
Texture Synthesis from Non-Fronto-Parallel

Textures and Related Applications

CS 790 Project Report

Saurabh Goyal

saurabh@cs.wisc.edu

Advisor: Prof. Chuck Dyer

1 Introduction

Previous work on texture synthesis has only addressed fronto-parallel tex-
tures, i.e., when a camera is parallel to a planar texture. In this report we
describe how perspective deformations in the texture image can be dealt
with for texture synthesis. The synthesized image retains the perspective
effects visible in the original texture image. The first few sections contain
preliminary discussion on texture synthesis and rectification.

Texture, in images, is a term used to refer to a pattern of intensities.
The cause of this pattern to appear in the image is an interaction between
lighting, surface normals and surface reflectance. This pattern could be
stochastic or regular. Most natural textures are stochastic, for example an
image of wood, grass, foliage, water, hair, etc. Examples of regular textures
include images of a brick wall, patterned garments, etc. Regular textures
are mostly images of man-made objects which are the result of a repetitive
process.

Figure 1: The left image is a regular texture whereas the one on the right
is stochastic.

1



The most common way of representing a texture is to apply various filters
over the image and then gather statistics from the responses. Choosing the
scale and orientation of the filters is not trivial and most vision algorithms
for textures require the user to identify the texel size.

Two standard problems explored for texture are texture synthesis and
shape from texture. The work presented in this report uses and develops
techniques in these problem domains. The next two sections describe these
two problems in detail.

2 Texture Synthesis

The goal here is to construct large regions of texture from a small finite
sample. The assumption is that the finite sample is large enough to capture
the properties of the texture. The crude approach to this would be to tile the
small sample. However, this produces visual artifacts at the edges where the
images are joined. There is considerable literature on better techniques for
texture synthesis. Almost all of them essentially build probability models
for the texture to be synthesized based on the example image, and then
draw on the models to obtain the texture. Randomness is introduced by
allowing tolerance to a certain level of error or by forcing random noise into
the image.

A variety of techniques using Gibbs sampling [9], multi-resolution filter-
ing [3], and properties of joint wavelet coefficients [7] have been proposed
for texture synthesis. Efros and Leung [5] presented a simple technique that
does well on both regular and stochastic textures. Their idea is to model
the texture as a Markov Random Field. It is assumed that the intensity at a
pixel given its neighbors is independent of the rest of the image. In order to
synthesize a pixel, a square window around it is compared to other windows
in the image and center pixels from matching windows are used to form the
probability model for the pixel to be synthesized. A center pixel is then
randomly chosen from the matching windows. To allow for randomness and
because matches will not be perfect, some amount of error is allowed in the
matching process.

Efros and Freeman noticed that a lot of extra work is done by only
synthesizing one pixel at a time and proposed a faster algorithm that they
called image quilting [4]. The image quilting algorithm synthesizes an entire
patch at one time. The algorithm requires the user to choose a patch size and
an overlap size. To synthesize a patch, all patches in the example image are
checked. A random patch, which satisfies the overlap constraints, is chosen

2



and placed at the location of the patch to be synthesized. In order to match
the boundaries of the overlapping patches, the minimum error boundary cut
is found. Finding the minimum error boundary cut is done using dynamic
programming. The complete quilting algorithm, as given in [4], is

1. Go through the image to be synthesized in raster-scan order in steps
of one block (minus the overlap).

2. For every location, search the input texture for a set of blocks that
satisfy the overlap constraints (above and left) within some error tol-
erance. Randomly pick one such block.

3. Compute the error surface between the newly chosen block and the
old blocks at the overlap region. Find the minimum cost path along
this surface and make that the boundary of the new block. Paste the
block onto the texture. Repeat.

We’ll modify the image quilting algorithm for our texture synthesis tech-
nique so it is helpful to know the details of the image quilting algorithm [4].

3 Shape from Texture

The other problem that researchers have looked at is to recover the shape
of a textured object from the projected texture. The foreshortening effects
are reflected in the distribution of texture elements. There has been work
on recovering a general surface but in this report we will only examine the
case of planar textures. Many non-planar textures that have relatively small
deviation from planarity compared to the viewing distance can also be as-
sumed to be planar. The problem is to find the slant and tilt of the textured
plane with respect to the camera. It can also be thought of as finding the
homography between a fronto parallel view of the textured plane and the ac-
tual image. Various assumptions are required to solve this problem; typical
camera assumptions include orthographic projection or camera calibration.
Some assumption of uniformity is also required on the texture. An assump-
tion of isotropy is used in [8]. An isotropic texture is one in which the
distribution of texture elements is independent of the orientation. Such an
assumption allows metric rectification of the texture image. However, it is
impossible to recover the scale and rotation without forcing additional con-
straints. The major problem with this assumption is that isotropic textures
are rare and therefore methods based on the isotropy assumption do not
handle a general enough class.

3



The more general and useful assumption is that of homogeneity. A ho-
mogeneous texture is one that has repetitive texture elements, i.e., local
windows drawn from the image look the same [6]. A property of homoge-
neous textures is that under an affine transformation the texture remains
homogeneous. So, by only forcing homogeneity, we cannot recover the affine
distortion in the texture image. It is, however, possible to recover the per-
spective distortion and the most common way of doing it is to use opti-
mization methods to find a transformation that makes the texture most
homogeneous. The methods are very slow as a large space of transforms has
to be searched. Criminisi and Zisserman [2] presented a two step process
for recovering the perspective distortion. First they computed the vanishing
line by estimating the direction of the vanishing line and then its distance
from the center of the image. Once the vanishing line is known it is easy
to form a transformation matrix that can correct the perspective distortion.
The important result used for finding the direction of the vanishing line is
that points on a line parallel to the vanishing line have the same perspective
distortion. So, they look for the direction in which points undergo the same
distortion. The measure used for this is the variance of normalized auto
correlation (NAC) values along a direction, which they seek to maximize.
The algorithm, as stated in [2], is

1. Repeat

(a) Select a random image patch (i.e., a random center location, x)
and compute the related NAC surface.

(b) 1D search for the direction θ corresponding to the maximum value
of variance of NAC values inside a strip of fixed width, centered
on x and with direction θ.

2. The required direction corresponds to the median of the set of com-
puted angles θ.

A crude implementation of the above algorithm was done. However, since
no refinement techniques were used in our implementation, the algorithm
does not work well for most images. Figure 2 shows the result of applying
our implementation to a perspective image of a checkerboard pattern. The
top image is the input texture image and the graph at the bottom shows
variance of NAC values for each orientation with respect to a chosen patch.
The maximum value of 0.1926 was obtained at approximately 46 degrees.
The true vanishing line is at an angle of 45 degrees (the positive y axis faces
downwards).

4



Figure 2: Results of computing the direction of the vanishing line.

One advantage of the algorithm is that it is quick because fast techniques
can be used for computing auto-correlation and then only one scan over the
image is required to add the contribution of every pixel to the variance of
NAC values. Estimating the second degree of freedom of the vanishing line,
i.e., its distance from the image center is done using a similar optimization
process. Criminisi and Zisserman [2] defined a new similarity function they
called Projective Normalized Auto Correlation (PNAC). They searched for
the distance at which the variance of the entire PNAC surface is maximized.
This second step is much more time consuming because of the following
reasons:

1. The range of distances to be searched is unlimited whereas the search

5



space for an angle is between 0-180 degrees.

2. For each distance, the PNAC surface has to be computed over the
entire image. Whereas, to find the direction, for each orientation the
NAC surface has to be computed only for the pixels along that orien-
tation.

3. To compute the PNAC, the square window has to warped for every
pixel and therefore no fast techniques can be used.

The last problem can be resolved by rectifying the image before comput-
ing the PNAC, but this introduces sampling problems. We will see below
how computing only the direction of the vanishing line can be helpful in
non-fronto-parallel texture synthesis.

4 Texture Synthesis of Non-Fronto-Parallel Tex-

tures

In this section we describe how a homogeneous texture viewed with a general
perspective camera can be used to synthesize larger regions of the same
texture. The goal is to extend the texture in a way that the perspective
nature of the texture remains unchanged. There are two ways to attack this
problem:

1. Two step approach – First apply a texture rectification algorithm to
generate a fronto-parallel view of the texture and then apply any of
the previous texture synthesis algorithms. The synthesized texture can
then be warped back using the inverse of the rectifying transformation.
As pointed out in the previous section, it is not possible to obtain a
metric rectification of a homogeneous texture. However, it turns out
that this is not necessary. We can perform an affine rectification to
yield a homogeneous texture. The homogeneous texture can then be
extended using algorithms such as Image Quilting [4].

2. Projective invariant texture synthesis algorithm – Use a new algorithm
for texture synthesis that is invariant to projective transformations.
The advantage of such an algorithm is that it avoids sampling errors
during rectification.

A problem with the first approach is that rectification of a texture is
time consuming. If a projective invariant synthesis algorithm, which does

6



not require estimation of the transformation, can be used, the performance
of texture synthesis will be much better. However, finding such an algorithm
seems unlikely. If we could find such an algorithm, then we could probably
keep extending the texture until the vanishing line of the texture is reached
and beyond which the texture cannot be extended. We could, therefore,
estimate the vanishing line of a texture image using this texture synthesis
algorithm. Therefore, a projective invariant algorithm would be at least as
time consuming as estimating the transformation.

So, whichever approach we use, an algorithm for texture synthesis of
non-fronto-parallel textures will be time consuming. However, the direction
of the vanishing line can be estimated quickly and can be used for limited
texture synthesis as described below.

4.1 Directional Quilting

We now describe an image-based texture synthesis algorithm that only re-
quires the estimation of the direction of the vanishing line. The key obser-
vation that leads to the algorithm is that in a perspective image of a plane,

points on a line parallel to the vanishing line have the same perspective

distortion. Criminisi and Zisserman presented a proof for this observation
in [2]. In image quilting, a new patch is synthesized by searching through
all patches of that size in the example image. However, under a perspective
transformation, only the patches that lie on a line parallel to the vanishing
line and containing the location of the new patch, should be used to form
a probability model for the new patch. This is because only these patches
have undergone the same perspective distortion as the new patch.

The following steps describe the complete directional quilting algorithm:

1. Estimate the direction of the vanishing line as described in [2].

2. Go through the image to be synthesized in raster-scan order in steps
of one block (minus the overlap).

(a) For every location, search through blocks in the input image that
lie on a line passing through the location and are parallel to the
vanishing line.

(b) Select a random block from the blocks that satisfy the overlap
constraints.

7



(a) Input texture image. (b) Output of Directional Quilting.

(c) Output of Image Quilting.

Figure 3: Texture synthesis results.

8



(c) Compute the minimum error boundary cut between the chosen
block and the overlapping blocks in the synthesized image and
make that the boundary of the chosen block. Paste the chosen
block onto the texture.

This algorithm is exactly the same as the image quilting algorithm except
for the fact that we only look through blocks lying on a line. We use the same
overlap constraints and techniques to find the minimum error boundary cut
as in image quilting [4]. The error in overlap is computed using the SSD
between the block and the synthesized image for the overlapping region. All
blocks that fall within (1 + threshold) ∗ Emin are assumed to satisfy the
overlap constraints. To find the minimum error boundary cut, we would
have to search through all possible paths. However, by assuming that the
boundary is continuous, this can be formulated as a dynamic programming
problem.

Eij = eij + min(Ei−1,j−1, Ei−1,j , Ei−1,j+1)

The above expression can be used to find the minimum error vertical cut
and a similar expression can be used to find the horizontal cut.

Figure 3(b) shows the results obtained by applying our directional quilt-
ing algorithm to the image in (a). The vanishing line of the example image
makes an angle of 135 degrees from the x axis. The direction was not com-
puted but manually entered. It can be seen that the perspective effects are
preserved in this image. It can also be seen that the texture has not been
extended in the direction perpendicular to the vanishing line. Image (c) is
obtained using the original image quilting algorithm and does not preserve
the perspective effects in the original image.

One advantage of this algorithm is that it is quite fast because (1) only
the direction of the vanishing line is estimated and (2) only blocks along a
line are searched for synthesizing a new block. Since the algorithm is image
based, no sampling errors are introduced due to rectification.

The main limitation of the algorithm is that it only allows synthesizing
texture along the direction of the vanishing line. We cannot extend texture
in the direction perpendicular to the vanishing line without computing the
distance of the vanishing line as well.

9



5 Related Applications

5.1 Real Scene Synthesis

The first application explored was the synthesis of real scenes that contain
perspective textures.

Figure 4(a) shows an example of an image of a sunrise. Since both the
water and sky planes have the same vanishing line, no segmentation is re-
quired before synthesizing a larger image. Image (b) shows the result of
applying directional quilting on the example image. The perspective effects
in the water are clearly visible. Applying the standard texture synthesis
algorithms on this image do not produce comparable results. For images
containing multiple planes with different vanishing lines and non-planar ob-
jects, segmentation of each plane would be needed and each plane would
have to be extended separately. Combining the extended planes may be
complicated.

5.2 Foreground Removal

As with other texture synthesis algorithms, foreground removal is also an
area where directional quilting can be applied. Directional quilting can pos-
sibly handle a larger range of textures from which a foreground object has
to be removed. Foreground removal does not typically require extending the
texture beyond the current image boundary and therefore directional quilt-
ing can be used. In addition, foreground removal for more realistic scenes
is also possible. Figure 5 shows an example of foreground removal from a
real scene. A rectangular area around the car was selected. Directional
quilting was performed only in the rectangular area using blocks that lie
outside the rectangular area. There are some artifacts visible on the right
and bottom edges of the removed area because the original algorithm was
not modified to take the overlap on the right and bottom edges into account.
This extension should be easy and will produce better results. It may be
useful to explore better filling orders to take linear structures into account.
Criminisi et al. [1] provided a reference on foreground removal using a more
sophisticated fill order.

6 Conclusions and Future Work

This report presented a brief summary of previous work on texture synthesis
and planar texture rectification and also described a novel approach for

10



(a) Example image of a sunrise.

(b) Synthesized image.

Figure 4: Results of real scene synthesis.

11



(a) Input image with a foreground object.

(b) Image with the car removed.

Figure 5: Results of foreground removal.

12



texture synthesis of non-fronto-parallel textures. The algorithm is image
based and therefore does not introduce sampling errors, but it does require
the estimation of the direction of the vanishing line as a first step. Two
applications of the algorithm were also described.

The major limitation of the directional quilting algorithm is that it only
allows extension of a texture in one direction. And unless faster methods to
compute the perspective transformation can be found, it seems unlikely that
a fast algorithm that is not restricted to one direction is possible. Assum-
ing less general transforms locally may allow extrapolation in the direction
perpendicular to the vanishing line. This problem is similar to generating
the next number in a series given the previous numbers. Depending on how
many previous values are required to generate the new value, the new value
would be more or less accurate. In the simplest case, we could assume the
previous two values are related by a scale factor and use this scale factor
to generate the new value. However, doing this repeatedly would introduce
artifacts and the original perspective effects would not be retained. Assum-
ing locally-affine models is also something that could be helpful. Looking
at perspective textures in transform domains may give useful insights into
developing faster algorithms for computing the second degree of freedom of
the vanishing line.

There are various other applications of texture rectification and tex-
ture synthesis. Texture rectification algorithms will be useful for single
view metrology in which a texture could be used for estimating vanish-
ing points. Wide baseline stereo matching is another application. In wide
baseline stereo, correlation-based approaches do not work well because of
significant perspective distortion. In such cases, textures patches could be
matched against each other but, in order to match them, the transformation
between them may have to be computed. Texture synthesis also has other
applications such as texture transfer, which can be extended to non-fronto-
parallel textures.

References

[1] A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-
based inpainting. In CVPR03, pages II: 721–728, 2003.

[2] A. Criminisi and A. Zisserman. Shape from texture: Homogeneity re-
visited. In Proceedings of the 11th British Machine Vision Conference,

Bristol, pages 82–91, UK, September 2000.

13



[3] J. S. De Bonet. Multiresolution sampling procedure for analysis and
synthesis of texture images. In T. Whitted, editor, Proc. SIGGRAPH

97, pages 361–368. Addison Wesley, 1997.

[4] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis
and transfer. Proc. SIGGRAPH 2001, pages 341–346, 2001.

[5] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric
sampling. In Proc. 7th Int. Conf. Computer Vision, pages 1033–1038,
1999.

[6] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach,
chapter 9: Texture. Prentice Hall, Upper Saddle River, N.J., 2003.

[7] J. Portilla and E. Simoncelli. Texture modeling and synthesis using
joint statistics of complex wavelet coefficients. In Proc. Workshop on

Statistical and Computational Theories of Vision, 1999.

[8] A. P. Witkin. Recovering surface shape and orientation from texture.
Artificial Intelligence, 17(1-3):17–45, 1981.

[9] S-C. Zhu, Y. Wu, and D. Mumford. FRAME: Filters, random field and
maximum entropy: – Towards a unified theory for texture modeling. Int.

J. Computer Vision, 27(2):1–20, 1998.

14


