
12/5/19

1

The Final Exam

• Tuesday, December 17, 12:25 – 2:25 p.m.
Last name A – F: room 1111 Humanities
Last name G – Z: room 3650 Humanities

• Covers topics since Midterm (i.e., constraint
satisfaction through face detection) only

• Closed book
• Bring student ID, pencil, eraser, calculator

(not on a phone), and 8.5” x 11” sheet with
notes on both sides (typed or handwritten)

1

• Covers lecture notes (see updated notes!),
readings in textbook, and 2 papers, one on
deep learning and one on HMMs

• True/False and multiple choice questions
(with calculations required)

2

Constraint Satisfaction

Problem formulation in terms of variables, domains
and constraints, constraint graph, depth-first search,
backtracking with consistency checking, most
constrained variable heuristic, most constraining
variable heuristic, least constraining value heuristic,
min-conflicts heuristic, min-conflicts algorithm,
forward checking algorithm, arc consistency algorithm
(AC-3), combining search with CSP inference

3

CSP

Algorithms
– Min-Conflicts
– Backtracking (DFS) with consistency

checking
– Forward checking
– Arc consistency (AC-3)

4

12/5/19

2

Min-Conflicts Algorithm

Assign to each variable a random value, defining
the initial state
while state not consistent do

Pick a variable, var, that has constraint(s)
violated
Find value, v, for var that minimizes the total
number of violated constraints (over all
variables)
var = v

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints, i.e., hill-climb
by minimizing f(n) = total number of violated constraints

5

Backtracking (DFS) w/ Consistency Checking

Start with empty state
while not all vars in state assigned a value do

Pick a variable (randomly or with a heuristic)
if it has a value that does not violate any
constraints

then Assign that value
else

Go back to previous variable and assign it
another value

6

Backtracking (DFS) w/ Consistency Checking

• Don’t generate a successor that creates an
inconsistency with any existing assignment, i.e.,
perform consistency checking when node is
generated

• Successor function assigns a value to an
unassigned variable that does not conflict with
all current assignments
– “backward checking”
– Deadend if no legal assignments (i.e., no

successors)

7

Heuristics used with DFS

1. Most-Constrained Variable (minimum
remaining values heuristic)
– Choose the variable with the fewest number of

consistent values
2. Most-Constraining Variable (degree

heuristic)
– Choose the variable with the most constraints on

the remaining variables
3. Least-Constraining Value

– Pick the value that rules out the fewest values in
the remaining variables

8

12/5/19

3

Forward Checking Algorithm

• Initially, for each variable, record the set of all possible
legal values for it

• When you assign a value to a variable in the search,
update the set of legal values for all unassigned
variables. Backtrack immediately if you empty a
variable’s set of possible values.

V3

V6

V2

R
G

V1
V5

V4

9

Neural Networks
Perceptron, LTU, activation functions, bias input, input
units, output units, Perceptron learning rule,
Perceptron learning algorithm, Perceptron
convergence theorem, epoch, weight space, input
space, linearly separable, credit assignment problem,
multi-layer feed-forward networks, hidden units,
sigmoid function, ReLU, softmax, back-propagation
algorithm, gradient descent search in weight space,
stochastic gradient descent, parameter setting using a
tuning set, deep learning, convolutional
neural networks, pooling

10

Back-Propagation Algorithm
Initialize the weights in the network (usually random values)
Repeat until stopping criterion is met {

forall p,q in network, ΔWp,q = 0
foreach example e in training set do {

O = neural_net_output(network, e) // forward pass
Calculate error (T - O) at the output units // T = teacher output
Compute Δwj,k for all weights from hidden unit j to output unit k
Compute Δwi,j for all weights from input unit i to hidden unit j
forall p,q in network ΔWp,q = ΔWp,q + Δwp,q

}
for all p,q in network ΔWp,q = ΔWp,q / num_training_examples
network = update_weights(network, ΔWp,q)

}

Note: Uses average gradient for all training
examples when updating weights

backward pass

11

Back-Prop using Stochastic
Gradient Descent (SGD)

• Most practitioners use SGD to update
weights using the average gradient
computed using a small batch of examples,
and repeating this process for many small
batches from the training set

• In extreme case, update after each example
• Called stochastic because each small set of

examples gives a noisy estimate of the
average gradient over all training examples

12

12/5/19

4

CNNs are an extension of traditional multi-
layer, feed-forward networks that incorporate 4
key ideas:
• Use of many layers

– Learn a hierarchy of features
• Local “receptive fields”/filters and local

connections
– Layers are not completely connected
– Want translation-invariant and distortion-

invariant local features
• Shared weights
• Pooling

13

Why are they called “Convolutional” NNs?

The image filtering operation defined as

is very similar to the Convolution operation defined as

• In CNN’s, f corresponds to the inputs from the
layer below and g corresponds to the weights

• So, CNN’s will learn a set of filters!

],[],[],[
,

lnkmflkgnmh
lk

--=å

Credit: K. Grauman

],[],[],[
,

lnkmflkgnmh
lk

++=å

14

Convolution Layers
• Learn “filters” (i.e., weights) that process small

regions of the layer below it and compute
“features” at many spatial positions

• Example: 32 x 32 x 3 input RGB image, and
receptive field (filter size): 5 x 5
– Each unit in the Conv layer will have weights

connected to a 5 x 5 x 3 region in the input layer, with
5*5*3 = 75 weights

– Can have multiple units associated with a given
receptive field in order to compute multiple features
at each position

– “Stride” parameter defines shift amount

15

CNN Architecture

Convolutions + ReLU

Max pooling

Convolutions + ReLU

Max pooling

16

12/5/19

5

Support Vector Machines

Maximum margin, definition of margin, kernel trick,
support vectors, slack variables

17

Maximum Margin
fx y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

The maximum
margin linear
classifier is the
linear classifier
with the maximum
margin

This is the
simplest kind of
SVM (Called an
LSVM)

Support Vectors
are those data
points that the
margin pushes
against

Linear SVM

Margin = distance from decision line to closest support vector

18

Learning Maximum Margin with Non-Linearly-Separable Data

Given guess of w , b we can
1. Compute sum of distances

of points to their correct
zones

2. Compute the margin width
Assume N examples, each (xk,

yk) where yk = +1 / -1

wx+b=1

wx+b=0

wx+b=-1

M =

2

wTw

What should our optimization
criterion be?

Minimize

How many constraints will we
have? 2N

What should they be?
wTxk + b ≥ +1 - εk if yk = +1
wTxk + b ≤ -1 + εk if yk = -1
εk ≥ 0 for all k

1
2

wTw+C ε k
k=1

N

∑

ε7

ε11ε2

“slack variables”

19

The Kernel Trick for Dealing with Non-
Linearly-Separable Data

x=0),()(2xxx =F

The Kernel Trick:
Preprocess the
data, mapping x
into a higher
dimensional
space, z = Φ(x)

wT Φ(x) + b = +1

The data is linearly
separable in the new
space, so use a linear
SVM in the new space

20

12/5/19

6

• Dual formulation of the optimization problem
depends on the input data only in dot products of the
form:
Φ(xi)T · Φ(xj) where xi and xj are two examples

• We can compute these dot products efficiently for
certain types of Φ’s where K(xi, xj) = Φ(xi)T · Φ(xj)

• Example:

Φ(xi)T · Φ(xj) = (xi
T · xj)2 = K(xi , xj)

• Since the data only appears as dot products, we do not
need to map the data to higher dimensional space
(using Φ(x)) because we can use the kernel function K
instead

),2,()(2
221

2
1 xxxx=F x

21

Probabilistic Reasoning

Random variable, mutually exclusive, prior probability,
3 axioms of probability, joint probability, conditional
probability, posterior probability, full joint probability
distribution, degrees of freedom, summing out,
marginalization, normalization, product rule, chain
rule, conditionalized version of chain rule, Bayes’s rule,
conditionalized version of Bayes’s rule,
addition/conditioning rule, independence, conditional
independence, naïve Bayes classifier as a Bayesian
network, Add-1 smoothing, Laplace smoothing

22

Summary of Important Rules

• Conditional Probability: P(A|B) = P(A,B)/P(B)
• Product rule: P(A,B) = P(A|B)P(B)
• Chain rule: P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D)
• Conditionalized version of Chain rule:

P(A,B|C) = P(A|B,C)P(B|C)
• Bayes’s rule: P(A|B) = P(B|A)P(A)/P(B)
• Conditionalized version of Bayes’s rule:

P(A|B,C) = P(B|A,C)P(A|C)/P(B|C)
• Addition / Conditioning rule: P(A) = P(A,B) + P(A,¬B)

P(A) = P(A|B)P(B) + P(A|¬B)P(¬B)

23

Naive Bayes Classifier Testing Phase

• For a given test instance defined by X1=v1, …, Xn=vn,
compute

• Assumes all evidence variables are conditionally
independent of each other given the class variable

• Robust because it gives the right answer as long as
the correct class is more likely than all others

Class variable Evidence variable

𝑎𝑟𝑔𝑚𝑎𝑥&P(Y=c) ∏()*
+ 𝑃(𝑋(=𝑣(| Y=c)

24

12/5/19

7

Bayesian Networks

Bayesian network DAG, conditional probability
tables, space saving compared to full joint
probability distribution table, conditional
independence property defined by a Bayesian
network, inference by enumeration from a
Bayesian network, naïve Bayes classifier as a
Bayesian network

25

Conditional Independence in Bayes Nets
§ A node is conditionally independent of its non-

descendants, given its parents
§ A node is conditionally independent of all other nodes,

given its “Markov blanket” (i.e., its parents, children, and
children’s parents)

26

Computing with Bayes Net

P(T, ¬R, L, ¬M, S)
= P(T | ¬R, L, ¬M, S) * P(¬R, L, ¬M, S)
= P(T | L) * P(¬R, L, ¬M, S)
= P(T | L) * P(¬R | L, ¬M, S) * P(L, ¬M, S)
= P(T | L) * P(¬R | ¬M) * P(L, ¬M, S)
= P(T | L) * P(¬R | ¬M) * P(L | ¬M, S) * P(¬M, S)
= P(T | L) * P(¬R | ¬M) * P(L | ¬M, S) * P(¬M | S) * P(S)
= P(T | L) * P(¬R | ¬M) * P(L | ¬M, S) * P(¬M) * P(S)

S M

R
L

T

P(S) = 0.3
P(M) = 0.6

P(R|M) = 0.3
P(R|¬M) = 0.6

P(T|L) = 0.3
P(T|¬L) = 0.8

P(L|M,S) = 0.05
P(L|M,¬S) = 0.1
P(L|¬M,S) = 0.1
P(L|¬M, ¬S) = 0.2

Apply the Chain Rule +
conditional independence!

27

Computing any conditional probability:
P(Some variables | Some other variable values)

å
å

=
Ù

=

2

 2 1

 matching entriesjoint

 and matching entriesjoint

2

21
21)entryjoint (

)entryjoint (

)(
)()|(

E

EE

P

P

EP
EEPEEP

“Inference by Enumeration” Algorithm

28

12/5/19

8

Speech Recognition

Phones, phonemes, speech recognition using Bayes’s
rule, language model, acoustic model, bigram model,
trigram model, first-order Markov assumption,
probabilistic finite state machine, first-order Markov
model, state transition matrix, π vector, computing
conditional probabilities from a Markov model, hidden
Markov model, observation likelihood matrix,
computing joint probabilities and conditional
probabilities from an HMM by enumeration

29

• Signal = observation sequence

• Words = sequence of words

• Best match metric:

• Bayes’s rule:

observation likelihood prior
(acoustic model) (language model)

)|(maxargˆ OWPW
LWÎ

=

tooooO ,...,,, 321=

nwwwwW ,...,,, 321=

)()|(maxarg
)(

)()|(maxargˆ

WPWOP
OP

WPWOPW

LW

LW

Î

Î

µ

=

30

1st-Order Markov Model

• Markov Model M = (A, π) consists of

– Discrete set of states, s1, s2, …, sN

– π vector, where πi = P(q1=si)
– State transition matrix, A = {aij}

where aij = P(qt+1=sj | qt=si)

• The state transition matrix is fixed a priori and
describes probabilities associated with a
(completely-connected) graph of the states

31

HMM Summary

• An HMM contains 2 types of information:
– Hidden states: s1, s2, s3, …
– Observable states

• In speech recognition, the vector quantization values in the input
sequence, O = o1, o2, o3, …

• An HMM, λ = (A, B, π), contains 3 sets of probabilities:
– π vector, π = (πi)

– State transition matrix, A = (aij)
where aij = P(qt = si | qt-1 = sj)

– Observation likelihood matrix, B = bj(ok) = P(yt = ok | qt = sj)

32

12/5/19

9

Nothing on Forward algorithm, Viterbi
algorithm, Forward-Backward algorithm,
Siri, particle filters, tracking in video

33

Face Detection

Viola-Jones face detection algorithm, boosting
ensemble learning, weak classifier, decision stump,
weighted-majority classifier, AdaBoost algorithm

34

Viola-Jones Algorithm

• Compute lots of very simple features
• Efficiently choose the best features
• Each feature is used to define a “weak

classifier” (aka “decision stump”)
• Combine weak classifiers into an ensemble

classifier based on boosting (AdaBoost)
• Learn multiple ensemble classifiers and

“cascade” them together to improve
classification accuracy and speed

35

AdaBoost Algorithm
Given a set of training windows labelled +1 or -1, initially
give equal weight to each training example
Repeat T times

1. Select best weak classifier (decision stump) (i.e.,
one with minimum total weighted error on all
training examples)

2. Increase weights of the examples misclassified by
current weak classifier

• Each round greedily selects the best feature (i.e.,
decision stump) given all previously selected features
and weighted training examples

• Final classifier combines the weak classifiers by their
weighted-majority class

36

12/5/19

10

Viola-Jones Cascaded Classifier

5 Features
50%

F

NON-FACE

20 Features
20% 2%

FACE
F

NON-FACE

IMAGE
WINDOW

1 Feature

F

NON-FACE

• A T=1 feature classifier achieves 100% detection rate
and about 50% false positive rate

• A T=5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)
– using data from previous stage

• A T=20 feature classifier achieve 100% detection rate
with 10% false positive rate (2% cumulative)

37 39

