Game Playing and AI

- Game playing (was?) thought to be a good problem for AI research:
 - game playing is non-trivial
 - players need "human-like" intelligence
 - games can be very complex (e.g., chess, go)
 - requires decision making within limited time
 - games usually are:
 - well-defined and repeatable
 - limited and accessible
 - can directly compare humans and computers

Game Playing as Search

- Consider a two player board game:
 - e.g., chess, checkers, tic-tac-toe
 - board configuration: unique arrangement of "pieces"

- Representing board games as search problem:
 - states: board configurations
 - operators: legal moves
 - initial state: current board configuration
 - goal state: winning/terminal board configuration
Game Tree Representation

What's the new aspect to the search problem?
There's an opponent we cannot control!

How can we handle this?

Complexity of Game Playing

- Assume the opponent's moves can be predicted given the computer's moves
- How complex would search be in this case?
 - worst case: $O(b^d)$ branching factor, depth
 - Tic-Tac-Toe: ~5 legal moves, max of 9 moves
 - $5^9 = 1,953,125$ states
 - Chess: ~35 legal moves, ~100 moves per game
 - $b^d = 35^{100} \approx 10^{143}$ states, “only” ~10^{40} legal states
- Common games produce enormous search trees

Greedy Search using an Evaluation Function

- An evaluation/utility function is used to map each terminal state of the board to a number corresponding to the value of that state to the computer
 - positive for winning
 - negative for losing
 - 0 for a draw
 - typical values (lost to win):
 - $-\infty$ to ∞
 - -1.0 to +1.0

Greedy Search using an Evaluation Function

- Expand the search tree to the terminal states on each branch
- Evaluate utility of each terminal board configuration
- Make the initial move that results in the board configuration with the maximum value
Greedy Search using an Evaluation Function

- Assuming a reasonable search space, what’s the problem?
 This ignores what the opponent might do!
 Computer chooses C
 Opponent chooses J and defeats computer

Minimax Principle

- Assuming the worst (i.e., opponent plays optimally):
 - given there are two plays till the terminal states
 - high utility numbers favor the computer
 - computer should choose maximizing moves
 - low utility numbers favor the opponent
 - smart opponent chooses minimizing moves

Minimax Principle

- The computer assumes after it moves the opponent will choose the minimizing move
- The computer chooses the best move considering both its move and opponent’s optimal move

Propagating Minimax Values up the Game Tree

- Explore the tree to the terminal states
- Evaluate utility of the resulting board configurations
- The computer makes a move to put the board in the best configuration for it assuming the opponent makes her best moves on her turn:
 - start at the leaves
 - assign value to the parent node as follows
 - use minimum when children are opponent’s moves
 - use maximum when children are computer’s moves
Deeper Game Trees
- Minimax can be generalized to more than 2 moves
- Propagate/percolate values upwards in the tree

Terminal states
Computer max
Opponent min

Complexity of Minimax Algorithm
Assume all terminal states are at depth d
- Space complexity
 depth-first search, so $O(bd)$
- Time complexity
 given branching factor b, so $O(b^d)$

* Time complexity is a major problem since computer typically only has a finite amount of time to make a move

General Minimax Algorithm
For each move by the computer:
1. Perform depth-first search to a terminal state
2. Evaluate each terminal state
3. Propagate upwards the minimax values
 - if opponent's move, propagate up minimum value of children
 - if computer's move, propagate up maximum value of children
4. Choose move with the maximum of minimax values of children

Note:
- minimax values gradually propagate upwards as DFS proceeds:
 i.e., minimax values propagate up in "left-to-right" fashion
- minimax values for sub-tree propagate upwards "as we go," so only $O(bd)$ nodes need to be kept in memory at any time

Complexity of Minimax Algorithm
- Direct Minimax algorithm is impractical in practice
 - instead do depth-limited search to depth m
 - but evaluation defined only for terminal states
 - we need to know the value of non-terminal states

* Static board evaluator (SBE) functions use heuristics to estimate the value of non-terminal states
A static board evaluation function is used to estimate how good the current board configuration is for the computer:
- it reflects the computer's chances of winning from that node
- it must be easy to calculate from board configuration

For example, Chess:

\[
SBE = \alpha \times \text{materialBalance} + \beta \times \text{centerControl} + \gamma \times \ldots
\]

material balance = Value of white pieces - Value of black pieces
pawn = 1, rook = 5, queen = 9, etc.

Typically, one subtracts how good it is for the computer from how good it is for the opponent.
If the board evaluation is \(X\) for a player then its \(-X\) for opponent.
Must agree with the utility function when calculated at terminal nodes.

Minimax Algorithm with SBE

```java
int minimax (Node s, int depth, int limit) {
    Vector v = new Vector();
    if (isTerminal(s) || depth == limit) // base case
        return (staticEvaluation(s));
    else { // do minimax on successors of s and save their values
        while (s.hasMoreSuccessors())
            v.addElement(minimax(s.getNextSuccessor(), depth+1, limit));
        if (isComputersTurn(s))
            return maxOf(v); // computer's move return max of children
        else
            return minOf(v); // opponent's move return min of children
    }
}
```

Minimax with Evaluation Functions

- Same as general Minimax, except
 - only goes to depth \(m\)
 - estimates using SBE function
- How would this algorithm perform at chess?
 - if could look ahead \(~4\) pairs of moves (i.e., 8 ply) would be consistently beaten by average players
 - if could look ahead \(~8\) pairs as done in a typical PC, is as good as human master
Summary So Far

- Can't Minimax search to the end of the game
 - if could, then choosing move is easy
- SBE isn't perfect at estimating/scoring
 - if it was, just choose best move without searching
- Since neither is feasible for interesting games, combine Minimax with SBE:
 - Minimax to depth m
 - use SBE to estimate/score board configuration

Alpha-Beta Idea

- Some of the branches of the game tree won't be taken if playing against an intelligent opponent
- Pruning can be used to ignore those branches
- Keep track of while doing DFS of game tree:
 - maximizing level: α
 - highest value seen so far
 - lower bound on node's evaluation/score
 - minimizing level: β
 - lowest value seen so far
 - higher bound on node's evaluation/score

Alpha-Beta Idea

- Pruning occurs:
 - when maximizing:
 - if $\alpha \geq$ parent's β, stop expanding
 opponent won't allow computer to take this route
 - when minimizing:
 - if $\beta \leq$ parent's α, stop expanding
 computer shouldn't take this route

Alpha-Beta Example
Alpha-Beta Example

minimax(B, 1, 4)

max

min

blue: terminal state

alpha = 4, maximum seen so far

Alpha-Beta Example

minimax(F, 2, 4)

max

min

blue: terminal state

alpha = 4, maximum seen so far
Alpha-Beta Example

minimax(O, 3, 4)

Call Stack

max

min

max

min

blue: terminal state

α = 4, minimum seen so far

β = -3, minimum seen so far

minimax(O, 3, 4) is returned to

O's β ≤ F's α: stop expanding O (α cut-off)

blue: terminal state (depth limit)

Call Stack
Alpha-Beta Example

Why?

Smart opponent will choose W or worse, thus O's upper bound is –3
So computer shouldn't choose O:-3 since N:4 is better

\[
\begin{align*}
\text{max} & \quad \text{min} \\
A & \quad B \\
\text{min} & \quad \text{max} \\
\text{blue: terminal state} & \quad \text{blue: terminal state}
\end{align*}
\]

\[
\begin{align*}
\text{minimax}(B,1,4) & \quad \text{is returned to} \\
\text{alpha not changed (maximizing)} &
\end{align*}
\]

\[
\begin{align*}
\text{minimax}(G,2,4) & \quad \text{is returned to} \\
\text{beta = 4, minimum seen so far} &
\end{align*}
\]
Alpha-Beta Example

\[
\text{minimax}(B, 1, 4) \text{ is returned to } \\
\text{beta } = -5, \text{ updated to minimum seen so far}
\]

Alpha-Beta Example

\[
\text{minimax}(A, 0, 4) \text{ is returned to } \\
\text{alpha } = -5, \text{ maximum seen so far}
\]
Alpha-Beta Example

minimax(C, 1, 4) is returned to
beta = 3, minimum seen so far

minimax(I, 2, 4)

minimax(C, 1, 4) is returned to
beta not changed (minimizing)

minimax(J, 2, 4)
Alpha-Beta Example

\[\text{minimax}(P, 3, 4) \]

\[\text{max} \]

\[\text{min} \]

\[\text{max} \]

\[\text{min} \]

\[\beta = -5 \]

\[\alpha = 9 \]

\[\text{Why?} \quad \text{Computer should choose P or better, thus J’s lower bound is 9; so smart opponent won’t take J:9 since H:3 is worse} \]
Alpha-Beta Example

\[\text{minimax}(C, 1, 4) \text{ is returned to beta not changed (minimizing)} \]

\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]

\[\text{min} \]
\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]
\[\text{max} \]
\[\text{min} \]

\[\text{alpha} = 3, \text{ updated to maximum seen so far} \]

\[\text{alpha not updated (maximizing)} \]

\[\text{alpha} = 3 \]

\[\text{alpha} = 3 \]

\[\text{alpha} = 3 \]
Alpha-Beta Example

How does the algorithm finish the search tree?

max
min
max
min

blue: terminal state

Why?

Smart opponent will choose L or worse, thus E's upper bound is 2;
so computer shouldn't choose E:2 since C:3 is better path

Result: Computer chooses move to C
Effectiveness of Alpha-Beta Search

- Effectiveness depends on the order in which successors are examined. More effective if best are examined first
- Worst Case:
 - ordered so that no pruning takes place
 - no improvement over exhaustive search
- Best Case:
 - each player’s best move is evaluated first (left-most)
- In practice, performance is closer to best rather than worst case

Effectiveness of Alpha-Beta Search

- In practice often get $O(b^{d/2})$ rather than $O(b^d)$
 - same as having a branching factor of \sqrt{b} since $(\sqrt{b})^d = b^{d/2}$
- For Example: Chess
 - goes from $b \sim 35$ to $b \sim 6$
 - permits much deeper search for the same time
 - makes computer chess competitive with humans

Dealing with Limited Time

- In real games, there is usually a time limit T on making a move
- How do we take this into account?
 - cannot stop alpha-beta midway and expect to use results with any confidence
 - so, we could set a conservative depth-limit that guarantees we will find a move in time < T
 - but then, the search may finish early and the opportunity is wasted to do more search

Dealing with Limited Time

- In practice, iterative deepening search (IDS) is used
 - run alpha-beta search with an increasing depth limit
 - when the clock runs out, use the solution found for the last completed alpha-beta search (i.e., the deepest search that was completed)
The Horizon Effect

- Sometimes disaster lurks just beyond search depth
 - computer captures queen, but a few moves later the opponent checkmates (i.e., wins)
- The computer has a limited horizon; it cannot see that this significant event could happen
- How do you avoid catastrophic losses due to “short-sightedness”?
 - quiescence search
 - secondary search

Quiescence Search

- when evaluation frequently changing, look deeper than limit
- look for a point when game “quiets down”

Secondary Search

1. find best move looking to depth d
2. look k steps beyond to verify that it still looks good
3. if it doesn’t, repeat Step 2 for next best move

Book Moves

- Build a database of opening moves, end games, and studied configurations
- If the current state is in the database, use database:
 - to determine the next move
 - to evaluate the board
- Otherwise, do alpha-beta search

More on Evaluation Functions

- The board evaluation function estimates how good the current board configuration is for the computer
 - it is a heuristic function of the features of the board
 - i.e., $function(f_1, f_2, f_3, ..., f_n)$
 - the features are numeric characteristics
 - feature 1, f_1, is number of white pieces
 - feature 2, f_2, is number of black pieces
 - feature 3, f_3, is f_1f_2
 - feature 4, f_4, is estimate of “threat” to white king
 - etc.
Linear Evaluation Functions

- A linear evaluation function of the features is a weighted sum of f_1, f_2, f_3, \ldots
 \[w_1 * f_1 + w_2 * f_2 + w_3 * f_3 + \ldots + w_n * f_n \]
 - where f_1, f_2, \ldots, f_n are the features
 - and w_1, w_2, \ldots, w_n are the weights

* More important features get more weight

The quality of play depends directly on the quality of the evaluation function

- To build an evaluation function we have to:
 1. construct good features using expert knowledge
 2. pick or learn good weights

Learning the Weights in a Linear Evaluation Function

- How could we learn these weights?
 - Basic idea:
 - play lots of games against an opponent
 - for every move (or game) look at the error = true outcome - evaluation function
 - if error is positive (underestimating), adjust weights to increase the evaluation function
 - if error is zero, do nothing
 - if error is negative (overestimating), adjust weights to decrease the evaluation function

Examples of Algorithms which Learn to Play Well

Checkers:

- Learned by playing a copy of itself thousands of times
- Used only an IBM 704 with 10,000 words of RAM, magnetic tape, and a clock speed of 1 kHz
- Successful enough to compete well at human tournaments
Examples of Algorithms which Learn to Play Well

Backgammon:
- Also learns by playing copies of itself
- Uses a non-linear evaluation function - a neural network
- Rated one of the top three players in the world

Non-deterministic Games

- Some games involve chance, for example:
 - roll of dice
 - spin of game wheel
 - deal of cards from shuffled deck
- How can we handle games with random elements?
- The game tree representation is extended to include chance nodes:
 1. computer moves
 2. chance nodes
 3. opponent moves

Non-deterministic Games

The game tree representation is extended:

```
          A
         / \  max
        5   5
       / \ /  min
      7  2 9 6

D  C  B
7  2 9
```

```
          A
         /   max
        5   5
       /   /  min
      5  0 8 -4

D  E  C
5  0 8
```

Non-deterministic Games

- Weight score by the probabilities that move occurs
- Use expected value for move: sum of possible random outcomes
Non-deterministic Games

- Choose move with highest expected value

\[
\begin{align*}
A & : \text{max} \\
B & : \text{chance} \\
C & : 7 \quad 2 \\
D & : 6 \quad 5 \\
E & : 8 \quad -4
\end{align*}
\]

Non-determinism increases branching factor

- 21 possible rolls with 2 dice

Value of lookahead diminishes: as depth increases probability of reaching a given node decreases

- alpha-beta pruning less effective

TDGammon:
- depth-2 search
- very good heuristic
- plays at world champion level

Computers can play GrandMaster Chess

“Deep Blue” (IBM)
- Parallel processor, 32 nodes
- Each node has 8 dedicated VLSI “chess chips”
- Can search 200 million configurations/second
- Uses minimax, alpha-beta, sophisticated heuristics
- It currently can search to 14 ply (i.e., 7 pairs of moves)
- Can avoid horizon by searching as deep as 40 ply
- Uses book moves

Kasparov vs. Deep Blue, May 1997
- 6 game full-regulation chess match sponsored by ACM
- Kasparov lost the match 2 wins & 1 tie to 3 wins & 1 tie
- This was an historic achievement for computer chess being the first time a computer became the best chess player on the planet
- Note that Deep Blue plays by “brute force” (i.e., raw power from computer speed and memory); it uses relatively little that is similar to human intuition and cleverness
Chess Rating Scale

Status of Computers in Other Deterministic Games

- Checkers/Draughts
 - Current world champion is Chinook
 - Can beat any human, (beat Tinsley in 1994)
 - Uses alpha-beta search, book moves (> 443 billion)

- Othello
 - Computers can easily beat the world experts

- Go
 - Branching factor $b \sim 360$ (very large)
 - 2 million prize for any system that can beat a world expert

Summary

- Game playing is best modeled as a search problem
- Search trees for games represent alternate computer/opponent moves
- Evaluation functions estimate the quality of a given board configuration for each player
 - Good for opponent
 - Good for computer
 - Neutral

Summary

- Minimax is a procedure that chooses moves by assuming that the opponent always choose their best move
- Alpha-beta pruning is a procedure that can eliminate large parts of the search tree enabling the search to go deeper
- For many well-known games, computer algorithms using heuristic search can match or out-perform human world experts
Conclusion

- Initially thought to be good area for AI research
- But brute force has proven to be better than a lot of knowledge engineering
 - more high-speed hardware issues than AI
 - simplifying AI part enabled scaling up of hardware
- Still a good test-bed for computer learning

- Perhaps machines don't have to think like us?