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1.0  Abstract

A 3D cortical surface mesh is a convoluted struc-
ture. The purpose of segmenting such a mesh is to
impose a higher level structure which represents
something about the underlying structure of the
mesh itself. This segmentation should reduce the
mesh into “meaningful,” connected pieces. In this
paper, segmentation using the watershed algorithm
is implemented on brain cortical surface meshes.
The height function used is a curvature measure
inherent in the geometry of the mesh. Four different
curvature measures are compared: mean, gauss-
ian, absolute, and root mean square.

2.0  Introduction and Motivation

A 3D cortical surface mesh exists simply as a col-
lection of connected polygons. The purpose of seg-
menting such a mesh is to impose a higher level
structure which represents something about the
underlying structure of the mesh itself. This seg-
mentation should reduce the mesh intomeaningful,
connected pieces. “Meaningful” implies that the
partitioned areas are relevant to the application at
hand. For example, segmented sulci from a brain
mesh can serve as landmarks, which can be used to
register the mesh with other brain meshes to make
comparisons. These comparisons could serve to
measure brain growth, identify diseases, etc. In
addition, the segmented surface can serve as a visu-
alization tool.

The most common segmentation of a cortical mesh
is into sulal and gyral regions. The gyri of a brain
can be defined as the top surfaces of the brain folds
(ridges). The sulci of a brain can be defined as the
area within the brain folds (basins). Segmentation
of a cortical surface in terms of sulci and gyri can
occur in several ways. The most general division is
a separation of sulci and gyri into two labelings.

Another division could be between individual sulc
and gyri, that is, one labeling for all gyri and sepa
rate labelings for each sulci region.

3.0  Problem Statement

The purpose of this paper is to segment a bra
mesh using the watershed algorithm. The wate
shed algorithm is implemented as described in [1
and [10] to segment a brain cortical surface mes
using curvatures as a “height function” for th
watershed algorithm. A region-merging step is als
implemented. In addition, different curvature est
mates as described in [9] will be applied and th
results given.

4.0  Related Work

Related work involving the segmentation of sulc
using waterheds is done by Rettmann, et. al [10
This work focuses on segmenting the actual cor
cal regions surrounding sulci, referred to assulcal
regions. This paper uses the geodesic depth
mesh points in the sulci regions as theheight func-
tion of the watershed algorithm.

Other work on segmenting sulci has involve
methods such as fitting a surface [14], extractin
the volumetric regions within sulcal spaces [4
finding a set of points [7], or extracting curve rep
resentations of the sulci [12]. Other relevant refe
ences for these methods are listed in [10]. The
methods vary in the data they use in that some se
ment directly from MR images, whereas other
segment from a surface mesh.

The classic work using the watershed algorithm f
image segmentation is described in Serra [11]. Th
method was extended to arbitrary 3D meshes
Mangan and Whitaker [6], using discrete curva
tures. An efficient watershed method based up
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immersions was created by Vincent and Soille
[13].

5.0  Theory

Watersheds is a concept taken from the field of
topology. The idea is quite straightforward: simu-
late rain falling upon a surface, and each drop will
descend a gradient until it reaches a local minima,
or catchment basin. The ridges that separate catch-
ment basins are defined aswatersheds.

Applying watersheds to a surface mesh occurs in
two independent steps. A sorting step based upon
vertex “heights” and a flooding step. A third step,
region merging, can be added to eliminate insignif-
icant basin labelling. These steps are described in
more detail below.

5.1  Sorting step (define height
function)

The first step is to define a height function for each
vertex of the mesh, followed by a sort of the verti-
ces based upon their calculated heights. This height
function will determine the order in which the ver-
tices arefloodedin the second step. It is interesting
to note that watersheds may be extended to n-
dimensions because the height function is 1-
dimensional. That is, for each element in an image,
mesh, etc., there is only one value that defines each
element’s height. Determining a height function for
a 3-dimensional mesh is a difficult problem. In
general, two different methods are used that use the
intuitive structure of the mesh: geodesic distances
or curvature measures.

5.1.1  Geodesic distances as heights

Geodesic distances can be determined on a brain
mesh by the following concepts (described in detail
in [10]). All gyral regions have zero geodesic depth
by definition. A gyral “shrink-wrap” can be
wrapped around the surface to define the maximum
height. The geodesic depth from the gyral shrink-
wrap to the vertices in the sulcal regions can be cal-
culated using the fast marching method extended to
triangulated domains by Kimmel and Sethian [3].

5.1.2  Curvatures as heights

Curvatures can also be used as a height meas
The idea is that ridges and basins have oppos
signed curvatures, and the cortical surface is na
rally divided between ridges (gyri) and basin
(sulci). The major complication is that curvatur
cannot be directly evaluated for triangle mesh
because it is mathematically defined for smoo
surfaces only. However, discrete differential-geom
etry operators have been developed which can e
mate curvatures on triangulated manifolds. The
derivations are beyond the scope of this paper b
can be explored in [1], [8], and [9]. To obtain the
curvatures, the surface can be locally paramet
ized to satisfy the smoothness constraint. From t
parameterization, the first and secondfundamental
formscan be estimated directly. From these fund
mental forms, one can calculate various curvatu
measures, such as the Gaussian, Mean, Ro
Mean-Squared, and Absolute curvatures. This
briefly described next, as given in [9] and [8].

Given a parametric surface of the formx=x(u);
where:

(EQ 1)

whereu andv take real values. The functions

(EQ 2)

are single valued and continuous, and are assum
to have continuous partial derivatives. Then, th
first fundamental form is given by:

(EQ 3)

where

(EQ 4)

The second fundamental form is given by:

(EQ 5)
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where

(EQ 6)

andN is the surface normal at pointx.

The normal curvatureof the surface at pointx in
the direction of tangentt is given by

(EQ 7)

The normal curvature is based on direction, and
therefore attains maximum and minimum values,

called the principal curvatures,  and .

TheGaussian curvature can then be given by:

(EQ 8)

Mean curvature is then given by:

(EQ 9)

Root mean square curvature(RMS) is given by:

(EQ 10)

Absolute curvature is given by:

(EQ 11)

Using the discrete curvature estimates directly, in
general, do not give an accurate estimate of the
actual curvatures of the brain. This is because the
discrete mesh is inherently noisy, and taking the
second derivatives to obtain the curvatures of the
mesh only exacerbates the noise. The noise is a
result of image acquisition, mesh creation, and sur-
face parameterization. Using a filter can help

smooth out the noise, but at the expense of disto
ing features. Gaussian smoothing is the preferr
method in image analysis. The smoothing metho
used in this paper isdiffusion smoothingas used in
[1]. Diffusion smoothing is a generalization wher
Gaussian kernel smoothing is reformulated as
solution of a diffusion equation on a Riemannia
manifold. The application of smoothing on curve
surfaces uses the Laplace-Beltrami operat
Details of using this operator on triangular mesh
can be found in [1] and [8].

5.2  Flooding step

After the vertices are sorted by their heights, th
second step is progressive flooding of the catc
ment basins, in the order given by the sorting ste
This step is succinctly described by Vincent an
Soille [13]:

By analogy, we can figure that we have
pierced holes in each regional minimum
of I, this picture being regarded as a
(topographic) surface. We then slowly
immerse our surface into a lake. Starting
from the minima of lowest altitude, the
water will progressively fill up the differ-
ent catchment basins ofI. Now, at each
pixel where the water coming from two
different minima would merge, we build a
“dam”. At the end of this immersion pro-
cedure, each minimum is completely sur-
rounded by dams, which delimit its
associated catchment basin. The whole set
of dams which has been built thus pro-
vides a tessellation ofI in its different
catchment basins. These dams correspond
to the watersheds ofI.

The major problem with this step is that each loc
minima produces its own catchment basin, an
thus its own labeling. Because the cortical mesh
inherently noisy with many local minima, the
result of the watershed algorithm is bound to b
oversegmented.
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5.3  Region merging step

A strategy used towards reducing the oversegmen-
tation is to merge regions based upon a saliency
measure and the structure of the catchment basins.
There are a variety of metrics that may define
insignificant regions. For example, shallow regions
are relative constant in curvature and tend to be
caused by noise. Therefore, one could define a
minimum depth required for a catchment basin to
merge with its surrounding catchment basins.
Other measures could be used to merge regions
such as following features through a scale-space to
identify the most important features (the basins
that others would merge into). This is an approach
taken by Gauch [2], and not implemented in this
paper.

The region merging strategy used in this paper is
based on the height of the ridge separating two
catchment basins. If the relative depth of both
catchment basins is less than a threshold, then they
are merged. This strategy was introduced by Rett-
mann, et. al [10]. The algorithm starts with the
deepest basins as they are the ones that should be
merged first.

6.0  Method

Below is a detailed description of the method, data,
and tools used in this paper.

6.1  Mesh Description

The brain meshes used were obtained courtesy of
Moo Chung of the University of WI Statistics
Dept., as used in [1]. The format of the meshes are
in the Montreal Neurological Institute (MNI) trian-
gular mesh file format. These meshes were created
from T1-weighted MRI images using the anatomic
segmentation using proximities (ASP) method as
described in [5]. Each mesh has 40,962 vertices
and 81,920 triangle faces with the average intern-
odal distance of 3 mm.

6.2  Curvatures and Smoothing

Matlab code given by Chung [1] was used to calc
late Mean and Gaussian curvatures and smooth
curvatures using diffusion smoothing. The param
ters to be set for the smoothing process are t
FWHM (Full-width half maximum) size for the
Gaussian kernel, in mm, and a boolean parame
set so the diffusion smoothing is calculated b
either a local quadratic parameterization or a Fini
Element Method. A typical FWHM paramete
would equal five mm, as this is about the size of th
brain folds. FEM was not used, as it is not as an
lytically accurate as the local quadratic paramete
ization method.

The Matlab code was extended to calculate RM
(Root-Mean-Squared) and Absolute curvatures f
comparison purposes.

6.3  Watershed Algorithm

The sorting step was achieved using a standa
sorting routine.

The flooding step was implemented using th
watershed algorithm by Vincent and Soille [13]. T
segment only the sulci and to leave the gyri as o
region, a flooding threshold is used. For examp
one could threshold the mean curvatures at ze
where the curvature changes sign.

6.4  Region-merging Extension

A region-merging step was added using the heur
tic as found in [10]. This heuristic was defined in
Section 5.3 on page 4. A typical region-mergin
threshold would be 10 mm.

6.5  Visualization Software

Freely available software, CARET, was used fo
visualization [15]. To use this software, code wa
written to convert files form the MNI file format to
the more common “.vtk” file format.

Using CARET instead of Matlab offers numerou
advantages. The CARET software colors each v
tex its assigned color, and then interpolates the c
Segmentation of a Human Brain Cortical Surface Mesh Using WatershedsDecember 17, 2002 4
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ors between differing vertices. Matlab only colors
faces, and does no such interpolation, making it
more difficult to see how the vertices are labeled.
Matlab can interpolate between faces to create a
smooth-looking surface, however this feature only
works for simple surfaces and does not work on the
cortical mesh, whereas CARET can smooth the
cortical mesh in a visually appealing way.

7.0  Experimental Results

Results of four different iterations are given. Each
iteration used a different curvature measure as the
height value for the watershed algorithm. The four
curvatures used were mean, gaussian, absolute, and
root mean square (RMS).

7.1  Parameters Used

The parameters used in the algorithm are displayed
on Tables 1-4 on page 7. These include: the
smoothing kernel size (FWHM), the flooding
threshold value, and the merging threshold value.
The kernel size was set to five mm as this is the
typical size of the feature being detected. The
threshold values were determined empirically. That
is, thresholds were chosen that produced the most
visually appealing results. Visually appealing
results are those in which: 1) most of the labeled
vertices are inside the sulcal basins and are not on
the gyri, and 2) there is a good amount of labeled
vertices inside the sulcal basins, the idea being to
“fill” up the basin.

7.2  Curvature value distributions

Curvature distribution results are shown on Tables
1-4 and in Figure 1 on pages 7-8. The curvature
distributions are depicted graphically on Figure 1,
and the ranges and mean values are given on Tables
1-4.

7.3  Labeling results

The labels resulting from the watershed segmenta-
tion algorithm are depicted graphically in Figures
2-4 on pages 9-11. Each label corresponds to a dif-

ferent color. Tables 1-4 describe how many vertic
were labeled, how many different labels resulte
after the flooding step, and how many differen
labels resulted after the merging step. In gener
the merging step reduced the number of labe
about 40-80%. Results from using absolute a
RMS curvature measures show that more vertic
overall are labeled than with using mean curv
tures. The suspected reason for this is because
absolute curvatures and RMS curvatures are mo
easily affected by noisy areas, and therefore th
produced more labeled vertices in the part of th
brain where the brain stem connects (not show
pictorially). Otherwise, the mean, absolute an
RMS all appear to give good results. However, th
mean curvature as a height function would prob
bly be preferred because more of the labeled ver
ces are within sulcal basins. The absolute and RM
curvatures follow closely behind in favoribility,
their one flaw being that they have a tendency f
some area labelings to “spread out” a lot more th
other area labelings.

7.4  Results Interpretation

An inherent difficultly in the interpretation of these
results is that there is no definition of what is co
rect. Some papers use expert opinions from neur
ogists on where sulci and gyri exist. Howeve
visual results can be interpreted given the idea th
gyri are the surfaces at the top of the brain fold
(ridges), and that sulci are the surfaces within th
brain folds (basins). This idea was described
Section 7.1 asvisually appealing results.

8.0  Concluding Remarks

In this work, results were shown from the segme
tation of a cortical surface using the watershe
algorithm. Future work could include implementa
tion of different height functions. Another line of
inquiry could be the use of graph optimizatio
techniques to segment the cortical mesh.
Segmentation of a Human Brain Cortical Surface Mesh Using WatershedsDecember 17, 2002 5
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Matlab and C++ code attached.
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Table 1. Mean Curvature Segmentation

FWHM 5

Curvature distribution
range

[-1.400,2.5440]

Mean of distribution -0.0123

Flooding Threshold -0.0123

Merging Threshold 10

Total Vertices 40962

Vertices labeled 19438

Labels after Flooding 1618

Labels after Merging 539

Table 2. Gaussian Curvature Segmentation

FWHM 5

Curvature distribution
range

[-1.887, 0.2844]

Mean of distribution -0.0117

Flooding Threshold 0.003

Merging Threshold 10

Total Vertices 40962

Vertices labeled 5844

Labels after Flooding 1034

Labels after Merging 780

Table 3. Absolute Curvature Segmentation

FWHM 5

Curvature distribution
range

[0.0002, 2.5440]

Mean of distribution 0.0310

Flooding Threshold 0.018

Merging Threshold 10

Total Vertices 40962

Vertices labeled 23300

Labels after Flooding 1475

Labels after Merging 284

Table 4. RMS Curvature Segmentation

FWHM 5

Curvature distribution
range

[0.0271, 4.9607]

Mean of distribution 0.2543

Flooding Threshold 0.21

Merging Threshold 10

Total Vertices 40962

Vertices labeled 23120

Labels after Flooding 1520

Labels after Merging 258



12/17/02 8

FIGURE 1.1 Distribution of mean curvatures for all verti-
ces.

FIGURE 1.2 Distribution of gaussian curvatures for all
vertices.

FIGURE 1.3 Distribution of absolute curvatures for all ver-
tices.

FIGURE 1.4 Distribution of root mean square (RMS) cur-
vatures for all vertices.
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FIGURE 2.1 Top view of segmentation using mean curva-
tures.

FIGURE 2.2 Top view of segmentation using gaussian cur-
vatures.

FIGURE 2.4. Top view of segmentation using root mean
square curvatures.

FIGURE 2.3 Top view of segmentation using absolute cur-
vatures.
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FIGURE 3.1 Lateral view of segmentation using mean cur-
vatures.

FIGURE 3.2 Lateral view of segmentation using gaussian
curvatures.

FIGURE 3.3 Lateral view of segmentation using absolute
curvatures.

FIGURE 3.4 Lateral view of segmentation using root mean
square curvatures.
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FIGURE 4.1 Top view of segmentation using mean curva-
tures projected to a sphere.

FIGURE 4.2 Top view of segmentation using gaussian cur-
vatures projected to a sphere.

FIGURE 4.3 Top view of segmentation using absolute cur-
vatures projected to a sphere.

FIGURE 4.4 Top view of segmentation using root mean
square curvatures projected to a sphere.
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