
CS 766: Computer Vision

Homework #1

Camera Projection, Calibration and Rectification

Due: September 28, 2006

General information:

• This homework is based on the readings in the textbook in Sections 3.1.1 and 3.2 plus the handout by Cipolla
and Gee.

• Please type your homework.

• Please clearly identify your answer.

• Do not print out your MATLAB code listing. Please submit your code to the handin directory.

Problem Set:

1. CCD to Camera Transformation
Consider a perfect perspective projection camera with focal length 24 mm and a CCD array of size 16 mm ×
12 mm, containing 500 × 500 pixels.

(a) Field of View (FOV) is defined as the angle between two points at opposite edges of the image (CCD array),
either horizontally or vertically. Thus there are two FOVs, one horizontal and one vertical. Assuming the
image center is the center of the image, then FOV is twice the angle between the optical axis and one
edge of the image.

i. Give a general expression for computing FOV from focal length and image width.

ii. Compute the horizontal FOV and vertical FOV of the given camera.

iii. Comment on how FOV affects resolution in an image.

(b) Application

i. Give an expression for computing the pixel coordinates of a point in a 3D scene that is given in
camera-frame coordinates. Assume the upper-left corner pixel is (0,0).

ii. Compute the pixel where a scene point at coordinates (12 m, 7 m, 103 m) is imaged.

2. Camera Projection

(a) Prove that straight lines project to straight lines under perspective projection. You may do this by making
geometric arguments using lines and planes, or else algebraically using a line parameterized as described
in the section on Vanishing Points, page 8, in the Cipolla and Gee handout.

(b) Consider a sphere of radius r with its center at camera coordinates (x0, 0, z0), which is imaged using a
perfect perspective camera with focal length f and image plane perpendicular to its optical axis. Prove,
formally or informally (but convincingly), whether or not the image of the sphere is a circle.
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Figure 1: Input image and detected features. On the left is the original image and on the right are the detected
feature points.

3. Camera Calibration
Camera calibration is one of the most fundamental vision problems. It refers to the process of calculating the
intrinsic and extrinsic parameters of the camera, which are necessary for many applications such as 3D scene
reconstruction. The goal of this problem is to implement a linear calibration algorithm in MATLAB based
on the method described in Section 3.2 of the textbook. Provided an input image, we want to compute the
intrinsic (focal length, principal point, etc.) and extrinsic (rotation and translation) parameters of the camera
used to capture this image. Assume no radial distortion.

A typical way to calibrate a camera is to take a picture of a calibration object, find 2D features in the image
and derive the calibration from the 2D features and their corresponding positions in 3D. In our case, we use a
2m-wide cube as a calibration object, textured with a checkerboard pattern. We detect in the image the 2D
features corresponding to the corners of each tile on the checkerboard.

Since we know its size (2m), we can find the 3D position of each 2D feature relative to the center of the
cube. This process of finding correspondences is simple but time consuming, so we did this part for you.
~cs766-1/public/html/fall06/hw/hw1/Feature2D.mat and ~cs766-1/public/html/fall06/hw/hw1/Feature3D.mat
contain the 2D corner features and the corresponding 3D positions. We also provide you readable form of the two
files as ~cs766-1/public/html/fall06/hw/hw1/Feature2D.txt and ~cs766-1/public/html/fall06/hw/hw1/Feature3D.txt.

(a) Linear camera calibration
Calibrate a projective camera using a simple linear least squares approach and without taking radial
distortion into account. Given a MATLAB data file that contains 3D coordinates of some points in the
scene, along with their corresponding 2D projections in the image, you are to write a MATLAB function
called LinearCalib that computes the projective camera parameters. The signature of the function should
be as follows:

function [CamMatrix] = LinearCalib(Points3D, Points2D)

Input:

Points2D = a (2 x N) matrix of N 2D points

Points3D = a (4 x N) matrix of N 4D Homogeneous coordinates

Output:

CamMatrix = 3 x 4 projective camera matrix

Some implementation hints:
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• One way to solve this problem is using the ”direct linear transformation” algorithm in which you set
up the problem as solving a linear system of the form Ap=0 where p is a 12x1 column vector of the
entries for the 3 x 4 projective camera matrix and A is a 2n x 12 matrix as described in
http://www.icaen.uiowa.edu/~dip/LECTURE/3DVisionP1_2.html#knownscene or
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT9/node4.html

Compute the SVD of A and then the solution is the unit eigenvector with the least eigenvalue. Be
sure to describe the steps of the method you used in your writeup.

• Be sure you understand how to define matrices in MATLAB.

Data: In ~cs766-1/public/html/fall06/hw/hw1, you can find two files, Features2D.mat (2D projection) and
Feature3D.mat (3D points represented in homogeneous coordinates). The 2D points in Features2D.mat
are the projections of the 3D points in Features3D.mat. The following is the function to load in the data
into MATLAB.

>> load(’/p/course/cs766-dyer/public/html/fall06/hw/hw1/Features2D.mat’);

>> load(’/p/course/cs766-dyer/public/html/fall06/hw/hw1/Features3D.mat’);

and the following is the method to check whether the data is loaded or not.

>> whos

Name Size Bytes Class

f2D 2 x 37 592 double array

f3D 4 x 37 1184 double array

Grand total is 222 elements using 1776 bytes

Handin: The values of the 3 × 4 projective camera matrix and a description of the steps you used to
compute this matrix. For extra credit, decompose this matrix into K[R|T] and compute the resulting
intrinsic and extrinsic parameters associated with these matrices. Section 3.2.2 in the text and page 32 of
the Cipolla and Gee paper describe methods for doing this decomposition.

(b) 3D to 2D projection
You can check the accuracy of your camera calibration result by projecting the given 3D points (in ho-
mogeneous coordinates) using the camera matrix that was obtained by your linear camera calibration
method. Write a function:

function [ProjPoints2D] = CameraProject(Points3D,CamMatrix)

Input:

Points3D = a (4 x N) matrix of N 4D Homogeneous coordinates

CamMatrix = 3 x 4 camera matrix

Output:

ProjPoints2D = a (2 x N) matrix of N 2D points

Make sure that the points computed by ProjPoints2D are close to the given Points2D matrix to ensure
correctness.

Handin: Transform the three 3D scene points: (0, 0, 0), (1, 1, 1), (5, 5, 5) and three other points chosen
by you onto the image plane. Comment on any errors that you find.
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4. Image Rectification
Perspective images of planar surfaces are distorted in that parallel lines do not remain parallel in general,
converging to a vanishing point. One way of removing this perspective distortion is to first compute the plane-
to-plane projective transformation that relates the given view to the view that is fronto-parallel (i.e., parallel
to the image plane). Then compute the inverse of this transformation, and apply it to the input image. The
result will be a synthesized image in which the scene plane appears as it would if a camera had been physically
moved to directly in front of the plane. This process is usually called image rectification. In this section, we
discuss three methods to solve this problem.

(a) One way to do rectification is to specify the true geometry of the scene using “ground truth” measure-
ments. For example, in the directory ~cs766-1/public/images/hw1/, there are several images showing
perspectively distorted planes. In the image hall1.pgm, the inside door frame dimensions were physically
measured to be 91 cm × 182 cm. The following is the procedure to do image rectification:

i. Use an image viewing program such as xv, ImageMagick, PhotoShop to view an image and hand
select corner points of the door to determine their image coordinates (which are displayed as the
user interactively moves the cursor over the input image). Convert both the image coordinates and
the physical coordinates to homogeneous coordinates and set up the problem in the form x′

i
= Hxi

as given on page 33 of the handout by Cipolla and Gee, where H is the 3 × 3 projective camera
transformation for this homography, x′

i = [sui, svi, s]
T are the homogeneous coordinates of an image

point at (ui, vi) that corresponds to scene point xi which has homogeneous coordinates [xi, yi, 1]T and
scene coordinates (xi, yi).
Hint: the physical coordinate is set up by choosing an arbitrary origin and x, y, z coordinate.
However, the length unit must correspond to the physical measurement of the door.

ii. Convert the problem to the form Ah, where h is a column vector [h11, h12, . . . , h33]
T containing the

nine entries of the matrix H. Given n ≥ 4 pairs of point correspondences, A is a 2n× 9 matrix. Each
point correspondence will result in two rows of A. These rows are specified by rewriting the relation
in terms of nonhomogeneous coordinates, giving two equations as shown on page 31 of the handout,
except in our case there is no Z term because we are considering only a planar scene.
Attention: Even though H is only defined up to a scale factor, do not set one value (usually h33)
to 1 because MATLAB does this for you when you call SVD.

iii. Use MATLAB to solve for the linear least-squares solution of Ah = 0, avoiding the obvious solution
h = 0, using singular value decomposition (SVD). Note, of course, that the solution will only be an
estimate of the true parameter values because of noise in the measurements. From the singular value
decomposition (SVD) of A, the eigenvector corresponding to the smallest eigenvalue is the solution.
To compute this in MATLAB do:

% solve the homogeneous system Ah = 0

[U,S,V] = svd(A);

h = V(:, size(V,2);

SVD is described in the textbook on page 264. Given the projective matrix, H, just computed, next
compute the inverse of the matrix, H−1, using MATLAB’s function inv(). Then use this matrix to
compute the result image, i.e., compute x = H−1x′. See the bottom of page 35 in the Cipolla and
Gee handout for more information on this step.

(b) The method used in (a) depends, in general, on the coordinate frame in which points are expressed, so the
result is not invariant to similarity transformations of the image. To make the result invariant to arbitrary
scale and coordinate origin, and also to improve the numerical accuracy of the results, data normalization
is, in general, important. The procedure is as follows:

i. Normalize the image data and scene data as follows: Translate and scale the image points’ coordi-
nates so that the centroid of all these points is (0, 0) and their average distance from the origin is
approximately

√
2 (so that the “average” point has homogeneous coordinates of magnitude (1, 1, 1)T ).

Similarly, normalize the planar scene points so that their centroid is (0, 0) and their average distance
from the origin is

√
2 (Note: This approach for normalizing the scene data is only suitable when the

set of points is compactly distributed in 3D.)
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ii. Use SVD as in (a) to compute the projection matrix H.

iii. “Denormalize” the values in H by applying the inverse point transformations used in the first step.
That is, if x̃i = Txi are the normalized image points and X̃i = UX are the normalized scene
points, then the denormalized projection matrix for the original coordinates is obtained from H by
H′ = T−1HU.

(c) Another method for image rectification is based on the idea that the location and orientation of the van-
ishing line (aka horizon line) associated with a scene plane determines the true 3D orientation of the plane
with respect to the camera’s optical axis. That is, when the equation of the vanishing line in the image is
ax + by + c = 0, the normal to the scene plane, in camera coordinates, is the unit vector

n =
(a,b, c

f
)

‖a,b, c
f
‖

where f is the estimated focal length of the camera and ‖a, b, c‖ denotes the Euclidean norm. In other
words, n is the vector (a, b, c) normalized so that a2 + b2 + c2 = 1. For a fronto-parallel scene plane, which
is what we want to create an image of, the normal must be made parallel to the z-axis of the camera by
rotating the scene plane. The following is the procedure:

i. Estimating the vanishing line is usually computed by

A. Computing two or more vanishing points associated with sets of parallel lines contained within
this plane. (A line in one set is not parallel to a line in any other set.) The vanishing line is the
line that passes through (or near) all of these vanishing points.

There are a variety of methods for automatically estimating vanishing points; for one, see the
paper “Vanishing point detection” by C. Rother at
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/ROTHER1/CVonline.html

For this assignment, you can estimate vanishing points manually by hand-selecting a set of points
on each of a set of parallel lines in the image. Choose an image with lines that are parallel in the
scene plane but have significantly different slopes in the input image meaning the view is very
oblique; this will ensure that the vanishing points are easier to locate. To improve accuracy, zoom
into your image so that the point coordinates are determined as accurately as possible, and choose
points that are as far apart as possible.

B. Once you have the coordinates of several points on a single line, compute the equation of the line
and then find an approximate intersection point of all the lines parallel to it.

C. Estimate the line passing through all of the vanishing points, determining the parameters (a, b, c).
Again, to ensure that the transformation matrix is a rotation matrix, normalize the vector
(a, b, c/f) to be a unit vector.

ii. Now you can use the equation given earlier for computing the plane’s unit normal oriented towards
the image (c ≥ 0). To bring this vector into coincidence with the positive z-axis requires a rotation by
angle acos(n.(0, 0, 1)) about the axis n×(0, 0, 1). The effects of this camera rotation on the image can
be simulated by an invertible projective transformation in the image plane, specified in homogeneous
coordinates by


su′

i

sv′i
s



 =




E F a
F G b
−a −b c








xi

yi

1





where
E = a2c+b2

a2+b2
, F = ab(c−1)

a2+b2
, G = a2+b2c

a2+b2

Compute this matrix from your input parameters, a, b, and c, invert the matrix, and then apply it to
the input image. The result image should look like the camera was pointing directly at the scene plane
(though expect quite a lot of error because of the crude method used for estimating the vanishing
line). Instead of using raw pixel coordinates, use pixel coordinates relative to the center of the image,
which will improve the numerical conditioning of the rotation matrix. To do this, say for example
your image is 640 × 480 with raw image coordinates relative to the upper-left corner of the image.
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Then you should first convert image coordinates (u, v) to coordinates ((u − 320), (v − 240)) For more
information on this method, see the paper by R. Collins and J. Beveridge, “Matching perspective
views of coplanar structures using projective unwarping and similarity matching,” Proc. Computer
Vision and Pattern Recognition Conf., 1993, pp. 240-245, available at http://www.cs.wisc.edu/~cs766-
1/readings/collins93.pdf

(d) How many degrees of freedom are there if we used an affine transformation instead of a projectivity to
describe a plane-to-plane transformation? What geometric invariants hold for an affine transformation that
do not hold in general for a projective transformation? Give an example of a transformed planar square
that is possible under a projective transformation that is not possible under an affine transformation.
Under what viewing conditions will an affine transformation be an appropriate model for describing a
plane-to-plane transformation?

(e) Extra Credit: For extra credit, implement vanishing point detection from a set of line segments manually
selected by the user. For more information on this, see the method by Bob Collins, as described in
http://www.cs.wisc.edu/~dyer/cs766/hw/hw1/vanishing.txt Necessary numerical code is also available in
http://www.cs.wisc.edu/~dyer/cs766/hw/hw1/jacobi.txt

• Test Images

There are a variety of test images in the directory ~cs766-1/public/images/hw1/

– For parts (a) and (b), you must compute results for at least the two images hall1.pgm and ed-
wardVI.pgm, plus a third image of your choice. The third image can be one of the other ones in
the same directory or else search the web to find an interesting image to use, for example of the
side of a building. The second image is from the painting “King Edward VI” by William Scrots
in 1546 and is an example of an artistic technique called “anamorphosis,” which means a distorted
image produced optically or with mirrors. (In our case we’re considering only plane-to-plane trans-
formations, which is called “plane anamorphosis.”) For more information on this technique, includ-
ing other paintings, see websites on anamorphosis such as http://www.artborder.com/anamorph.html
http://www.anamorphosis.com and http://www.mathsyear2000.org/explorer/anamorphic/plane-anamorphosis/
For the second image you’ll have to experimentally guess at its real dimensions, which are approxi-
mately square.

– For part (c), use at least the two images Checkerboard.pgm and RailRoad.pgm, plus a third image of
your choice. The third image can be one of the other ones in the same directory or else search the
web to find one.

– Include in your report for parts (a), (b), (c):

∗ A description of your procedure and the parameters in each step, e.g., the H matrix for part (a).

∗ The rectified image for each method.

∗ Other information you think is critical for this method.

• Note: Most of the provided images are in pgm(ascii) format. To see how to read and write pgm, ppm, and
pbm images, use the Unix command more to view an existing ASCII image file. For example, a pbm image
has the magic word “P1” in the first line; the second line lists the number of columns and then the number
of rows in the image (in ASCII); and the remaining lines list the image pixel values in raster scan order
(left-to-right, top-to-bottom), where each value is a 0 or 1 separated by white space. A pgm(raw) image
has the magic word “P5” in the first line; the second line contains the number of columns and number of
rows; the third line contains the maximum graylevel value in the image; and the remaining lines are the
successive pixel values in raster scan order. In raw format each pgm pixel is 1 byte and in ascii format
each pgm pixel is 4 bytes. The magic word for pgm(ascii) images is “P2”. For more complete information
on these formats, see, for example, http://astronomy.swin.edu.au/~pbourke/dataformats/ppm/
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