
1

First-Order Logic

Chapters 8.1 – 8.3 and 9

(not responsible for Chapter 9 on the
Final Exam)

General Logic

Logics are characterized by
 what they commit to as "primitives"

Logic What Exists in World Knowledge States

Propositional facts true/false/unknown

First-Order facts, objects, relations true/false/unknown

Temporal facts, objects,

relations, times

true/false/unknown

Probability Theory facts degree of belief 0..1

Markov facts, objects, relations degree of belief 0..1

FOL Syntax: Basic

• A term is used to denote an object in the world
– constant: BobSmith, 2, Madison, Green, …
– variable: x, y, a, b, c, …
– function(term1, …, termn):

e.g., Sqrt(9), Distance(Madison, Milwaukee)
• is a relation for which there is one answer
• maps one or more objects to another single object
• can be used to refer to an unnamed object:

e.g., LeftLegOf(John)
• represents a user-defined functional relation
• cannot be used with logical connectives

• A ground term is a term with no variables

FOL Syntax: Basic

• An atom is smallest expression
to which a truth value can be assigned
– predicate(term1, …, termn):

e.g., Teacher(John, Deb), (Sqrt(2), Sqrt(7))
• is a relation for which there may be more than one answer
• maps one or more objects to a truth value
• represents a user defined relation

– term1 = term2:
e.g., Income(John) = 20K, 1 = 2
• represents the equality relation when two terms refer to the

same object
• is a predicate in prefix form: =(term1, term2)

2

FOL Syntax: Basic

• A sentence represents a fact in the world
that is assigned a truth value

– atom

– complex sentence using connectives: 

e.g., Friend(Deb,Jim)  Friend(Jim,Deb)

e.g., >(11,22)  <(22,33)

– complex sentence using quantified variables: "$

FOL Semantics: Assigning Truth

• The atom predicate(term1, …, termn) is true
iff the objects referred to by term1, …, termn
are in the relation referred to by the predicate

• What is the truth value for F(D, J)?
– model:

objects: Deb, Jim, Sue, Bob

relation: Friend {<Deb,Sue>,<Sue,Deb>}

– interpretation:
D means Deb, J means Jim, S means Sue, B means Bob

F(term1,term2) means term1 is friend of term2

FOL Syntax: Quantifiers

Universal quantifier: "<variable> <sentence>

• Means the sentence is true for all values of x in the
domain of variable x

• Main connective typically forming if-then rules

–All humans are mammals becomes in FOL

 "x Human(x) Mammal(x)

 i.e., for all x, if x is a human then x is a mammal

–Mammals must have fur becomes in FOL

 "x Mammal(x) HasFur(x)

 for all x, if x is a mammal then x has fur

FOL Syntax: Quantifiers



"x (Human(x) Mammal(x))

• Equivalent to the conjunction of instantiations
of x:

 (Human(Jim) Mammal(Jim)) 

(Human(Deb) Mammal(Deb)) 

(Human(22)  Mammal(22)) …

3

FOL Syntax: Quantifiers

• Common mistake is to use  as main connective

– results in a blanket statement about everything

• For example: "x (Human(x) Mammal(x))

– (Human(Jim) Mammal(Jim)) 

(Human(Deb) Mammal(Deb)) 

(Human(22)  Mammal(22)) …

– means everything is human and a mammal

FOL Syntax: Quantifiers

Existential quantifier: $<variable> <sentence>
• Means the sentence is true

for some value of x in the domain of variable x

• Main connective is typically 

–Some humans are old becomes in FOL

– $x Human(x) Old(x)

 there exist an x such that x is a human and x is old

–Mammals may have arms. becomes in FOL

– $x Mammal(x) HasArms(x)

 there exist an x such that x is a mammal and x has arms

FOL Syntax: Quantifiers



$x (Human(x) Old(x))

• Equivalent to the disjunction of instantiations
of x:

 (Human(Jim) Old(Jim)) 

(Human(Deb) Old(Deb)) 

(Human(22)  Old(22)) …

FOL Syntax: Quantifiers

• Common mistake is to use  as main connective

– results in a weak statement

• For example: $x (Human(x) Old(x))

– (Human(Jim) Old(Jim)) 

(Human(Deb) Old(Deb)) 

(Human(22)  Old(22)) …

– true if there is anything that isn't human

4

FOL Syntax: Quantifiers

• Properties of quantifiers:
– "x"y is the same as "y"x

– $x$y is the same as $y$x

– note: $x$y can be written as $x,y likewise with "

• Examples
– "x"y Likes(x,y) is active voice:

 Everyone likes everyone.

– "y"x Likes(x,y) is passive voice:

 Everyone is liked by everyone.

FOL Syntax: Quantifiers

• Properties of quantifiers:
– "x$y is not the same as $y"x

– $x"y is not the same as "y$x

• Examples
– "x$y Likes(x,y) is active voice:

 Everyone likes someone.

– $y"x Likes(x,y) is passive voice:

 Someone is liked by everyone.

FOL Syntax: Quantifiers

• Properties of quantifiers:
– "x P(x) is the same as $x P(x)

– $x P(x) is the same as "x P(x)

• Examples
– "x Likes(x,IceCream)

 Everyone likes ice cream.

– $x Likes(x,IceCream)
 No one doesn't like ice cream.

 It's a double negative!

FOL Syntax: Quantifiers

• Properties of quantifiers:
– "x P(x) when negated is $x P(x)
– $x P(x) when negated is "x P(x)

• Examples
– "x Likes(x,IceCream)
 Everyone likes ice cream.

– $x Likes(x,IceCream)
 Someone doesn't like ice cream.
– This is from the application of de Morgan's law

to the fully instantiated sentence

5

FOL Syntax: Basics

• A free variable is a variable that isn't bound by
a quantifier

– $y Likes(x,y)

 x is free, y is bound

• A well-formed formula is a sentence where
all variables are quantified

Summary so Far

• Constants: Bob, 2, Madison, …

• Functions: Income, Address, Sqrt, …

• Predicates: Sister, Teacher, <=, …

• Variables: x, y, a, b, c, …

• Connectives: 

• Equality: =

• Quantifiers: "$

Summary so Far

• Term: Constant, variable, or Function(term1, …, termn)

 denotes an object in the world

 Ground Term has no variables

• Atom: Predicate(term1, …, termn), term1 = term2

 is smallest expression assigned a truth value

• Sentence: atom, quantified sentence with variables or
 complex sentence using connectives is assigned
 a truth value

• Well-Formed Formula (wff):
 sentence where all variables are quantified

Fun with Sentences

Convert the following English sentences into FOL

 Bob is a fish.

– What are the objects?
Bob

– What are the relations?
is a fish

Answer: Fish(Bob) a unary relation or property

 Deb and Sue are women. we'll be casual about plurals

 Deb or Sue isn't a plant. ambiguous?

 Deb and Sue are friends. use a function? predicate?

6

Fun with Sentences

Convert the following English sentences into FOL

 America bought Alaska from Russia.

– What are the objects?
America, Alaska, Russia

– What are the relations?
bought(who, what, from) – an n-ary relation where n is 3

Answer: Bought(America, Alaska, Russia)

 Warm is between cold and hot.

 Deb, Lynn, Jim, and Steve went together to APT.

Fun with Sentences

Convert the following English sentences into FOL

 Jim collects everything.

– What are the variables?
everything x

– How are they quantified?
all, universal

Answer: "x Collects(Jim,x)

 Collects(Jim,Pencil)  Collects(Jim,Deb)  …

 Jim collects something.

 Somebody collects Jim. How do you handle "body"?

Fun with Sentences

When to restrict the domain, e.g., to people:

• All: "x (Person(x)
– things: anything, everything, whatever

– people: anybody, anyone, everybody, everyone, whoever

• Some (at least one): $x Person(x)
– things: something

– people: somebody, someone

• None: $x Person(x)
– things: nothing

– people: nobody, no one

Fun with Sentences

Convert the following English sentences into FOL

 Somebody collects something.

– What are the variables?
somebody x and something y

– How are they quantified?
at least one, existential

Answer: $x,y Person(x)  Collects(x,y)

 Everybody collects everything.

 Everybody collects something.

 Something is collected by everybody.

7

Fun with Sentences

Convert the following English sentences into FOL

 Nothing collects anything.

– What are the variables and quantifiers?
nothing x and anything y

not one (i.e., not existential) and all (universal)

 Answer: $x "y Collects(x,y)

– Equivalent?

Everything does not collect anything.

 Answer: "x,y Collects(x,y)

 Everything collects nothing.

Fun with Sentences

Convert the following English sentences into FOL

 All hoarders collect everything.

– How are ideas connected?
being a hoarder implies collecting everything

Answer: "x,y Horder(x) Collects(x,y)

 Hoarders collect valuable things. Ambiguous:

– All hoarders collect all valuable things.

– All hoarders collect some valuable things.

– Some hoarders collect all valuable things.

– Some hoarders collect some valuable things.

Fun with Sentences

Convert the following English sentences into FOL

 All stinky shoes are allowed.

– How are ideas connected?
being a shoe and stinky implies it is allowed

Answer: "x (Shoe(x)  Stinky(x))  Allowed(x)

 No stinky shoes are allowed. Is this negative of above?

Answer: $x Shoe(x)  Stinky(x)  Allowed(x)

– Equivalent (carry negation through)?

(All) Stinky shoes are not allowed.

 Answer: "x (Shoe(x)  Stinky(x))  Allowed(x)

Fun with Sentences

Convert the following English sentences into FOL

 Any good amateur can beat some professional.

1. "x [(x is a good amateur) 

 (x can beat some professional)]

2. (x can beat some professional) becomes

$y [(y is a professional)  (x can beat y)]

Answer: "x [(Amateur(x)  GoodPlayer(x))

 $y (Professional(y)  Beat(x,y))]

 Some professionals can beat all amateurs.

8

Fun with Sentences

Convert the following English sentences into FOL

 There is exactly one shoe.

Answer: $x Shoe(x) "y(Shoe(y)(x=y))

 There are exactly two shoes.

– Are quantities specified?

– Are equalities implied?

Answer: $x,y Shoe(x) Shoe(y) (x=y)
   "z (Shoe(z)(x=z)(y=z))

Fun with Sentences

• Interesting words: always, sometimes, never

– Good people always have friends.

 could mean: All good people have friends.
 "x Person(x) Good(x) $y(Friend(x,y))

– Busy people sometimes have friends.

 could mean: Some busy people have friends.
 $x Person(x) Busy(x) $y(Friend(x,y))

– Bad people never have friends.

 could mean: Bad people have no friends.
 "x Person(x) Bad(x) $y(Friend(x,y))

 or equivalently: No bad people have friends.
 $x Person(x) Bad(x) $y(Friend(x,y))

Fun with Sentences

• The "interesting words" are ambiguous in that
they can quantify a variable as in the last slide,
or they may refer to units of time

• Temporal indicators: while, when, whenever, …
– are used to determine when "interesting words" refer to

time

– Jo always writes home when she is away from home.
– "x (Time(x)Away(Jo,Home,x)) Writes(Jo,Home,x)

Fun with Sentences

Convert the following English sentences into FOL

 X is above Y if X is directly on the top of Y or else there

is a pile of one or more other objects directly on top of

another starting with X and ending with Y.

– Answer: "x "y Above(x,y)  [OnTop(x,y) 

 $z(OnTop(x,z)  Above(z,y))]

 Lincoln: "You can fool some of the people all of the

time, and all of the people some of the time, but you

cannot fool all of the people all of the time.“

 Answer: ($x "t (person(x)time(t)) 

CanFool(x,t))  …

9

Inference Rules for FOL

 Universal Elimination (UE)

 variable substituted with ground term

 "x Eats(Jim, x) infer Eats(Jim, Cake)

 Existential Elimination (EE)

 variable substituted with a new constant

 $x Eats(Jim, x) infer Eats(Jim, NewFood)

"v α
SUBST({v/g}, α)

$v α
SUBST({v/k}, α)

 These two inference rules enable

the knowledge base to be propositionalized

 Then natural deduction can be done using

inference rules for PL

k is a new term

may be
many ways
to do this!

A Simple FOL Proof
using Natural Deduction

• Jim is a turtle.
1. Turtle(Jim)

• Deb is a rabbit.
2. Rabbit(Deb)

• Turtles outlast Rabbits.
3 "x,y (Turtle(x)  Rabbit(y))  Outlast(x,y)

• Query: Jim outlasts Deb.
– Outlast(Jim,Deb)

• Treat predicates like propositional symbols

A Simple FOL Proof
using Natural Deduction

• And Introduction: AI(1, 2)
4. Turtle(Jim)  Rabbit(Deb)

• Universal Elimination: UE(3, {x/Jim, y/Deb})
5. Turtle(Jim)  Rabbit(Deb)  Outlast(Jim,Deb)

• Modus Ponens: MP(4, 5)
6. Outlast(Jim,Deb)

• AI, UE, MP is a common inference pattern

• Automated inference is harder with FOL than PL

 Variables can take on a potentially infinite number
of possible values from their domain and thus UE
can be applied in a potentially infinite number of
ways to KB

Proof as Search
using Inference Rules

• Operators are inference rules
• States are the KB
• Goal test checks if query in KB

1 2 3
4 5 6

AI(1,2)

1 2 3

… …

1 2 3
4

UE(3)
… …

1 2 3
4 5

… …

MP(4,5)

 Problem:

huge branching factor, especially for

UE

 Idea:

find a substitution that makes the

rule premise match known facts

• Make a single powerful inference rule

10

Generalized Modus Ponens (GMP)

• “Unify” rule premises with known facts and
apply unifier to conclusion

• Rule:
 "x,y (Turtle(x)  Rabbit(y))  Outlast(x,y)

 Known facts: Turtle(Jim), Rabbit(Deb)

 Unifier: {x/Jim, y/Deb}

• Apply unifier to conclusion: Outlast(Jim,Deb)

Generalized Modus Ponens (GMP)

• Combines AI, UE, and MP into a single rule:
p1', p2', …, pn', (p1  p2 … pn  q)

SUBST(q, q)

where SUBST(q,pi') = SUBST(q,pi) for all i

 SUBST(q, a) means apply substitutions in q to a

 Substitution list q = {v1/t1, v2/t2, …, vn/tn} means

– replace all occurrences of variable vi with term ti

– substitutions are made in left to right order

Generalized Modus Ponens (GMP)

p1', p2', …, pn', (p1  p2 … pn  q)

SUBST(q, q)

where SUBST(q,pi') = SUBST(q,pi) for all i

 All variables assumed to be universally quantified

 Used with a KB in Horn normal form (HNF):
definite clause: disjunction of literals with exactly 1 positive literal

– fact: single positive literal P1(x), P2(x)
– rule: conjunction of atoms  atom (P1(x) P2(x)) Q(x)

 has only one positive literal P1(x)P2(x)Q(x)

Generalized Modus Ponens (GMP)

p1', p2', …, pn', (p1  p2 … pn  q)

SUBST(q, q)

where SUBST(q,pi') = SUBST(q,pi) for all i

Example:

p1' = Smarter(Deb, Bob)

p2' = Smarter(Bob, Joe)

(p1  p2)  q = (Smarter(x,y)Smarter(y,z))Smarter(x,z)

q   = {x/Deb, y/Bob, z/Joe}

SUBST(q, q) = Smarter(Deb, Joe)

11

Unification

• Substitution q unifies p1' and p1
 if SUBST(q,p1'  = SUBST(q,p1

Hears(Deb,x) Hears(x,Jim) Hears(Deb,x) Hears(y,Jim)

Turtle(y) Turtle(Jim)

Hears(Deb,x) Hears(Deb,Sue)

{y/Jim}

{x/Sue}

p1' p1 q

{y/Deb, x/Jim}

• Variables must be standardized apart!

I.e., if the same variable(s) is found in both p1' and p1

then rename variable(s) so none are shared

Unification

• Substitution q unifies p1' and p1
 if SUBST(q,p1'  = SUBST(q,p1

Hears(Deb,x) Hears(y,Jim)

Turtle(y) Turtle(Jim)

Hears(Deb,x) Hears(Deb,Sue)

{y/Jim}

{x/Sue}

p1' p1 q

Sees(x,

ID(x),At(Jo))

Sees(Jim,

ID(y),At(y))

failure, assuming

At(Jo)  At(Jim)

{y/Deb, x/Jim}

Hears(Deb,x) Hears(z,Mother(z)) {z/Deb, x/Mother(Deb)}

Eats(y,y) Eats(z,Fish) {y/z, z/Fish}

Sees(Jo,x,y) Sees(z,Jim,At(z)) {z/Jo, x/Jim, y/At(Jo)}

Unification Algorithm

• Unify returns q, a most general unifier (MGU)
– shortest length substitution list to make a match
– in general, more than one MGU

• AIMA algorithm recursively explores the two
expressions and simultaneously builds q

• Occurs-Check prevents a variable from replacing a term

that contains that variable, e.g., prevents {x/F(x)}
– this slows down the unify algorithm

• Unify with the occurs-check has a time complexity
O(n2) where n is the size of the expressions

Completeness of Automated Inference

• Truth table enumeration: incomplete for FOL
table may be infinite in size for infinite domain

• Natural Deduction: complete for FOL
impractical since branching factor too large

• GMP: incomplete for FOL
not every sentence can be converted to Horn
form

• GMP: complete for FOL KB in HNF (definite
clauses)
– forward chaining: move from KB to query
– backward chaining: move from query to KB

12

Forward Chaining (FC) with GMP

• Move "forward" from KB to query

• Simplified FC Algorithm (see Figure 9.3):
 Given: query q is asked of KB

 repeat until no new sentences are inferred

 initialize NEW to empty

 for each rule that can have all of its premises satisfied

 apply composed substitution to the conclusion

 add the new conclusion to NEW if it's not just a renaming

 done if the new conclusion unifies with the query

 add sentences in NEW to KB

 return false since q never concluded

“The law says that it is a crime for an American to sell weapons to

hostile nations. The country Nono, an enemy of America, has some

missiles, and all of its missiles were sold to it by Colonel West, who is an

American.”

1. american(x)  weapon(y)  sells (x,y,z)  hostile(z)  criminal(x)

$x owns(Nono, x)  missile(x)

5. missile(x)  owns(Nono, x)  sells(West, x, Nono)

8. missile(x)  weapon(x)

7. enemy(x, America)  hostile(x)

6. american(West)

2. enemy(Nono,America)

Must be in HNF!

3. owns(Nono, M)

4. missile(M)

Use EE and generate

2 sentences

FOL Inference Example

Query: criminal(West) ?

KB:

Forward Chaining with GMP
american(West) missile(M) owns(Nono, M) enemy(Nono, America)

weapon(M)

missile(x)  weapon(x)

q = {x/M}

sells(West, M, Nono)

missile(x)  owns(Nono,x)

 sells(West,x,Nono)

q = {x/M}

hostile(Nono)

enemy(x,America)  hostile(x)

q = {x/Nono}

criminal(West)

american(x)  weapon(y)  sells (x,y,z)  hostile(z)  criminal(x)

q = {x/West, y/M, z/Nono}

Backward Chaining (BC) with GMP

• Move "backwards" from query to KB

• Simplified BC Algorithm (see Figure 9.6):
 Given: query q is asked of KB

 if a matching fact q' is known then return unifier (base case)

 for each rule whose consequent q' matches q (recursive cases)

 attempt to prove each premise of the rule by BC (depth first)

 (Complication added to keep track of unifiers, i.e., composition)
(Further complications help avoid infinite loops)

13

Backward Chaining with GMP
criminal(x)

weapon(y) hostile(Nono)

missile(y)

q = {y/M}

american(West)

q = {}

sells(West, M, z)

q = {z/Nono}

q = {x/West}

missile(M)

q = {}

owns(Nono, M)

q = {}

enemy(Nono, America)

q = {}

q = {x/West, y/M} q = {x/West, y/M, z/Nono}

american(West)  weapon(y)  sells (West,y,z)  hostile(z)  criminal(West) american(West)  weapon(M)  sells (West,M,z)  hostile(z)  criminal(West) american(West)  weapon(M)  sells (West,M,Nono)  hostile(Nono)  criminal(West)

missile(y)

 weapon(y)

enemy(Nono,America)

 hostile(Nono)

missile(M)  owns(Nono,M)

 sells(West,M,Nono)

Backward Chaining (BC) with GMP

• BC is depth-first search

• BC versions

– find any solution

– find all solutions

• BC is basis for logic programming, e.g. Prolog:

– a program is a set of logic sentences in HNF, which
is called the database

– it is executed by specifying a query to be proved

Prolog Examples

• grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

• brother_in_law_of(B, P) :- married(P, Spouse),
brother_of(B, Spouse).

• brother_in_law_of(B, P) :- sister_of(Sister, P),
husband_of(B, Sister).

• brother_in_law_of(B, P) :- married(P, Spouse),
sister_of(Sister, Spouse), husband_of(B, Sister).

?- brother_in_law_of(John, Mary).

Completeness of General FOL

• FC and BC are complete for Horn KBs
but are incomplete for general FOL KBs:

 PhD(x)  HighlyQualified(x)

 PhD(x)  EarlyEarnings(x)

 HighlyQualified(x)  Rich(x)

 EarlyEarnings(x)  Rich(x)

 Query: Rich(Me)

• Can't prove query with FC or BC. Why?

• Does a complete algorithm for FOL exist?

14

Resolution Proofs

• Entailment in FOL is only semidecidable:
– can prove α if KB╞ α
– cannot always prove that KB doesn't╞ α (halting)

• Resolution is a refutation technique:
– to prove KB╞ α show that KB  α is unsatisfiable

• Resolution uses KB and α in CNF:
– conjunction of clauses that are disjunction of literals

• Resolution repeatedly combines two clauses to make a
new one until the empty clause is derived
– the new clauses are called resolvents
– empty clause: False, unsatisfiable, a contradiction

Resolution Inference Rule

 Resolution Rule in PL

α  β, β  γ

α  γ

αβ, βγ

αγ

 Resolution Rule in FOL (RR):

 where li and mi are literals for all i
where UNIFY(lj , mk) = q, and mk is the negation of lj

l1 … lj  …  lm , m1 … mk  …  mn

SUBST(q, l1 … lj-1lj+1 …  lm  m1 … mk-1 mk+1 …  mn)

 equivalently:

 RR can equivalently be written as implications

GMP Example of Resolution Rule

Fulfilled(Me), Fulfilled(x)Happy(x)

SUBST(q, Happy(x))

 lj is Fulfilled(Me)

 mk is Fulfilled(x)

 UNIFY(lj , mk) results in q= {x/Me}

 SUBST(q, Happy(x)) results in Happy(Me)

 Inferred sentence: Happy(Me)

• GMP is special case of resolution

Resolution Refutation Example

To prove KB╞ Rich(Me):
1. negate query: Rich(Me)

2. convert query to CNF: Rich(Me)

3. add query to CNF KB:
(how do we convert sentences below into CNF?)

PhD(x)  HighlyQualified(x)

PhD(x)  EarlyEarnings(x)

HighlyQualified(x)  Rich(x)

EarlyEarnings(x)  Rich(x)

4. infer contradiction, i.e., False

15

Simplified
Resolution Refutation Algorithm

//returns true if KB |- q, false otherwise

//KB is a set of consistent, true FOL sentences

//q is the query to be proved

//requires KB and q are in CNF

boolean resolutionRefutation(CNFlist KB, CNFsentence q) {

 KB = unionOf(KB, logicalNegationOf(q));

 while (false not in KB) {

 pick two sentences s1 and s2 in KB with literals that unify

 if (none) return false; //failure

 CNFsentence resolvent = resolutionRule(s1, s2);

 KB = unionOf(KB, resolvent);

 }

 return true; //success

}

Conjunctive Normal Form (CNF)

• KB and query are conjunctions of CNF clauses

• CNF clause: a disjunction of literals

e.g., Hot(x)Warn(x)Cold(x)

• Literal: an atom
either positive (unnegated) or negative (negated)

e.g., Happy(Sally), Rich(x)

• Any FOL KB can be converted into CNF

Simple Example of
Converting FOL Sentence to CNF

• Replace implications:
PhD(x)  HighlyQualified(x) becomes

 PhD(x)  HighlyQualified(x)

PhD(x)  EarlyEarnings(x) becomes

PhD(x)  EarlyEarnings(x)

HighlyQualified(x)  Rich(x) becomes

HighlyQualified(x)  Rich(x)

EarlyEarnings(x)  Rich(x) becomes

EarlyEarnings(x)  Rich(x)

• In-class Resolution Refutation example

Converting FOL Sentences
Conjunctive Normal Form (CNF)

1. Replace  with equivalent (added):

convert P  Q to P  Q Q  P

Example:
"x,y {Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})}

 becomes:
"x,y {

 [Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})]

 

 [(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y)]

 }

16

Converting FOL Sentences
Conjunctive Normal Form (CNF)

2. Replace  with equivalent:
convert P  Q to P  Q

"x,y {

[Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})]



[(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y)] }

 becomes:
"x,y {

[Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})]



[(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y)] }

Converting FOL Sentences
Conjunctive Normal Form (CNF)

3. Reduce scope of  to single literals:
convert P to P (DNE)
convert (PQ) to P  Q (de Morgan's)
convert (PQ) to P  Q (de Morgan's)
convert "xP to $xP
convert $xP to "xP

"x,y {

[Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})] 

[(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})Above(x,y)] }

 highlighted part becomes in stages:

(OnTop(x,y) $z{OnTop(x,z)  Above(z,y)}) (de Morgan's)

"z {OnTop(x,z)  Above(z,y)} ($xP to "xP)

{OnTop(x,z)  Above(z,y)} (de Morgan's)

(OnTop(x,y) "z{OnTop(x,z)  Above(z,y)}) (result)

Converting FOL Sentences
Conjunctive Normal Form (CNF)

4. Standardize variables apart:

each quantifier must have a unique variable name

avoids confusion in steps 5 and 6

e.g. convert "xP$xQ to "xP$yQ

"x,y {

[Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})] 

[(OnTop(x,y)  "z{OnTop(x,z)  Above(z,y)}Above(x,y)] }

 becomes:
"x,y {

[Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})] 

[(OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y)] }

Converting FOL Sentences
Conjunctive Normal Form (CNF)

5. Eliminate existential quantifiers (Skolemize):

– convert $xP(x) toP(C) (EE)
C must be a new constant (Skolem constant)

– convert "x,y$zP(x,y,z)to"x,yP(x,y,F(x,y))
F() must be a new function (Skolem function) with arguments that
are all enclosing universally quantified variables

e.g. Everyone has a name.
"xPerson(x)$yName(y)Has(x,y)

 wrong:"xPerson(x)Name(K)Has(x,K)

 Everyone has the same name K.

 Want everyone to have a name based on who they are.

 right:"xPerson(x)Name(F(x))Has(x,F(x))

17

Converting FOL Sentences
Conjunctive Normal Form (CNF)

5. Eliminate existential quantifiers (Skolemize):

– convert "x,y$zP(x,y,z)to"x,yP(x,y,F(x,y))
F() must be a new function (Skolem function) with arguments that
are all enclosing universally quantified variables

"x,y {

[Above(x,y)(OnTop(x,y)  $z{OnTop(x,z)  Above(z,y)})]

[(OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y)] }

 becomes:
"x,y {

[Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))]

[(OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y)] }

Converting FOL Sentences
Conjunctive Normal Form (CNF)

6. Drop quantifiers:
all variables are only universally quantified after step 5
e.g. convert "xP(x)"yQ(y) to P(x)Q(y)
all variables in KB will be assumed to be universally quantified

"x,y {
[Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))]


[(OnTop(x,y)  "w{OnTop(x,w)  Above(w,y)}Above(x,y)] }

 becomes:
 [Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))]



[(OnTop(x,y)  (OnTop(x,w)  Above(w,y)) Above(x,y)]

Converting FOL Sentences
Conjunctive Normal Form (CNF)

7. Distribute  over to get conjunction of disjunctions :
convert(PQ)R to(PR)(QR)

 [Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))]



[(OnTop(x,y)  (OnTop(x,w)  Above(w,y)) Above(x,y)]

 highlighted part becomes in steps:
 given A(B(CD))

 converts to A((BC)(BD))

 converts to (A(BC))(A(BD))

 highlighted part result:
 [(Above(x,y)(OnTop(x,y)OnTop(x,F(x,y)))) 

 (Above(x,y)(OnTop(x,y)Above(F(x,y),y)))]

Converting FOL Sentences
Conjunctive Normal Form (CNF)

7. Distribute  over to get conjunction of disjunctions :
convert(PQ)R to(PR)(QR)

 [Above(x,y)(OnTop(x,y)(OnTop(x,F(x,y))Above(F(x,y),y)))]



[(OnTop(x,y)  (OnTop(x,w)  Above(w,y))) Above(x,y)]

 highlighted part becomes in steps:
 given (AB)C

 converts to (AC)(BC)

 highlighted part result:
 [(OnTop(x,y)   Above(x,y))

 ((OnTop(x,w)  Above(w,y)) Above(x,y))]

18

Converting FOL Sentences
Conjunctive Normal Form (CNF)

8. Flatten nested conjunctions and disjunctions:
convert (PQ)R to (PQR)
convert (PQ)R to (PQR)

 [(Above(x,y)(OnTop(x,y)OnTop(x,F(x,y)))) 

 (Above(x,y)(OnTop(x,y)Above(F(x,y),y)))] 

 [(OnTop(x,y)  Above(x,y)) 

 ((OnTop(x,w)  Above(w,y)) Above(x,y))]

 becomes:
 (Above(x,y)OnTop(x,y)OnTop(x,F(x,y)))

(Above(x,y)OnTop(x,y)Above(F(x,y),y))

 

 (OnTop(x,y)Above(x,y))

(OnTop(x,w)  Above(w,y)Above(x,y))

Converting FOL Sentences
Conjunctive Normal Form (CNF)

9. Separate each conjunct (added)

spllit at 's so each conjunct is now a CNF clause
 

(Above(x,y)OnTop(x,y)OnTop(x,F(x,y)))
(Above(x,y)OnTop(x,y)Above(F(x,y),y))



(OnTop(x,y)Above(x,y))
(OnTop(x,w)  Above(w,y)Above(x,y))

 becomes:

 Above(x,y)OnTop(x,y)OnTop(x,F(x,y))

Above(x,y)OnTop(x,y)Above(F(x,y),y)

OnTop(x,y)Above(x,y)

OnTop(x,w)Above(w,y)Above(x,y)

Converting FOL Sentences
Conjunctive Normal Form (CNF)

10. Standardize variables apart in each clause (added)

– each clause in KB must contain unique variable names

– now during unification the standardize apart step
need only be done on deduced clauses (i.e. resolvents)

 Above(x,y)OnTop(x,y)OnTop(x,F(x,y))

Above(x,y)OnTop(x,y)Above(F(x,y),y)

OnTop(x,y)Above(x,y)

OnTop(x,w)Above(w,y)Above(x,y)

 becomes:

 Above(a,b)OnTop(a,b)OnTop(a,F(a,b))

Above(c,d)OnTop(c,d)Above(F(c,d),d)

OnTop(e,f)Above(e,f)

OnTop(g,h)Above(h,i)Above(g,i)

Dealing with Equality

• Limitation of unification:
– can't unify different terms that refer to same object

– uses syntactic matching

– doesn't do semantic test of sameness

• Equational Unification axiomizes properties of
=:
– reflexivity: "x x = x

– symmetricity: "x,y x = y  y = x

– transitivity: "x,y,z x = y  y = z  x = z

– for all Pi "x,y x = y  Pi(x)  Pi(z)

– etc…

Terms are unifiable if they're provably equal under some substitution

19

Dealing with Equality

l1 … lk  x = y, m1 …mn[z]

SUBST(q, l1 …  lk  m1 … mn [y])

 Another approach is to use a special inference rule:

 Paramodulation:

– where li and mi are literals for all i,

and mn [z] is a literal containing term z

– for any terms x, y, and z, where UNIFY(x, z) = q

– Put simpler term on the right of equality to do simplification,

since term on left is always replaced with term on right of =

 Demodulation is a special case where there are no li literals

Paramodulation Example

L(v)F(H,v)=F(J,v), M(J)N(F(H,K))

SUBST(q, L(v) M(J)N(F(J,v))

 Predicates: L,M,N Function: F

Variable: v Constants: H,J,K

 mn[z] is N(F(H,K)) and z is F(H,K)

x = y is where x is F(H,v) and y is F(J,v)

 UNIFY(x, z) result in q= {v/K}

 SUBST(q, …) results in inferred sentence:
L(K)  M(J)N(F(J,K))

Resolution Strategies

• Resolution refutation proofs can be thought of
as search:

– reversed construction of search tree (leaves to
root)

– leaves are KB clauses and query

– resolvent is new node with arcs to parent clauses

– root is a clause containing False

Resolution Strategies

• A search is complete if it guarantees the
empty clause can be derived whenever KB╞ q

• Goal is to design a complete search that
efficiently finds a contradiction (i.e., empty
clause, False)

• Rather than just choosing any two clauses
to be resolved, instead reduce the choices to be
from some subset of clauses. The different
resolution strategies specify what that subset is.

20

Resolution Strategies

• Breadth-First
– level 0 clauses: KB clauses and query

– level k clauses: resolvents computed from 2
clauses:
• one of which must be from level k-1

• other from any earlier level

– compute all possible level 1 clauses,
then all possible level 2 clauses, etc.

– complete but very inefficient

Resolution Strategies

• Unit Preference
– prefer to do resolutions where 1 sentence

is a single literal, a unit clause
– goal is to produce the empty clause, focus search

by producing resolvents that are shorter
– complete but too slow for medium sized problems

• Unit Resolution
– requires at least 1 to be a unit clause
– resembles FC
– complete for FOL KB in HNF

Resolution Strategies

• Set-of-Support (SoS)
– identify some subset of sentences, called SoS

– P and Q can be resolved if one if from SoS

– resolvent is added to the SoS

– common approach:
• query is the initial SoS, resolvents are added

• assumes KB is true (i.e., consistent, jointly satisfiable)

– complete if KB-SoS is jointly satisfiable

Resolution Strategies

• Input Resolution

– P and Q can be resolved if at least one is from
the set of original clauses, i.e. KB and query

– proof trees have a single "spine" (see Fig. 9.11)

– MP is a form of input resolution since each step
a rule (input) is used to generate a new fact

– complete for FOL KB in HNF

21

Resolution Strategies

• Linear Resolution

– a slight generalization of input resolution

– P and Q can be resolved if:

• at least 1 is from the set of original clauses

• or P must be an ancestor of Q in the proof tree

– complete

Reference:
Converting FOL Sentences to CNF

1. Replace  with equivalent (added):

– convert P  Q to P  Q Q  P

2. Replace  with equivalent: convert P  Q to P  Q

3. Reduce scope of  to single literals:

– convert P to P (DNE)

– convert (PQ) to P  Q (de Morgan's)

– convert (PQ) to P  Q (de Morgan's)

– convert "xP to $xP

– convert $xP to "xP

4. Standardize variables apart:

– each quantifier must have a unique variable name

– avoids confusion in steps 5 and 6

– e.g. convert "xP$xQ to "xP$yQ

Reference:
Converting FOL Sentences to CNF

5. Eliminate existential quantifiers (Skolemize):

– convert $xP(x) toP(C) (EE)
C must be a new constant (Skolem constant)

– convert "x,y$zP(x,y,z)to"x,yP(x,y,F(x,y))
F() must be a new function (Skolem function) with arguments that
are all enclosing universally quantified variables

6. Drop quantifiers:

– all variables are only universally quantified after step 5

– e.g. convert "xP(x)"yQ(y) to P(x)Q(y)

– all variables in KB will be assumed to be universally quantified

7. Distribute  over to get conjunction of disjunctions :

– convert(PQ)R to(PR)(QR)

Reference:
Converting FOL Sentences to CNF

8. Flatten nested conjunctions and disjunctions:

– convert (PQ)R to (PQR)

– convert (PQ)R to (PQR)

9. Separate each conjunct (added)

– spllit at 's so each conjunct is now a CNF clause

10. Standardize variables apart in each clause (added)

– each clause in KB must contain unique variable names

– now during unification the standardize apart step
need only be done on deduced clauses (i.e. resolvents)

