UE 

 Idea: 

find a substitution that makes the 

rule premise match known facts 

• Make a single powerful inference rule 
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Generalized Modus Ponens (GMP) 

• “Unify” rule premises with known facts and 
apply unifier to conclusion 
 

• Rule: 
 "x,y (Turtle(x)  Rabbit(y))  Outlast(x,y) 

 Known facts: Turtle(Jim),  Rabbit(Deb) 

 Unifier:      {x/Jim, y/Deb} 

• Apply unifier to conclusion:  Outlast(Jim,Deb) 

Generalized Modus Ponens (GMP) 

• Combines AI, UE, and MP into a single rule: 
p1', p2', …, pn', (p1  p2 … pn  q) 

SUBST(q, q) 

where SUBST(q,pi') = SUBST(q,pi) for all i 

 SUBST(q, a) means apply substitutions in q to a 

 Substitution list q = {v1/t1, v2/t2, …, vn/tn} means 

– replace all occurrences of variable vi with term ti 

– substitutions are made in left to right order 

Generalized Modus Ponens (GMP) 

p1', p2', …, pn', (p1  p2 … pn   q) 

SUBST(q, q) 

where SUBST(q,pi') = SUBST(q,pi) for all i 

 All variables assumed to be universally quantified 

 Used with a KB in Horn normal form (HNF): 
definite clause: disjunction of literals with exactly 1 positive literal 

– fact: single positive literal                  P1(x), P2(x) 
– rule: conjunction of atoms  atom   (P1(x) P2(x)) Q(x) 

         has only one positive literal          P1(x)P2(x)Q(x) 

Generalized Modus Ponens (GMP) 

p1', p2', …, pn', (p1  p2 … pn   q) 

SUBST(q, q) 

where SUBST(q,pi') = SUBST(q,pi) for all i 

Example: 

 
p1'          = Smarter(Deb, Bob) 

p2'          = Smarter(Bob, Joe) 

(p1  p2 )  q     =  (Smarter(x,y)Smarter(y,z))Smarter(x,z) 

q   =  {x/Deb, y/Bob, z/Joe} 

SUBST(q, q)  =  Smarter(Deb, Joe) 
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Unification 

• Substitution q unifies p1' and p1 
   if SUBST(q,p1'  = SUBST(q,p1 

Hears(Deb,x) Hears(x,Jim) Hears(Deb,x) Hears(y,Jim) 

Turtle(y) Turtle(Jim) 

Hears(Deb,x) Hears(Deb,Sue) 

{y/Jim} 

{x/Sue} 

p1' p1 q

{y/Deb, x/Jim} 

• Variables must be standardized apart! 

I.e., if the same variable(s) is found in both p1' and p1 

then rename variable(s) so none are shared 

Unification 

• Substitution q unifies p1' and p1 
   if SUBST(q,p1'  = SUBST(q,p1 

Hears(Deb,x) Hears(y,Jim) 

Turtle(y) Turtle(Jim) 

Hears(Deb,x) Hears(Deb,Sue) 

{y/Jim} 

{x/Sue} 

p1' p1 q

Sees(x, 

ID(x),At(Jo)) 

Sees(Jim, 

ID(y),At(y)) 

failure, assuming 

At(Jo)  At(Jim) 

{y/Deb, x/Jim} 

Hears(Deb,x) Hears(z,Mother(z)) {z/Deb, x/Mother(Deb)} 

Eats(y,y) Eats(z,Fish) {y/z, z/Fish} 

Sees(Jo,x,y) Sees(z,Jim,At(z)) {z/Jo,  x/Jim,  y/At(Jo)} 

Unification Algorithm 

• Unify returns q, a most general unifier (MGU) 
– shortest length substitution list to make a match 
– in general, more than one MGU 
 

• AIMA algorithm recursively explores the two 
expressions and simultaneously builds q

 
• Occurs-Check prevents a variable from replacing a term 

that contains that variable, e.g., prevents {x/F(x)} 
– this slows down the unify algorithm 
 

• Unify with the occurs-check has a time complexity 
O(n2) where n is the size of the expressions 

Completeness of Automated Inference 

• Truth table enumeration: incomplete for FOL 
table may be infinite in size for infinite domain 

• Natural Deduction: complete for FOL 
impractical since branching factor too large 

• GMP: incomplete for FOL 
not every sentence can be converted to Horn 
form 

• GMP: complete for FOL KB in HNF (definite 
clauses) 
– forward chaining: move from KB to query 
– backward chaining: move from query to KB 
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Forward Chaining (FC) with GMP 

• Move "forward" from KB to query  

• Simplified FC Algorithm (see Figure 9.3): 
 Given: query q is asked of KB 

 
 repeat until no new sentences are inferred 

    initialize NEW to empty 

     for each rule that can have all of its premises satisfied 

         apply composed substitution to the conclusion 

         add the new conclusion to NEW if it's not just a renaming 

         done if the new conclusion unifies with the query 

     add sentences in NEW to KB 

 return false since q never concluded 

“The law says that it is a crime for an American to sell weapons to 

hostile nations. The country Nono, an enemy of America, has some 

missiles, and all of its missiles were sold to it by Colonel West, who is an 

American.” 

1. american(x)  weapon(y)  sells (x,y,z)  hostile(z)  criminal(x) 

$x owns(Nono, x)  missile(x) 

5. missile(x)  owns(Nono, x)  sells(West, x, Nono) 

8. missile(x)  weapon(x) 

7. enemy(x, America)  hostile(x) 

6. american(West) 

2. enemy(Nono,America) 

Must be in HNF! 

3. owns(Nono, M) 

4. missile(M) 

Use EE and generate 

2 sentences 

FOL Inference Example 

Query:  criminal(West)  ? 

KB: 

Forward Chaining with GMP 
american(West) missile(M) owns(Nono, M) enemy(Nono, America) 

weapon(M) 

missile(x)  weapon(x) 

q = {x/M} 

sells(West, M, Nono) 

missile(x)  owns(Nono,x)  

 sells(West,x,Nono) 

q = {x/M} 

hostile(Nono) 

enemy(x,America)  hostile(x) 

q = {x/Nono} 

criminal(West) 

american(x)  weapon(y)  sells (x,y,z)  hostile(z)  criminal(x) 

q = {x/West, y/M, z/Nono} 

Backward Chaining (BC) with GMP 

• Move "backwards" from query to KB 

• Simplified BC Algorithm (see Figure 9.6):  
 Given:  query q is asked of KB 

 

 if a matching fact q' is known then return unifier           (base case) 

 for each rule whose consequent q' matches q          (recursive cases) 

     attempt to prove each premise of the rule by BC        (depth first) 

  

 (Complication added to keep track of unifiers, i.e., composition) 
(Further complications help avoid infinite loops) 
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Backward Chaining with GMP 
criminal(x) 

weapon(y) hostile(Nono) 

missile(y) 

q = {y/M} 

american(West) 

q = {} 

sells(West, M, z) 

q = {z/Nono} 

q = {x/West} 

missile(M) 

q = {} 

owns(Nono, M) 

q = {} 

enemy(Nono, America) 

q = {} 

q = {x/West, y/M} q = {x/West, y/M, z/Nono} 

american(West)  weapon(y)  sells (West,y,z)  hostile(z)  criminal(West) american(West)  weapon(M)  sells (West,M,z)  hostile(z)  criminal(West) american(West)  weapon(M)  sells (West,M,Nono)  hostile(Nono)  criminal(West) 

missile(y)  

 weapon(y) 

enemy(Nono,America)  

 hostile(Nono) 

missile(M)  owns(Nono,M)  

 sells(West,M,Nono) 

Backward Chaining (BC) with GMP 

• BC is depth-first search 

• BC versions 

– find any solution 

– find all solutions 

• BC is basis for logic programming, e.g. Prolog: 

– a program is a set of logic sentences in HNF, which 
is called the database 

– it is executed by specifying a query to be proved 

 

Prolog  Examples 

• grandparent(X, Y) :- parent(X, Z), parent(Z, Y). 

• brother_in_law_of(B, P) :- married(P, Spouse), 
brother_of(B, Spouse). 

• brother_in_law_of(B, P) :- sister_of(Sister, P), 
husband_of(B, Sister). 

• brother_in_law_of(B, P) :- married(P, Spouse), 
sister_of(Sister, Spouse), husband_of(B, Sister). 

 

?- brother_in_law_of(John, Mary). 

Completeness of General FOL 

• FC and BC are complete for Horn KBs 
but are incomplete for general FOL KBs: 

 PhD(x)   HighlyQualified(x) 

 PhD(x)  EarlyEarnings(x) 

 HighlyQualified(x)  Rich(x) 

 EarlyEarnings(x)    Rich(x) 

 Query: Rich(Me) 

• Can't prove query with FC or BC. Why? 

• Does a complete algorithm for FOL exist? 
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Resolution Proofs 

• Entailment in FOL is only semidecidable: 
– can prove α if KB╞ α 
– cannot always prove that KB doesn't╞ α (halting) 

• Resolution is a refutation technique: 
– to prove KB╞ α show that KB  α is unsatisfiable 

• Resolution uses KB and α  in CNF: 
– conjunction of clauses that are disjunction of literals 

• Resolution repeatedly combines two clauses to make a 
new one until the empty clause is derived 
– the new clauses are called resolvents 
– empty clause: False, unsatisfiable, a contradiction 

Resolution Inference Rule 

 Resolution Rule in PL 

α  β, β  γ 

α  γ 

αβ, βγ 

αγ 

 Resolution Rule in FOL (RR): 

 where li and mi are literals for all i 
where UNIFY(lj , mk) = q, and mk is the negation of lj 

l1 … lj  …  lm ,   m1 … mk  …  mn  

SUBST(q, l1 … lj-1lj+1 …  lm  m1 … mk-1 mk+1 …  mn) 

 equivalently: 

 RR can equivalently be written as implications 

GMP Example of Resolution Rule 

Fulfilled(Me),   Fulfilled(x)Happy(x) 

SUBST(q, Happy(x)) 

 lj is  Fulfilled(Me) 

 mk is  Fulfilled(x) 
 

 UNIFY(lj , mk)   results in  q= {x/Me} 

 SUBST(q, Happy(x)) results in  Happy(Me) 
 

 Inferred sentence: Happy(Me) 
 

• GMP is special case of resolution 

Resolution Refutation Example 

To prove  KB╞ Rich(Me): 
1. negate query:  Rich(Me) 

2. convert query to CNF:  Rich(Me) 

3. add query to CNF KB: 
(how do we convert sentences below into CNF?) 

PhD(x)   HighlyQualified(x) 

PhD(x)  EarlyEarnings(x) 

HighlyQualified(x)  Rich(x) 

EarlyEarnings(x)    Rich(x) 

4. infer contradiction, i.e., False 
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Simplified 
Resolution Refutation Algorithm 

//returns true if KB |- q, false otherwise 

//KB is a set of consistent, true FOL sentences 

//q is the query to be proved 

//requires KB and q are in CNF 

boolean resolutionRefutation(CNFlist KB, CNFsentence q) { 

  KB = unionOf(KB, logicalNegationOf(q)); 

  while (false not in KB) { 

    pick two sentences s1 and s2 in KB with literals that unify 

    if (none) return false;   //failure 

    CNFsentence resolvent = resolutionRule(s1, s2); 

    KB = unionOf(KB, resolvent); 

  } 

  return true;  //success 

} 

Conjunctive Normal Form (CNF) 

 

• KB and query are conjunctions of CNF clauses 
 

• CNF clause: a disjunction of literals 

e.g.,  Hot(x)Warn(x)Cold(x) 

• Literal: an atom 
either positive (unnegated) or negative (negated) 

e.g., Happy(Sally), Rich(x) 
 

• Any FOL KB can be converted into CNF 

Simple Example of 
Converting FOL Sentence to CNF 

• Replace implications: 
PhD(x)  HighlyQualified(x) becomes 

   PhD(x)  HighlyQualified(x) 

PhD(x)  EarlyEarnings(x) becomes 

PhD(x)  EarlyEarnings(x) 

HighlyQualified(x)  Rich(x) becomes 

HighlyQualified(x)  Rich(x) 

EarlyEarnings(x)  Rich(x) becomes 

EarlyEarnings(x)  Rich(x) 

 

• In-class Resolution Refutation example 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

1. Replace  with equivalent (added): 

convert    P  Q    to    P  Q Q  P 

 

Example: 
"x,y {Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})} 

 

 becomes: 
"x,y { 

 [ Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)}) ] 

     

 [ (OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y) ] 

 } 
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Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

2. Replace  with equivalent:  
convert    P  Q    to    P  Q 

 

"x,y { 

[ Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)}) ] 

 

[ (OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y) ] } 

 becomes: 
"x,y { 

[ Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)}) ] 

 

[ (OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y) ] } 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

3. Reduce scope of  to single literals: 
convert    P to   P     (DNE) 
convert    (PQ) to   P  Q    (de Morgan's) 
convert    (PQ) to   P  Q    (de Morgan's) 
convert    "xP to   $xP 
convert    $xP to   "xP 

"x,y { 

[ Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)}) ]  

[ (OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y) ] } 

 highlighted part becomes in stages: 

(OnTop(x,y) $z{OnTop(x,z)  Above(z,y)})   (de Morgan's) 

"z {OnTop(x,z)  Above(z,y)}     ($xP to "xP) 

{OnTop(x,z)  Above(z,y)}        (de Morgan's) 

(OnTop(x,y) "z{OnTop(x,z)  Above(z,y)})  (result) 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

4. Standardize variables apart: 

each quantifier must have a unique variable name 

avoids confusion in steps 5 and 6 

e.g. convert  "xP$xQ   to   "xP$yQ 

    

"x,y { 

[ Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)}) ]  

[ (OnTop(x,y)  "z{OnTop(x,z)  Above(z,y)}Above(x,y) ] } 

 becomes: 
"x,y { 

[ Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)}) ]  

[ (OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y) ] } 

 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

5. Eliminate existential quantifiers (Skolemize): 

– convert        $xP(x) toP(C) (EE) 
C must be a new constant (Skolem constant) 

– convert "x,y$zP(x,y,z)to"x,yP(x,y,F(x,y)) 
F() must be a new function (Skolem function) with arguments that 
are all enclosing universally quantified variables  

e.g. Everyone has a name. 
"xPerson(x)$yName(y)Has(x,y) 

 wrong:"xPerson(x)Name(K)Has(x,K) 

 Everyone has the same name K. 

 Want everyone to have a name based on who they are. 

 right:"xPerson(x)Name(F(x))Has(x,F(x)) 
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Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

5. Eliminate existential quantifiers (Skolemize): 

– convert "x,y$zP(x,y,z)to"x,yP(x,y,F(x,y)) 
F() must be a new function (Skolem function) with arguments that 
are all enclosing universally quantified variables  

 

"x,y { 

[ Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)}) ] 
 
[ (OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y) ] } 

 becomes: 
"x,y { 

[Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))] 
 
[(OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y)] } 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

6. Drop quantifiers: 
all variables are only universally quantified after step 5 
e.g. convert "xP(x)"yQ(y)  to   P(x)Q(y) 
all variables in KB will be assumed to be universally quantified 

 

"x,y { 
[Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))] 
 

[(OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y)] } 

 becomes: 
 [Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))] 

 

[(OnTop(x,y)  (OnTop(x,w)  Above(w,y)) Above(x,y)]

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

7. Distribute  over to get conjunction of disjunctions : 
convert(PQ)R to(PR)(QR) 

 

 [ Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y))) ]  

 

[ (OnTop(x,y)  (OnTop(x,w)  Above(w,y)) Above(x,y) ] 

 highlighted part becomes in steps: 
 given            A(B(CD)) 

 converts to A((BC)(BD))  

 converts to (A(BC))(A(BD)) 

 highlighted part result: 
 [ (Above(x,y)(OnTop(x,y)OnTop(x,F(x,y)))) 

 (Above(x,y)(OnTop(x,y)Above(F(x,y),y)))     ] 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

7. Distribute  over to get conjunction of disjunctions : 
convert(PQ)R to(PR)(QR) 

 

 [ Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y))) ]  

 

[(OnTop(x,y)  (OnTop(x,w)  Above(w,y))) Above(x,y)] 

 highlighted part becomes in steps: 
 given            (AB)C 

 converts to (AC)(BC) 

 highlighted part result: 
 [ (OnTop(x,y)   Above(x,y) )

 ((OnTop(x,w)  Above(w,y)) Above(x,y) )    ] 
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Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

8. Flatten nested conjunctions and disjunctions: 
convert (PQ)R   to  (PQR) 
convert (PQ)R   to  (PQR) 

 

 [ (Above(x,y)(OnTop(x,y)OnTop(x,F(x,y)))) 

 (Above(x,y)(OnTop(x,y)Above(F(x,y),y)))    ] 

 [  (OnTop(x,y)  Above(x,y))   

 ((OnTop(x,w)  Above(w,y)) Above(x,y))    ] 

 becomes: 
 (Above(x,y)OnTop(x,y)OnTop(x,F(x,y)))

(Above(x,y)OnTop(x,y)Above(F(x,y),y)) 

 

 (OnTop(x,y)Above(x,y))

(OnTop(x,w)  Above(w,y)Above(x,y)) 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

9. Separate each conjunct (added) 

spllit at 's so each conjunct is now a CNF clause 
 

(Above(x,y)OnTop(x,y)OnTop(x,F(x,y)))
(Above(x,y)OnTop(x,y)Above(F(x,y),y)) 



(OnTop(x,y)Above(x,y))
(OnTop(x,w)  Above(w,y)Above(x,y)) 

 becomes: 

 Above(x,y)OnTop(x,y)OnTop(x,F(x,y))

Above(x,y)OnTop(x,y)Above(F(x,y),y) 

OnTop(x,y)Above(x,y) 

OnTop(x,w)Above(w,y)Above(x,y) 

Converting FOL Sentences 
Conjunctive Normal Form (CNF) 

10. Standardize variables apart in each clause (added) 

– each clause in KB must contain unique variable names 

– now during unification the standardize apart step 
need only be done on deduced clauses (i.e. resolvents) 

 

 Above(x,y)OnTop(x,y)OnTop(x,F(x,y))

Above(x,y)OnTop(x,y)Above(F(x,y),y) 

OnTop(x,y)Above(x,y) 

OnTop(x,w)Above(w,y)Above(x,y) 

 becomes: 

 Above(a,b)OnTop(a,b)OnTop(a,F(a,b))

Above(c,d)OnTop(c,d)Above(F(c,d),d) 

OnTop(e,f)Above(e,f) 

OnTop(g,h)Above(h,i)Above(g,i) 

Dealing with Equality 

• Limitation of unification: 
– can't unify different terms that refer to same object 

– uses syntactic matching 

– doesn't do semantic test of sameness 

• Equational Unification axiomizes properties of 
=: 
– reflexivity: "x     x = x 

– symmetricity: "x,y   x = y  y = x 

– transitivity: "x,y,z x = y  y = z  x = z 

– for all Pi  "x,y   x = y  Pi(x)  Pi(z) 

– etc… 

Terms are unifiable if they're provably equal under some substitution 
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Dealing with Equality 

l1 … lk  x = y, m1 …mn[z] 

SUBST(q, l1 …  lk  m1 … mn [y] ) 

 Another approach is to use a special inference rule: 

 Paramodulation: 

– where li and mi are literals for all i, 

and mn [z] is a literal containing term z 

– for any terms x, y, and z, where UNIFY(x, z) = q

– Put simpler term on the right of equality to do simplification, 

since term on left is always replaced with term on right of = 

 

 Demodulation is a special case where there are no li literals 

Paramodulation Example 

L(v)F(H,v)=F(J,v),  M(J)N(F(H,K)) 

SUBST(q, L(v) M(J)N(F(J,v)) 

 Predicates: L,M,N   Function:   F 

Variable:     v         Constants: H,J,K 

 

 mn[z] is N(F(H,K))  and  z is F(H,K) 

x = y  is where  x  is F(H,v)  and  y  is F(J,v) 

 UNIFY(x, z)   result in q= {v/K} 

 SUBST(q, …)  results in inferred sentence: 
L(K)  M(J)N(F(J,K)) 

Resolution Strategies 

 

• Resolution refutation proofs can be thought of 
as search: 

– reversed construction of search tree (leaves to 
root) 

– leaves are KB clauses and query 

– resolvent is new node with arcs to parent clauses 

– root is a clause containing False 

Resolution Strategies 

• A search is complete if it guarantees the 
empty clause can be derived whenever KB╞ q 

 

• Goal is to design a complete search that 
efficiently finds a contradiction (i.e., empty 
clause, False) 

 

• Rather than just choosing any two clauses 
to be resolved, instead reduce the choices to be 
from some subset of clauses. The different 
resolution strategies specify what that subset is. 
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Resolution Strategies 

 

• Breadth-First 
– level 0 clauses: KB clauses and query 

– level k clauses: resolvents computed from 2 
clauses: 
• one of which must be from level k-1 

• other from any earlier level 

– compute all possible level 1 clauses, 
then all possible level 2 clauses, etc. 

– complete but very inefficient 

 

Resolution Strategies 

• Unit Preference 
– prefer to do resolutions where 1 sentence 

is a single literal, a unit clause 
– goal is to produce the empty clause, focus search 

by producing resolvents that are shorter 
– complete but too slow for medium sized problems 

 

• Unit Resolution 
– requires at least 1 to be a unit clause 
– resembles FC 
– complete for FOL KB in HNF 

Resolution Strategies 

 

• Set-of-Support (SoS) 
– identify some subset of sentences, called SoS 

– P and Q can be resolved if one if from SoS 

– resolvent is added to the SoS 

– common approach: 
• query is the initial SoS, resolvents are added 

• assumes KB is true (i.e., consistent, jointly satisfiable) 

– complete if KB-SoS is jointly satisfiable 

Resolution Strategies 

 

• Input Resolution 

– P and Q can be resolved if at least one is from 
the set of original clauses, i.e. KB and query 

– proof trees have a single "spine" (see Fig. 9.11) 

– MP is a form of input resolution since each step 
a rule (input) is used to generate a new fact 

– complete for FOL KB in HNF 
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Resolution Strategies 

 

• Linear Resolution 

– a slight generalization of input resolution 

– P and Q can be resolved if: 

• at least 1 is from the set of original clauses  

• or P must be an ancestor of Q in the proof tree 

– complete 

Reference: 
Converting FOL Sentences to CNF 

1. Replace  with equivalent (added): 

– convert P  Q  to  P  Q Q  P 

2. Replace  with equivalent: convert P  Q  to  P  Q 

3. Reduce scope of  to single literals: 

– convert  P      to   P     (DNE) 

– convert  (PQ)  to   P  Q    (de Morgan's) 

– convert  (PQ)  to   P  Q    (de Morgan's) 

– convert  "xP       to   $xP 

– convert  $xP      to   "xP 

4. Standardize variables apart: 

– each quantifier must have a unique variable name 

– avoids confusion in steps 5 and 6 

– e.g. convert  "xP$xQ   to   "xP$yQ 

Reference: 
Converting FOL Sentences to CNF 

5. Eliminate existential quantifiers (Skolemize): 

– convert        $xP(x) toP(C) (EE) 
C must be a new constant (Skolem constant) 

– convert "x,y$zP(x,y,z)to"x,yP(x,y,F(x,y)) 
F() must be a new function (Skolem function) with arguments that 
are all enclosing universally quantified variables 

6. Drop quantifiers: 

– all variables are only universally quantified after step 5 

– e.g. convert "xP(x)"yQ(y)   to   P(x)Q(y) 

– all variables in KB will be assumed to be universally quantified 

7. Distribute  over to get conjunction of disjunctions : 

– convert(PQ)R to(PR)(QR) 

Reference: 
Converting FOL Sentences to CNF 

8. Flatten nested conjunctions and disjunctions: 

– convert (PQ)R   to   (PQR) 

– convert (PQ)R   to   (PQR) 

9. Separate each conjunct (added) 

– spllit at 's so each conjunct is now a CNF clause 

10. Standardize variables apart in each clause (added) 

– each clause in KB must contain unique variable names 

– now during unification the standardize apart step 
need only be done on deduced clauses (i.e. resolvents) 


