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The Final Exam

• Tuesday, December 17,  12:25 – 2:25 p.m.
Last name A – F:  room 1111 Humanities 
Last name G – Z:  room 3650 Humanities

• Covers topics since Midterm (i.e., constraint 
satisfaction through face detection) only

• Closed book
• Bring student ID, pencil, eraser, calculator 

(not on a phone), and 8.5” x 11” sheet with 
notes on both sides (typed or handwritten)
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• Covers lecture notes (see updated notes!), 
readings in textbook, and 2 papers, one on 
deep learning and one on HMMs

• True/False and multiple choice questions 
(with calculations required)
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Constraint Satisfaction

Problem formulation in terms of variables, domains 
and constraints, constraint graph, depth-first search, 
backtracking with consistency checking, most 
constrained variable heuristic, most constraining 
variable heuristic, least constraining value heuristic, 
min-conflicts heuristic, min-conflicts algorithm, 
forward checking algorithm, arc consistency algorithm 
(AC-3), combining search with CSP inference
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CSP

Algorithms
– Min-Conflicts
– Backtracking (DFS) with consistency 

checking
– Forward checking
– Arc consistency (AC-3)
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Min-Conflicts Algorithm

Assign to each variable a random value, defining 
the initial state
while state not consistent do

Pick a variable, var, that has constraint(s) 
violated
Find value, v, for var that minimizes the total
number of violated constraints (over all 
variables)
var = v

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints, i.e., hill-climb 
by minimizing f(n) = total number of violated constraints
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Backtracking (DFS) w/ Consistency Checking

Start with empty state
while not all vars in state assigned a value do

Pick a variable (randomly or with a heuristic)
if it has a value that does not violate any 
constraints

then Assign that value
else

Go back to previous variable and assign it 
another value

6

Backtracking (DFS) w/ Consistency Checking

• Don’t generate a successor that creates an 
inconsistency with any existing assignment, i.e., 
perform consistency checking when node is 
generated

• Successor function assigns a value to an 
unassigned variable that does not conflict with 
all current assignments
– “backward checking”
– Deadend if no legal assignments (i.e., no 

successors)
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Heuristics used with DFS

1. Most-Constrained Variable (minimum 
remaining values heuristic)
– Choose the variable with the fewest number of 

consistent values
2. Most-Constraining Variable (degree 

heuristic)
– Choose the variable with the most constraints on 

the remaining variables
3. Least-Constraining Value

– Pick the value that rules out the fewest values in 
the remaining variables

8
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Forward Checking Algorithm

• Initially, for each variable, record the set of all possible 
legal values for it

• When you assign a value to a variable in the search, 
update the set of legal values for all unassigned 
variables.  Backtrack immediately if you empty a 
variable’s set of possible values.
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Neural Networks
Perceptron, LTU, activation functions, bias input, input 
units, output units, Perceptron learning rule, 
Perceptron learning algorithm, Perceptron 
convergence theorem, epoch, weight space, input 
space, linearly separable, credit assignment problem, 
multi-layer feed-forward networks, hidden units, 
sigmoid function, ReLU, softmax, back-propagation 
algorithm, gradient descent search in weight space, 
stochastic gradient descent, parameter setting using a 
tuning set, deep learning, convolutional 
neural networks, pooling
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Back-Propagation Algorithm
Initialize the weights in the network (usually random values) 
Repeat until stopping criterion is met  {

forall p,q in network, ΔWp,q = 0
foreach example e in training set do {

O = neural_net_output(network, e)   // forward pass
Calculate error (T - O) at the output units  // T = teacher output
Compute Δwj,k for all weights from hidden unit j to output unit k
Compute Δwi,j for all weights from input unit i to hidden unit j
forall p,q in network  ΔWp,q = ΔWp,q + Δwp,q

}               
for all p,q in network  ΔWp,q = ΔWp,q / num_training_examples
network = update_weights(network, ΔWp,q) 

}

Note:  Uses average gradient for all training 
examples when updating weights  

backward pass
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Back-Prop using Stochastic 
Gradient Descent (SGD)

• Most practitioners use SGD to update 
weights using the average gradient 
computed using a small batch of examples, 
and repeating this process for many small 
batches from the training set

• In extreme case, update after each example
• Called stochastic because each small set of 

examples gives a noisy estimate of the 
average gradient over all training examples    

12
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CNNs are an extension of traditional multi-
layer, feed-forward networks that incorporate 4 
key ideas:
• Use of many layers

– Learn a hierarchy of features
• Local “receptive fields”/filters and local 

connections
– Layers are not completely connected
– Want translation-invariant and distortion-

invariant local features
• Shared weights
• Pooling
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Why are they called “Convolutional” NNs?

The image filtering operation defined as

is very similar to the Convolution operation defined as

• In CNN’s, f corresponds to the inputs from the 
layer below and g corresponds to the weights

• So, CNN’s will learn a set of filters! 
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Convolution Layers
• Learn “filters” (i.e., weights) that process small 

regions of the layer below it and compute 
“features” at many spatial positions

• Example:  32 x 32 x 3 input RGB image, and 
receptive field (filter size):  5 x 5
– Each unit in the Conv layer will have weights 

connected to a 5 x 5 x 3 region in the input layer, with 
5*5*3 = 75 weights

– Can have multiple units associated with a given 
receptive field in order to compute multiple features 
at each position

– “Stride” parameter defines shift amount

15

CNN Architecture

Convolutions + ReLU

Max pooling

Convolutions + ReLU

Max pooling

16
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Support Vector Machines

Maximum margin, definition of margin, kernel trick, 
support vectors, slack variables
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Maximum Margin
fx y

denotes +1
denotes -1

f(x, w, b) = sign(wT x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the maximum 
margin

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 
are those data 
points that the 
margin pushes 
against

Linear SVM

Margin = distance from decision line to closest support vector
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Learning Maximum Margin with Non-Linearly-Separable Data

Given guess of w , b we can
1. Compute sum of distances 

of points to their correct 
zones

2. Compute the margin width
Assume N examples, each (xk, 

yk) where yk = +1 / -1

wx+b=1

wx+b=0

wx+b=-1

M =

  

2

wTw

What should our optimization 
criterion be?

Minimize

How many constraints will we 
have?  2N

What should they be?
wTxk + b ≥ +1 - εk if yk = +1
wTxk + b ≤ -1 + εk if yk = -1
εk ≥ 0 for all k

   

1
2

wTw+C ε k
k=1

N

∑

ε7

ε11ε2

“slack variables”

19

The Kernel Trick for Dealing with Non-
Linearly-Separable Data

x=0 ),()( 2xxx =F

The Kernel Trick: 
Preprocess the 
data, mapping x
into a higher 
dimensional 
space, z = Φ(x)

wT Φ(x) + b = +1

The data is linearly 
separable in the new 
space, so use a linear 
SVM in the new space

20



12/5/19

6

• Dual formulation of the optimization problem 
depends on the input data only in dot products of the 
form: 
Φ(xi)T · Φ(xj)   where xi and xj are two examples

• We can compute these dot products efficiently for 
certain types of Φ’s where K(xi, xj) = Φ(xi)T · Φ(xj)

• Example:

Φ(xi)T · Φ(xj) = (xi
T · xj)2 = K(xi , xj )

• Since the data only appears as dot products, we do not
need to map the data to higher dimensional space 
(using Φ(x) ) because we can use the kernel function K
instead
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Probabilistic Reasoning

Random variable, mutually exclusive, prior probability, 
3 axioms of probability, joint probability, conditional 
probability, posterior probability, full joint probability 
distribution, degrees of freedom, summing out, 
marginalization, normalization, product rule, chain 
rule, conditionalized version of chain rule, Bayes’s rule, 
conditionalized version of Bayes’s rule, 
addition/conditioning rule, independence, conditional 
independence, naïve Bayes classifier as a Bayesian 
network, Add-1 smoothing, Laplace smoothing
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Summary of Important Rules

• Conditional Probability:  P(A|B) = P(A,B)/P(B)
• Product rule:  P(A,B) = P(A|B)P(B)
• Chain rule:  P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D)
• Conditionalized version of Chain rule:  

P(A,B|C) = P(A|B,C)P(B|C)
• Bayes’s rule:  P(A|B) = P(B|A)P(A)/P(B)
• Conditionalized version of Bayes’s rule:  

P(A|B,C) = P(B|A,C)P(A|C)/P(B|C)
• Addition / Conditioning rule:  P(A) = P(A,B) + P(A,¬B) 

P(A) = P(A|B)P(B) + P(A|¬B)P(¬B)
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Naive Bayes Classifier Testing Phase

• For a given test instance defined by X1=v1, …, Xn=vn, 
compute

• Assumes all evidence variables are conditionally 
independent of each other given the class variable

• Robust because it gives the right answer as long as 
the correct class is more likely than all others  

Class variable Evidence variable

𝑎𝑟𝑔𝑚𝑎𝑥&P(Y=c) ∏()*
+ 𝑃(𝑋(=𝑣( | Y=c)
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Bayesian Networks

Bayesian network DAG, conditional probability 
tables, space saving compared to full joint 
probability distribution table, conditional 
independence property defined by a Bayesian 
network, inference by enumeration from a 
Bayesian network, naïve Bayes classifier as a 
Bayesian network  

25

Conditional Independence in Bayes Nets
§ A node is conditionally independent of its       non-

descendants, given its parents
§ A node is conditionally independent of all other nodes, 

given its “Markov blanket” (i.e., its parents, children, and 
children’s parents)
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Computing with Bayes Net

P(T, ¬R, L, ¬M, S)
= P(T | ¬R, L, ¬M, S) * P(¬R, L, ¬M, S) 
= P(T | L) *  P(¬R, L, ¬M, S)
= P(T | L) *  P(¬R | L, ¬M, S) * P(L, ¬M, S)
= P(T | L) *  P(¬R | ¬M) * P(L, ¬M, S)
= P(T | L) *  P(¬R | ¬M) * P(L | ¬M, S) * P(¬M, S)
= P(T | L) *  P(¬R | ¬M) * P(L | ¬M, S) * P(¬M | S) * P(S)
= P(T | L) *  P(¬R | ¬M) * P(L | ¬M, S) * P(¬M) * P(S)

S M

R
L

T

P(S) = 0.3
P(M) = 0.6

P(R|M) = 0.3
P(R|¬M) = 0.6

P(T|L) = 0.3
P(T|¬L) = 0.8

P(L|M,S) = 0.05
P(L|M,¬S) = 0.1
P(L|¬M,S) = 0.1
P(L|¬M, ¬S) = 0.2

Apply the Chain Rule + 
conditional independence!
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Computing any conditional probability:
P( Some variables | Some other variable values )
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“Inference by Enumeration” Algorithm
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Speech Recognition

Phones, phonemes, speech recognition using Bayes’s
rule, language model, acoustic model, bigram model, 
trigram model, first-order Markov assumption, 
probabilistic finite state machine, first-order Markov 
model, state transition matrix, π vector, computing 
conditional probabilities from a Markov model, hidden 
Markov model, observation likelihood matrix, 
computing joint probabilities and conditional 
probabilities from an HMM by enumeration  
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• Signal = observation sequence

• Words = sequence of words

• Best match metric: 

• Bayes’s rule:

observation likelihood prior
(acoustic model) (language model)
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1st-Order  Markov  Model

• Markov Model M = (A, π) consists of

– Discrete set of states, s1, s2, …, sN

– π vector, where πi = P(q1=si)
– State transition matrix, A = {aij} 

where aij = P(qt+1=sj | qt=si )

• The state transition matrix is fixed a priori and 
describes probabilities associated with a 
(completely-connected) graph of the states
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HMM  Summary

• An HMM contains 2 types of information:
– Hidden states:  s1, s2, s3, …
– Observable states

• In speech recognition, the vector quantization values in the input 
sequence, O = o1, o2, o3, …

• An HMM, λ = (A, B, π), contains 3 sets of probabilities: 
– π vector, π = (πi)

– State transition matrix, A = (aij) 
where aij = P(qt = si | qt-1 = sj)

– Observation likelihood matrix, B = bj(ok) = P(yt = ok | qt = sj)

32
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Nothing on Forward algorithm, Viterbi 
algorithm, Forward-Backward algorithm, 
Siri, particle filters, tracking in video

33

Face Detection

Viola-Jones face detection algorithm, boosting 
ensemble learning, weak classifier, decision stump, 
weighted-majority classifier, AdaBoost algorithm
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Viola-Jones Algorithm

• Compute lots of very simple features
• Efficiently choose the best features
• Each feature is used to define a “weak 

classifier” (aka “decision stump”)
• Combine weak classifiers into an ensemble 

classifier based on boosting (AdaBoost)
• Learn multiple ensemble classifiers and 

“cascade” them together to improve 
classification accuracy and speed
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AdaBoost Algorithm
Given a set of training windows labelled +1 or -1, initially 
give equal weight to each training example
Repeat T times

1. Select best weak classifier (decision stump) (i.e., 
one with minimum total weighted error on all 
training examples)

2. Increase weights of the examples misclassified by 
current weak classifier

• Each round greedily selects the best feature (i.e., 
decision stump) given all previously selected features 
and weighted training examples

• Final classifier combines the weak classifiers by their 
weighted-majority class

36
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Viola-Jones Cascaded Classifier

5 Features
50%

F

NON-FACE

20 Features
20% 2%

FACE
F

NON-FACE

IMAGE
WINDOW

1 Feature

F

NON-FACE

• A T=1 feature classifier achieves 100% detection rate 
and about 50% false positive rate

• A T=5 feature classifier achieves 100% detection rate 
and 40% false positive rate (20% cumulative)
– using data from previous stage

• A T=20 feature classifier achieve 100% detection rate 
with 10% false positive rate (2% cumulative)
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