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Abstract

Reflectance functions are approximated from data using kernel re-
gression and used to classify materials. Classification algorithms are
proposed to deal with unseen materials. Experimental results show
that some reflectance functions can be approximated quite accurately
with kernel regression, and that accurate approximations can be used
to classify materials. The kernel regression techniques here use convex
optimization techniques that are simpler than the nonlinear techniques
often used to fit more sophisticated reflectance models to data. Pre-
liminary results suggest that it is possible to extend classification to
work with unseen materials, which has important implications towards
the scalability of the method.

1 Introduction

This report summarizes the results of a project to approximate reflectance
functions and classify materials based on those approximations. The report
motivates the importance of studying reflectance function approximation for
material classification, and states the specific conditions that will be con-
sidered. The methods used are summarized, and some experimental results
are presented. Finally, some future directions of research are proposed and
briefly discussed.
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Figure 1: A scene that could be analyzed using reflectance function information.

2 Motivation

The ability to recognize materials based on their reflectance has many poten-
tial applications. For example, the ability to recognize the materials cotton,
denim, and skin in figure 1 would make it easier to do segmentation, fea-
ture tracking, and object recognition. Segmentation would be easier because
even though the illumination across the shirt appears to make an edge on
the shirt, by using reflectance information a segmentation algorithm would
realize that the edge is merely an effect of illumination, not an edge between
two different regions. Feature tracking would be improved because it would
be possible to enforce the constraint that features be on the same material
between frames. Object recognition would be improved because the combi-
nation of the materials of denim, cotton, and skin in such a configuration
is extremely likely to mean that the picture is of a person. Furthermore,
algorithms that make use of reflectance information would be able to deal
with illumination and pose changes.

3 Problem Statement

The reflectance functions studied will be bidirectional reflectance distribution
functions. For all of the work here, measurements of the reflectance functions
are considered to be exact, meaning that scene geometry and illumination are
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Figure 2: An illustration of reflectance by Wallace and Price. Available online,
http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/MARBLE/medium/shading/reflect.htm.

known. The reflectance functions are real valued functions of four variables.
The variables are the angles that the view and illumination directions make
with the surface normal. The situation is illustrated in figure 2. Let (θv, φv)
be the angle of the view direction with the surface normal, and (θi, φi) be
the angle of the illumination direction with the surface normal. Then the
reflectance function f is a function of the variables (θv, φv, θi, φi).

The CUReT database of reflectance functions contains measurements of
the bidirectional reflectance distribution function of 61 materials. Each ma-
terial is measured from 205 different values of (θv, φv, θi, φi). The database
is available at http://www1.cs.columbia.edu/CAVE/curet/.

4 Related Work

The use of reflectance functions for classification is explored by Dror et al.
in [5, 4]. They find that it is possible to distinguish materials based on
reflectance properties. Their motivation appears to be work by Fleming et
al. that indicates that humans make use of reflectance properties to identify
materials [8].

The CUReT database of reflectance functions is described by Dana et
al. in [3]. The Oren-Nayar reflectance model [15] and the Koenderink et al.
representation [9] are fit to the CUReT data by Dana et al. in [2].

There has been a great deal of research on reflectance models. The work
that was most influential to this project was the work of Lafortune et al. [10],
McCool et al. [14], and especially the work of Lensch et al. [11]. In each of
these papers, reflectance functions were approximated using a combination of
basis functions. However, the reflectance functions were approximated using
more complicated nonlinear optimization techniques than those used here.
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5 Method

There are multiple steps required to recognize materials using reflectance
properties. First, an accurate approximation of measured reflectance func-
tions from known materials must be made. Then, these accurate approxima-
tions can be used to classify materials.

5.1 Kernel approximation for reflectance functions

The CUReT database, described by Dana et al. in [3], contains BRDF
measurements for 61 different materials. These measurements are of the
form f(θv, φv, θi, φi) = y. This project requires accurate approximations of
these functions. The approach described here is to use kernel regression
techniques [6, 17, 7, 13] to approximate the given functions as accurately as
possible.

Kernel regression is implemented by solving the optimization problem:

min
(α,b)

1

2
‖α‖+

ν

2
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Where each row Ai of the matrix A is the coordinate (θv, φv, θi, φi) corre-
sponding to the measured BRDF value yi. Here, K is the commonly used
Gaussian kernel [18, 1, 12] given by: (K(A, B))ij = exp(−µ‖A′

i −B
�j‖

2), µ >
0. The vector e is a vector of ones of appropriate dimension. The two pa-
rameters of this problem are µ, which controls the width of the Gaussian
functions, and ν which determines the weight given the error between the
measured data and the approximation. If ν is large, then the amount of error
between the approximation and the measured data will be reduced, which
is appropriate if the measurements are believed to be very accurate. The
solution of the problem is the vector α and the scalar b which have the prop-
erty that f(θv, φv, θi, φi) = yi ≈ K((θv φv θi φi), A

′)α + be. The optimization
problem turns out to be convex for fixed µ and ν. Since it is differentiable,
its minimum can be found by taking its derivative and setting it equal to
zero. The result is the linear system of equations:
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The procedure used for selecting µ and ν is given as algorithm 1. Algorithm
1 uses ten fold cross validation to select the best parameters µ and ν from
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the given sets M and N respectively. Ten fold cross validation is necessary to
choose parameters that are likely to have good performance on unseen data.
Algorithm 2 describes the cross validation procedure in detail.

Algorithm 1 Kernel Regression(A, y, M , N):(α, b)
e←∞
p←∞
for all µ ∈M do

for all ν ∈ N do

t← tfcve(A, y, µ, ν) {Apply algorithm 2}
if t < e then

p← (µ, ν)
e← t

end if

end for

end for

(µ, ν)← p
(α, b)← kr-solve(A, y, µ, ν) {Apply algorithm 3}

5.2 Classification of reflectance functions

Once approximations of reflectance functions are available, they can be used
to classify materials. Given a set of reflectance function approximations, a
nearest-neighbor algorithm can be used to classify a set of new measurements.
The classification is performed by finding the function that is closest to the
measured values at the measured points. The procedure for classifying a
substance is described in detail in algorithm 4.

A limitation of algorithm 4 is that it only works with materials whose
reflectance functions have already been measured and approximated. The
experimental results discussed in section 6.2 indicate that it is possible to
identify materials with fewer measurements than are needed to make an
accurate reflectance function approximation. Define an unseen material to
be a material whose reflectance function has not been approximated. Then it
is possible to determine from only a few measurements of an unseen material
m that m is not one of the materials with a reflectance function that has
been approximated. This procedure is described in detail by algorithm 5.
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Algorithm 2 tfcve(A, y, µ, ν):e

Shuffle (A, y)
Partition (A, y) into folds {(A1, y1), (A2, y2), . . . , (A10, y10)} so that each
(Ai, yi) contains approximately 1

10
of the data in (A, y) and that the (Ai, yi)

are mutually disjoint.
e← 0
for i = 1 to 10 do

(Atrain, ytrain)←
⋃

j 6=i

(Aj, yj)

(α, b)← kr-solve(Atrain, ytrain, µ, ν) {Apply algorithm 3}
e ← e + mean(|K(Ai, A

′
train) ∗ alpha + be − yi|)/mean(|yi|) {Add the

average error for this fold}
end for

e← e/10

Algorithm 3 kr-solve(A, y, µ, ν):(α, b)

Solve equation (2) with A, y, µ, and ν to obtain α and b.

Algorithm 4 classify(F , A, y):(n, e)

F is the set of known reflectance functions. For f ∈ F , f(A) = ŷ, where ŷ
is the approximate value of f at the measured points A.
e←∞
n← −1
for all f ∈ F do

ŷ ← f(A)
if ‖ŷ − y‖ < e then

n← id(f) {id(f) is the identifier of the material corresponding to f}
e← ‖ŷ − y‖

end if

end for

Algorithm 5 Classify, and recognize unseen materials(F , A, y, t):(n)

Will return either the id of the material, or −1 if the material is unseen.
(n, e)← classify(F , A, y) { Apply algorithm 4}
if e ≥ t then

n← −1
end if
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In practical terms, algorithm 5 is only slightly more useful than algorithm
4. The improvement in utility is small because algorithm 5 still only recog-
nizes materials whose reflectance functions have been measured. The only
improvement is that it will no longer incorrectly classify an unseen mate-
rial using the material that happens to have the closest reflectance function.
The new algorithm does not, for example, measure how similar two unseen
materials are.

A proposed improvement to algorithm 5 is algorithm 6, which would be
able not only to recognize that unseen materials, but also to classify them.
That is, the new algorithm would be able to recognize whether two unseen
materials m and n, which are classified at different times, are the same mate-
rial. The improvement comes from a step in the algorithm that approximates
the reflectance function of an unseen materials with the reflectance functions
of the k closest materials. Using neighboring reflectance functions as a basis
for reflectance function approximation was inspired by the work of Lensch et
al. [11].

Algorithm 6 Classify with unseen materials(F , A, y, t, k):(n, F )

May augment F with the reflectance functions of new materials.
(n, e)← classify(F , A, y) {Apply algorithm 4}
if e ≥ t then

f ← approximate the reflectance function as a linear combination of its
k nearest neighbors
id(f) ← new unique id for this material
n← id(f)
F ← F ∪ {f}

end if

6 Experimental Results

The experiments investigate the performance of the techniques described
in the previous section for reflectance function approximation and material
classification.
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Figure 3: Approximation error for the 61 materials in the CUReT database.

6.1 Reflectance function approximation from data

This experiment demonstrates the performance of kernel regression on re-
flectance function approximation. Each of the 61 materials in the CUReT
database was approximated from the measured data. The results are shown
in figure 3. The error reported is the 10 fold cross validation error for each
material. That is, the data for each material was broken into 10 training and
testing sets. Algorithm 1 was run on each training set to obtain an approx-
imation, which was then evaluated on the testing set. The error reported
is the average error over all the testing sets. Note that this cross validation
procedure is performed in addition to the procedure described in algorithm
2 that selects the parameters.

Figure 3 shows that many of the materials can be approximated very
accurately using kernel regression. Note that 27 of the approximations have
less than 10 percent average error. The parameters used in obtaining these
results were M = {0.1, 1, 10, 15} and N = {10, 1000, 1000000}. It is likely
that better results could be obtained with larger M and N . The most accu-
rate approximation was that of sample 10, plaster, which had average error
2.71 percent. The least accurate approximation was that of sample 41, brick,
with average error 32.49 percent.
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Figure 4: Classification error for the CUReT database.

6.2 Classification of materials using reflectance func-

tions

To test classification of materials using reflectance functions, approximations
were made using only some of the CUReT data. The data not used to create
the approximations was then used to evaluate the accuracy of the classifi-
cation system. Figure 4 shows the results of an experiment that evaluates
the classification accuracy. This experiment was performed by fitting the
approximations to a given fraction of the data for the substance, and then
attempting to classify the substance using the remaining data and algorithm
4. This process was repeated 10 times for each fraction of the data, with a
random fraction of the data selected for fitting the approximation each time.

In figure 4, note that the trend is for the classification accuracy to improve
as the fraction of the data used to make the approximation increases. The
approximations were made using algorithm 1, with M = {0.1, 1, 10, 15} and
N = {0.1, 1, 10, 15}. It is likely that performance would improve with larger
M and N .
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Figure 5: Classification error for the reduced database.

6.3 Results on a reduced database

In order to deal with unseen materials, very accurate approximations of
the reflectance functions are needed. To achieve this accuracy, a reduced
database containing only those materials whose approximation error was less
than 10 percent. These substances are pebbles, three kinds of plaster, ribbed
paper, salt crystals, stones, and concrete. Although one cannot make the
claim that the results achieved on this reduced database will extend to the
full database, this smaller database allows algorithms to be developed and
tested quickly. Also, there is a hope that improving the accuracy of other
reflectance function approximations will cause the results achieved on this
database to apply to the full database. On the other hand, algorithms that
fail on this database can be discarded. Thus, the reduced database serves as
a convenient filter for algorithm development.

Figure 5 shows the results of classifying materials based on their re-
flectance functions. This figure was created using the same method as figure
4 in section 6.2, but only the 8 samples in the reduced database are consid-
ered. As seems natural, the average classification error is much reduced from
figure 4. This reduction implies that classification error may go down with
decreasing approximation error even for the full database.
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The improved classification accuracy on the reduced database indicates
that it may be possible to use the reduced database to test the procedures
for classifying unseen materials. In preliminary experiments, it was possible
to identify unseen materials correctly using algorithm 5 with little or no
error, although algorithm 6 was less successful. This result may indicate that
it is necessary to use a more sophisticated method of reflectance function
approximation for the unseen materials, such as that of Yu et al. [19] or
Ramamoorthi and Hanrahan [16].

The method used to test the performance of algorithm 6 was as follows.
This procedure simulates the arrival of measurements from an unseen ma-
terial at two different times. The goal is for the system to recognize that
the two separate sets of measurements are of the same material. 40 percent
of the measurements for each material was randomly selected for classifi-
cation. This data is referred to as the classification data. The remaining
data was used to obtain function approximations with algorithm 1, result-
ing in a set F of reflectance functions. Then, each of the materials m is
given a turn at being “unseen” in the following manner. One half of the
classification data for the material was used in an attempt to classify the
material using the known reflectance functions F ′ = {f |id(f) 6= m}. If the
result was that the material was unseen, then linear least squares was used
to find a set of weights w with the k nearest materials, and the function
f ′(θv, φv, θi, φi) = [fk(θv, φv, θi, φi)]w, where [fk(θv, φv, θi, φi)] is the row vec-
tor of functions that are one of the k nearest neighbors. Then the remaining
half of the classification data was used in an attempt to classify the material,
this time using F ′′ = F ∪ {f ′}. The result was considered correct only if
the closest material had function f ′, and it was within the threshold used to
accept or reject materials. The average error over all of the materials was
reported. Using a threshold of 20 percent and k = 7, an error of 50 percent
was obtained. This result means that 50 percent of the time, the algorithm
correctly recognized that the first classification measurements were of an un-
seen material and that the second classification measurements were of the
same unseen material. As a control, algorithm 5 was run using the same
threshold, achieving an error of 0. The performance of this algorithm may
be improved by a method to tune or the parameters t and k.
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7 Conclusion and Future Work

This project has applied kernel regression to the problem of reflectance func-
tion approximation and presented a mechanism that allows the resulting
approximations to be used for material classification. The process was ex-
tended to consider unseen materials, and some preliminary results were re-
ported. Although the results for dealing with unseen materials are not as
high as might be hoped, there is potential to improve them using more so-
phisticated techniques. Future testing is needed to evaluate the performance
of the algorithms for dealing with unseen data on the complete dataset.

Some obvious extensions to the project include using larger numbers of
possible parameters in M and N , and exploring other reflectance function
models. Such improvements would hopefully improve the accuracy of the
approximation. To improve the classification accuracy, classification algo-
rithms such as support vector machines or artificial neural networks can be
investigated. To make such algorithms more effective, substances with simi-
lar reflectance functions could be grouped together, possibly by using unsu-
pervised clustering algorithms. This grouping process would also make the
approach scale better for larger numbers of materials, and could remove the
parameter k from the procedure for approximating reflectance functions of
unseen materials in algorithm 6. This parameter would no longer be needed,
since each unseen material could be approximated using the functions in its
own group.

Further extensions to the project would involve making the classification
process work when the geometry and illumination are unknown. Techniques
mentioned in class could be used to approximate the geometry, and methods
such as that of Ramamoorthi and Hanrahan [16] can be used to recover
illumination under some conditions. In fact, use of these methods is likely
to result in an approximation of the reflectance function. However, if it is
known a priori that the materials in the scene have reflectance functions
that are already approximated, then the material with the closest reflectance
function to the approximation can be used to improve the estimate of the
geometry and the illumination.
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