Cornell University
Computer Science 664

Computer Vision

Edge Detection

1 Low Level Vision

One of the primary goals of ‘low level’ vision is to extract geometric information from
images. Low level vision operations include such things as edge detection and stereopsis.
The process of edge detection is to identify locations in an image where the image intensity
(brightness) changes quickly; in other words, to find the intensity boundaries in the image.
The process of stereopsis is to synthesize a depth map from two or more intensity images;
in other words, to determine the distance to objects given multiple intensity images.
Edge detection thus recovers information about the two-dimensional geometry of the
image, and stereopsis recovers information about the three-dimensional geometry of the
scene. In both cases, we are extracting information about the geometry of the world from
intensity images of the world; getting from images to geometry.

The images from most sensing devices are quantized both spatially and in terms of the
values at each location in space. For example, a ‘photograph’ taken by a video camera
and then digitized by a computer consists of a set of pixels (discrete locations), with an
intensity value at each pixel. These intensities also take on discrete values in some range,
generally 0-255. Common video images are of approximately 500 x 500 pixels. This is
extremely low resolution compared to the human eye, or to many other sensors (such as
scanners used for inputting documents, which have resolutions of between 300 and 600
pixels per inch). For instance, if you hold your hand at arms length and look at your
thumbnail, the resolution of your fovea over this small area is about the same as the
resolution of a video camera.

We will consider a number of different sensing devices, although our work will focus
primarily on visual-range sensing devices (cameras). Many of these other kinds of sensors
also produce ‘grey level’ images, in which the pixels take on a range of discrete values. For
instance, there are sensors which measure the distance to the closest object —a ‘depth map’
(e.g., using time of reflection information). These sensors return an array of pixels where
the value at each pixel indicates distance, rather than intensity. Most of the techniques
that we discuss in this section of the course apply equally well to such non-visual spectrum
sensing devices.

1 Copyright (© 1992, 1993, 1995 Daniel Huttenlocher

2 Edge Detection

We can express an idealized goal of the edge detection process: to produce a line drawing
of a scene from an image of that scene. In its idealization, however, this goal is a gross
oversimplification as we will see momentarily. Observe that, in general, the boundaries
of objects in a scene tend to produce intensity boundaries in an image of that scene. For
example, different objects are usually different colors or hues, which produces intensity
changes in the image. In addition, different surfaces of an object receive different amounts
of light, which again produces intensity changes. Thus geometric information, as might be
conveyed in a line drawing, is encoded in the intensity changes in an image. Unfortunately,
there are also a large number of intensity changes that are not due to geometry, such
as surface markings, texture, and specular reflections. Moreover there are sometimes
surface boundaries that do not produce very strong intensity changes. Therefore the
intensity boundary information that we extract from an image will tend to indicate object
boundaries, but not always. In some scenes it will be truly awful.

Figure 1a is an image of a simple scene, and Figure 1b shows the output of a particular
edge detector on that scene. We can see that for this image the edge detector produces a
relatively good ‘line drawing’ of the scene. However, say we change the lighting conditions
in this scene, as illustrated in Figure 2a. Now the edge detector produces an output that
is substantially less like a line drawing, as shown in Figure 2b. Our first lesson is thus that
illumination conditions make a huge difference in the information that an edge detector
extracts from an image.

While artists do use shadow information in producing line drawings, they somehow
indicate which edges are due to shadows (for example by making blurry lines for shadow
edges). Moreover, an artist tends to draw edges corresponding to object boundaries that
are totally hidden in shadow. The automatically generated edges in Figure 2b miss many
object edges that are hidden in the shadows, such as the bottom front corner of each of
the blocks resting on the table.

Before considering some edge detection methods, we briefly summarize the goals of
these methods and some of the difficulties with them. The primary goal of edge detection
is to extract information about the two-dimensional projection of scene geometry for use
in higher level processing, such as recognition, navigation, and hand/eye tasks. However,
there are many types of physical events (in the scene) that cause intensity changes (or
edges in the image). Only some of these physical events are geometric,

e object boundary — discontinuity in depth and/or surface color and texture
e surface boundary — discontinuity in surface orientation and/or color and texture
e occlusion boundary — discontinuity in depth and or surface color and texture

others do not directly reflect geometry (though we may be able to derive some geometric
information from them, at least indirectly):

e specularity — direct reflection of light, such as a mirror

Figure 1: An image of a simple scene and intensity edges extracted from that image.

Figure 2: A less good image of the simple scene and intensity edges extracted from that
image.

e shadows — from other objects, or part of the same object
e interreflections
e surface markings, texture, color changes

Note that much of the work in the field of computer graphics is concerned with the
inverse of the problem described here — given the geometry of a scene, render a realistic
looking image. In low level vision we are given an image of a scene, and wish to recover
the geometry. Unfortunately, the image contains so many kinds of information, that it
is considerably harder to get the geometry from the image than it is to render an image
given the geometry (not that the graphics problem is easy either!).

2.1 Local Edge Operators

In this section we will look at some local operators for identifying edges, and consider
some of their limitations. Throughout this section (and much of the course in general) we
will refer to an image as I(x,y), which denotes intensity as a function of some (arbitrary)
coordinate system. In order to identify edges, we are interested in finding regions of
the image where there is rapid change in the values of I(z,y). Thus we consider local
differential properties such as the gradient of the image intensity,

ol oI
=& 2.
v <8x’8y)

This is a vector valued quantity which can be thought of intuitively as pointing in the
direction of ‘steepest descent’ at each location (z,y) (or alternatively steepest ascent).

The magnitude of the gradient vector reflects how rapidly things are changing in this
direction of steepest descent. Actually we usually use the squared gradient magnitude, to
avoid computing the square root (moreover we often sloppily refer to the squared gradient
magnitude as the gradient magnitude),

- ()3

Simplistically speaking, where the squared gradient magnitude is large, there is an edge.
That is, the image intensity is changing quickly and thus this is a boundary, or edge, in
intensity. Of course, this begs the question of what is a ‘large change’. We will return to
this issue below (and never really find an answer that is totally satisfactory).

One nice property of the gradient magnitude is that it is rotationally symmetric, or
wsotropic. This means that it is insensitive to the orientation of the gradient vector,
which is often desirable. In other words, an edge is an edge is an edge — regardless of the
orientation of that edge with respect to the (arbitrary) Cartesian coordinate system. Two
less desirable properties of the gradient magnitude are that it is a nonlinear operator, and
it loses information about which side of an edge is brighter (due to the squaring which

loses sign information). The ‘problem’ with nonlinear operators is that in general we don’t
understand their behavior as well as for linear systems. While a complete understanding
of signal processing and linear shift-invariant systems is beyond the scope of this course,
we will touch on some of the issues below (because without them you cannot really
understand edge detectors).

Another local differential operator is the Laplacian of I(z,y),

0*1 9’1

This second derivative operator is rotationally symmetric and also preserves the sign of
brightness difference across an edge. The zero crossings (sign changes) of V21 correspond
to intensity edges in the image, and the sign indicates which side of an edge is brighter.
The Laplacian is the lowest order linear combination of partial derivatives that is isotropic
(rotationally symmetric). Recall that rotational symmetry is generally viewed as desir-
able, otherwise our edge detector is more sensitive to some edges than others. Later on, we
will see that the visual systems of humans and other animals seem to have both isotropic
and non-isotropic filters.

Finite Approximations

In machine vision we do not have continuous image functions I(x,y) that we can differ-
entiate in order to compute quantities such as the gradient magnitude and the Laplacian.
An image is digitized both in space and in intensity, producing an array I[j, k] of ‘inten-
sity values’. These intensities are generally integers in some range, and their magnitude
usually reflects the brightness level (0 is darkest and the maximum value is brightest).
Thus in order to compute local differential operators, we use finite difference approxi-
mations to estimate the derivatives. For example, for a discrete one-dimensional sampled
function, represented as a sequence of values (such as an array) F'[j], we know that

dF
—x Flj+ 1| - Flj
I [+ 1] = F[j],
and PF
WzF[j—l]—QF[jHF[jJrl].

Thus we can approximate the squared gradient magnitude ||VI||? = (0I/dz)* + (01 /0y)*

at the center of a 2 x 2 grid of pixels as follows. Consider the 2 x 2 discrete array, I[j, k],
labelled as:

bk | jtLk
Jk+1 [j+1, k+1

Note that we consider the j-axis to be increasing to the right, and the k-axis to be
increasing downwards.

Directly estimating the gradient using the finite difference approximation shown above
has the undesirable effect of causing the horizontal and vertical derivatives to be estimated
at different points. Thus we estimate the derivatives using axes that are rotated 45 degrees
(m/2). The value of the partial first derivatives at the center of the 2 x 2 grid (where the
grid lines cross) are given by,

oI

R Ili4+1.k+1] =TIk

5 J+1,k+1] =I5, k],
and o1

Il k+1] =TI+ 1k

97 [, k+1] = I[j + 1, K]

So the squared gradient magnitude is

(g_l> *(%) ~ (L + 1k + 1] = 10, KD + (UG k+ 1] = 1+ LE)% (1)

Note that this computation shifts the grid. These expressions give a finite difference
approximation to the value of the gradient, and its squared magnitude, for a grid that is
centered at the boundaries between the cells of I[j, k|, rather than on the cells of I[j, k.
For many applications it is fine to ignore this small bias, and to simply compute the
gradient magnitude using equation (1).

Now we can write a simple program to compute the squared gradient magnitude using
this equation:

for 7 from 0 to 2max — 1
do for j from 0 to jmax —1

This yields an array M[j, k] with ‘large’ values where the intensity is changing quickly.
(Note that we assume the arrays are zero-based, and that the array M|z, y] is undefined
for ¢ = 9max or j = jmax, because otherwise we would access beyond the boundaries of
I[j,k].) We can threshold the array M|j, k] to locate ‘edges’, because large values indicate
an edge. We will see below that this does not yield a very effective edge detector.

To estimate the Laplacian, V?I, we need a 3 x 3 grid of pixels because as we saw
above the finite difference approximation to the second derivative is approximated using
3 values. Thus if we consider the 3 x 3 array I[j, k| indexed as follows:

i1, kL [, kbL |+l k1
J_lak .]ak J+1ak
L kL | g, k1 | G+, k1

The second directional derivatives at the center of this array are

ﬂ~I['—1 k| —2I0j, k] +1[j + 1,k
(9:U2N J ’ Js J s vy

and
01

ay?

So the Laplacian, which is just their sum, is

~ gk — 1] — 2105, k] + I[j, k +1].

VIR I[j = Lk +I[j. k= 1) + 1[5 + 1, k] + 1[5,k + 1] — 41[j, &] (2)

We can view this just in terms of the coefficients 1,1,1,1, —4 of equation (2) and their
relative locations on the grid. So using the same 3 x 3 grid as just above, this yields
coefficients at each location of,

1
11411
1

These coefficients can be viewed as a ‘mask’ or ‘stencil’. That is, in order to compute
equation (2) at some location I[jo, ko, this mask is placed centered at (jo, ko) on the grid
I[j, k], and the sum of the products of the mask with the corresponding values of I[j, k]
is computed. In other words, this mask is just another way of writing down equation (2).

To compute the Laplacian, VI, for the entire image I[j, k], the mask is shifted to be
centered at each location (j, k) and the sum of products is computed to yield the value of
the Laplacian at that (7, k). This operation of placing a mask at each location in an image,
and summing the product of the mask with the image is the discrete version of what is
known as conwvolution. We will discuss convolution in more generality below, because it
is necessary for understanding better (nonlocal) edge operators.

Note that on a rectangular grid its hard to come up with an approximation to V? that is
rotationally symmetric (even though the continuous operator is symmetric). Certainly the
computation specified by equation (2) is not rotationally symmetric — it depends critically
on the orientation of the axes. For example, if we consider a 45° rotated coordinate system,
then we get

-4
1 1

A particularly accurate approximation to the Laplacian is given by a weighted sum
of the above two approximations, where the x-y-oriented term is weighted approximately
twice as much as the diagonally oriented term. This results in a mask of

114 |1
4 1-20
114 |1

(The exact reasons for these coefficients have to do with the grid sampling and can be
found in [3].) Note that the sum of these coefficients is zero, which is required in order

for the computation not to be biased towards positive or negative (i.e., towards increases
or decreases in the image intensity).

The Laplacian is a second order differential operator. Thus large changes in the original
image I[k,l] will be reflected by zero crossings in the Laplacian (places where the value
of the Laplacian changes sign from positive to negative and vice versa). Recall also from
above that the sign of the Laplacian indicates which side of an edge is brighter or darker.
Thus in order to identify edges in an image using this operator, we first compute V2I
and then find the zero crossings (sign changes). We will not consider the computation of
V2I in more detail here, because the more general discussion of convolution below will
subsume the ‘particular’ mask that we have developed here for the Laplacian.

Now we’ve seen two local (2 x 2 or 3 x 3 pixels) operators for detecting edges — the
gradient magnitude and Laplacian (which are first and second order differential operators,
respectively). Unfortunately these operators are almost always terrible in practice. This
is the first of many “sounds good but doesn’t work” stories in computer vision. The
central problem with these local operators is that there is substantial local variation in
a digitized image, and much of this variation is ‘noise’ rather than information regarding
the scene. While a discussion of these noise sources is beyond the scope of this course,
they are due to factors such as the Poisson nature of the individual photo sensors in many
sensing devices and errors in the analog to digital conversion. As a result, there are many
local changes in an image that are not due to the scene at all.

In practice this local variability in an image causes ‘edges’ to appear nearly everywhere.
For example, Figure 3 shows the result of running a local gradient magnitude edge detector
(similar to the simple program given above) on the image shown in Figure la. Contrast
this with the edges from Figure 1b to see that we can do much better (with some nonlocal,
or at least less local, edge operators).

Computer Vision Research

This brief introduction to local edge operators actually reflects a larger methodology, or
approach, to research in computer vision. We start with a statement of a problem that
we want to solve, such as find the edges, and derive a mathematical formulation of that
problem. Then we implement some method based on the mathematical formulation, often
a discrete approximation to some continuous mathematics. The implementation is then
tested on some data (either from real sensors or synthetically generated data, though
real data is nearly always better because of the difficulty of synthesizing ‘realistic’ data).
Finally, based on the performance we derive a refined statement of the problem, and begin
again. This process iterates until a desired level of performance on the problem has been
attained, or until we run out of ideas about how to refine/improve the methods.
Thus one paradigm for computer vision research is:

1. state the problem and derive a mathematical formulation
2. implement a method based on the formal problem description

3. test the method (using synthetic and/or real data)

9

Figure 3: Local edges extracted from the ‘good’ image of the simple scene.

4. evaluate the results and refine the method (or reject it)

One of the interesting things about this paradigm is that in order to be successfully
applied it requires a broad range of skills. The mathematical formulation of a problem
can involve many different branches of mathematics (as we will see during the semester).
Some major areas that we will touch on are differential equations, linear algebra, topology,
group theory, combinatorial geometry, and differential geometry. The implementation of
a method requires good algorithmic skills and often also requires a good understanding of
numerical properties of different methods (as well as good systems and coding skills), thus
spanning a wide range of areas in computer science as well. Finally, the ability to test
and refine a method requires experimental skills as one generally finds in biology, physics,
and similar fields. This makes computer vision a lot of fun, because we can combine skills
from a number of quite different fields.

Returning to the problem at hand, of refining our edge detection methods, we will
consider some changes to the Laplacian and gradient magnitude operators to yield meth-
ods with larger “areas of support”. That is, we will develop techniques that consider
a larger neighborhood of the image, in order to cancel out (or smooth out) small local
changes. This will also involve a small detour into linear systems and convolutions, in
order to enable us to understand these new methods. We will end up with two different
resulting edge detectors. One, based on the smoothed gradient magnitude, was originally
developed by Canny [2]. The other, based on the Laplacian of Gaussian, or V2G, was
originally developed by Marr and Hildreth [5].

10

Historical Notes

Over the last 25 years there have been a number of other local edge operators developed,
which can mainly be understood in terms of the directional first and second derivative
operators that we have just discussed (although they were not always presented that way
in their original development). A more detailed discussion of some of these operators
can be found in Ballard and Brown’s book [1]. As one example, the Sobel operator is a
first derivative operator in which the approximation to the directional first derivative is
F[j+1] — F[j — 1], as opposed to F[j + 1] — F[j] as used above. The Sobel operator also
uses a simple form of local weighting (which we will consider in more detail in the follow-
ing section, when we discuss smoothing). The mask, or template, for this (directional)
operator is

-110)1
2102
-110)1

for the derivative with respect to x. Note that since this edge operator is not isotropic
(is sensitive to the edge orientation) a number of different edge operators must be used,
sensitive to edges in various directions. This contrasts with the Laplacian and the gradient
magnitude methods described above. For many biological vision systems, however, it
appears there are orientation-selective filters and thus it may be that such filters are
used in edge-detection type operations in these systems (there are also isotropic filters in
biological vision systems so the evidence is not conclusive one way or the other).

These local edge operators (and 4 x 4 or 5 x 5 versions) work slightly better in practice
than the edge operators we have discussed so far. The main reason is that they do some
local averaging (or weighted smoothing) of the image as part of the processing. We now
turn to a discussion of local smoothing operations, and then we put together the local
smoothing with the Laplacian and gradient magnitude edge detectors. The resulting
methods work better than local methods such as Sobel.

3 Convolution and Smoothing

We saw in the previous section that to detect edges in an image, we can use first and
second order spatial derivatives. In particular we considered the Laplacian

oI 01
2]’ _ - e
v ox? + 0y?

and the squared gradient magnitude

aI\> [or\’
I = | =— -1 .
= (5) +(5)

We also saw how to approximate these quantities on a discrete grid. One remaining
problem, however, is that sampled images contain a lot of high-frequency ‘noise’. We saw

11

the effects of this in Figure 3, where the application of a local gradient magnitude edge
detector yielded many small edges.

This problem can be abstracted with the following example. Consider an array of
numerical values,

S| O U O
U OO

S| | Oy O

| U1 OO| Ot

This array has local ‘boundaries’ all over the place — nearly none of the neighboring values
are the same. Yet, the changes are very small, and there are not ‘regions’ of similar value.
What we would like is to produce a different array, such as

66|66
66|66
66|66
66|66

from the original array. This process of removing spatial high frequencies (small local
changes) is known as lowpass filtering. We will discuss a particular method of lowpass
filtering, which is done by convolving an array (in this case the image) with a lowpass
filter function (generally a Gaussian operator, or normal distribution).

Note that this case should be distinguished from an array of values such as

25|56

2915|6|6
515|6|6
51666

where the differences are still relatively small, but there are two distinct regions (of value
5 and value 6). We don’t want the filtering operation to remove these sorts of distinctions,
and in fact we will be able to do this by appropriately selecting a scale or spatial extent
for the lowpass filtering operation.

So we’ll spend most of this section on a ‘detour’, looking at convolution and now to
implement it on a grid (or array). As in the previous section, we start with the continuous
case because it is simpler to express, and then we look at finite approximations on a grid.

Consider the following function g(z,y), defined in terms of f(z,y) and h(z,y),

g@y) = [[f@—€&y—mh(ndsdn. (3)
We say that g is the convolution of f and A, which is written as

g=f®h.

12

A WAWAWAWAN
Figure 4: Illustration of one-dimensional convolution (see the text).

Convolution is commutative, which can be seen by a simple substitution, a« = z—§, 3 =
y — 1 then rename o to £ and 3 to 7,

aRb=>bRa.
Convolution is also associative
(a@b)@c=a® (b®c).

These two properties are very useful because they allow us to rearrange computations in
whatever fashion is most convenient (or efficient).

The double integral in equation (3) may not immediately leap out at you as being
intuitive — every point of the output is the sum of the product of h with a shifted version
of f. This is a bit easier to illustrate for a one-dimensional function,

9@) = [@ - he)de

oo

Consider f being the square wave shown in Figure 4a, and h being the ‘bell shaped’
curve shown in Figure 4b. The value of g(zg) is then obtained by integrating (summing)
the product of h with f shifted by zo. In other words, to compute g(xy) we can view h
as being superimposed on f at ‘location’ zy, as illustrated in Figure 4c. Because of bell
shape of this particular function A, which is nearly zero-valued for most of its range, it
is mainly the nearby values of f(xo) that determine the value of g(xg). To compute g(x)
for all z, f is shifted to each position with respect to h, resulting in the output shown in
Figure 4d.

Convolution is considerably harder to visualize at first than operations such as multi-
plication, because the value of f ® h at any point is the result of all the points of f and

13

h, not just single points. It should be noted that convolution in the spatial domain is
equivalent to multiplication in frequency domain, something that we will return to later.
It is thus easier to understand convolution in terms of its frequency domain effects.

Convolutions are equivalent to linear shift invariant systems (LSI) — a topic central
to much of signal processing which we will only touch on here. Say you are given a black
box h, such that when the function f; is input to the box the function ¢; is output, and
when the function f5 is input, the function g, is output,

fi —[h]—a
fo —[h] — g

We say that h is linear shift invariant (or LSI) when it obeys linearity,

afi +p6f, — — agy + [g; for any a, 3

and it is shift invariant

fi(lx —a,y—b) —>—>g1(zc—a,y—b) for any a,b .

In practice most physical systems only exhibit linear shift invariant behavior over some
range (if at all). For example linearity is violated due to saturation effects — most systems
cannot handle arbitrarily large (or negative) inputs. Similarly, most systems are only shift
invariant over some finite extent. Any linear shift invariant system can be implemented
with a convolution (where the input f is convolved with the function A computed by the
black box, yielding the output g). Conversely, any convolution is a linear shift invariant
System.

3.1 Discrete Convolution

In the discrete case, assume we have a square n X n array (sampled function) A[z, j],
0<i<mn,0<j<n,and f[i,j]is at least as large as h (at least n x n). We define

n—1n—1

glk.yl =323 fle = [n/2] + i,y = [n/2] + jlhli, j]

i=0 j=0

to be the discrete convolution of f and h (where |x] is the integer part of x).

That is, each point xg, 3o of g[z, y| is obtained by ‘placing’ h centered at xg, yo over f,
and summing the products of the individual entries of f and h. It is trivial to write a set
of nested loops to do this computation.

for x from xzmin to xmax
do for y from ymin to ymazx
do sum =20

14

for ¢ from 0 to n—1
do for j from 0 to n—1
do sum = sum + flx — |n/2| +i,y — |n/2] + j]hli, j]
glz,y] = sum

Note that there is an issue of how to choose the minimum and maximum values of the
iteration variables x and y. Clearly these depend on the extent of f[i, j] (mxm) and hli, j]
(n x n), but they also depend on the method that is used to determine values ‘outside’ of
the extent of f. For example, if x and y range over just the locations that place all of h
inside of f, then xmin and ymin are |n/2]|, and zmaz and ymax are m—|n/2|. However,
it is also possible to ‘pad’ outside the array f, to obtain an array g that is the same size
as f. This amounts to handling the situations where h is positioned partially outside of
f as special cases. In any implementation, these boundary issues are very important.

This discrete convolution is exactly what we were doing with the templates for com-
puting the Laplacian in the previous section. That is, in order to compute the discrete
approximation to the Laplacian, we set the array A[i, j| to be the mask

114 |1
41-201]4
114 |1

from the previous section, and make the array f[i,j] be the image, I(x,y). Then the
convolution g[i, j] is (the discrete approximation of) the Laplacian of the image, VI,

VI & I[i, j] © hli, 5] .

In the previous section we derived this mask as an approximation to the Laplacian V2,
thus we have in a roundabout sort of way shown that discrete convolution can be used to
compute finite differences (approximations to derivative operators)! That is, derivatives
are just linear shift invariant functions, and thus convolutions can be used to compute
them. In fact, this is true in the continuous case as well (but we need to introduce 6
functions). It is worth remembering that differentiation is a type of convolution; that is,
differentiation is a linear operator (LSI system). We return to this further below.

3.2 Smoothing Using Convolution

Now we want to use the convolution operator to smooth, or lowpass filter, an image in
order to handle problem of high-frequency variation (sampling differences from one pixel
to the next). This was the problem that motivated us to consider convolution in the first
place. A simple-looking way to do this sort of smoothing is to simply average together
neighboring values. This can be accomplished with an n x n mask that has the value 1/n?
at each location. For example, a four by four version of such a mask would be

1/16 | 1/16 | 1/16 | 1/16
1/16 | 1/16 | 1/16 | 1/16
1/16 | 1/16 | 1/16 | 1/16
1/16 | 1/16 | 1/16 | 1/16

15

Convolving this mask, hli, j], with an image f[i,j] computes the average value over a
4 x 4 neighborhood for each resulting location of g[i, j| (by simply summing 1/16 of each
of 16 values). However, the sudden truncation of this mask has unfortunate frequency
domain effects — it causes high-frequency noise (which is known as Gibbs phenomenon,
or ringing). While a formal derivation of this fact is beyond the scope of this course,
intuitively one can see why this is true. As the mask A[i, j] is shifted across the image
fli, j], noise at the edges of a given mask position will produce significant noise in the
output — because the noisy value will be part of the sum at one position of the mask,
and then completely absent from the sum at the next position of the mask. One way
to avoid this problem is to weight the contributions of values farther from the center of
mask by less. Then as the mask is shifted along, there is only a very small change at the
boundaries where values are ‘no longer selected’ by the mask.

We use a Gaussian to do this weighting (other functions work too). In one dimension,
the Gaussian is given by . .

€22 |

Go(x) =

2ro

This is the canonical ‘bell-shaped’ or ‘normal’ distribution as used in statistics. The

maximum value is attained at G, (0), the function is symmetric about 0, and [G, (z)dz =

1 (the area under the function is 1). The parameter ¢ controls the ‘width’ of the curve —

the larger the value of o the slower the function approaches 0 as + — oo (and x — —o0).
In two dimensions, the Gaussian can be defined as

1 (z2+y?)
Gy(x,y) = e 202
(@,9) =5
or equivalently
1 2
GU r) = € 202
(r) 2mo?

where r is the distance from the origin, rather than explicit (x,y) coordinates.

Note again that [[G,(z,y) = 1. One effect of this is that [[G,(z,y)® f(z,y)dzdy =
[| f(z,y)dzdy. In other words, convolving a Gaussian with another function will preserve
the area under the original function.

In the discrete case we wish to form some sort of mask, analogous to the ‘averaging’
mask considered above that had values of 1/n? at each location. While the Gaussian is
defined across the entire domain [—o0, o], in practice we can truncate the function after
some point, because the value of G, becomes very small beyond some value. In general we
use [—40,40|, because the value of G,(40) is very close to zero. Note that if we truncate
the Gaussian too quickly (say at +20), then we get the same effect that occurs when we
simply average — the values near the edge of the mask are relatively large and thus a good
deal of high frequency noise is produced when the mask is shifted from one position to
the next.

The discretely sampled function, or mask, should sum to 1 just like in the continuous
case (where the integral over the entire domain is 1). The simplest way to do this is to

16

compute the un-normalized Gaussian

(2452

ga[iuj] =€ 207

for each integer grid point (i, j), where ¢ and j range over +4c¢ (i.e., the origin (0,0) is
at the center of the mask). Then each element is divided by the sum of all the elements,
in order to yield a normalized (sampled) Gaussian which sums to 1. That is, G,[i, j] =
ga[iuj]/sa where S =3 Zj ga[iuj]'

For example, if 0 = 0.5 then we obtain a 5 x 5 mask (with center at (0,0) and out to
+40 = +2). The values sum to 1 and the entries are symmetric about the origin:

6.96E-8 | 2.80E-5 | 2.07E-4 | 2.80E-5 | 6.96E-8
2.80E-5 | 0.0113 | 0.0837 | 0.0113 | 2.80E-5
2.07E-4 | 0.0837 | 0.618 | 0.0837 | 2.07E-4
2.80E-5 | 0.0113 | 0.0837 | 0.0113 | 2.80E-5
6.96E-8 | 2.80E-5 | 2.07E-4 | 2.80E-5 | 6.96E-8

If we assume that this mask G,[i,j] is indexed from —40 to 40 (i.e., the origin of the
mask is at its center), which in this case is —2 to 2, then the convolution of the mask
with the image is given by

% 40

Liz,yl= Y Y Iz+i,y+]G] .

i=—40 j=—40

(4)

This resulting array I,[x, y] is a lowpass filtered (or smoothed) version of the of the original
image I. Figure 5 shows a smoothed version of the image from Figure 1, where the image
has been convolved with a Gaussian of ¢ = 4. Compare it with the original image.

There is a tradeoff between the size o of GG, and the ability to spatially locate an
event. If o is large, we no longer really ‘know’ where some event (such as a change in
intensity) happened, because that event has been smoothed out by a factor related to
0. This issue will become more apparent when we talk about using smoothed images for
edge detection, in the following section.

Efficiently computing G, ® [

A ‘direct’ implementation of discrete convolution, as shown in equation (4) requires
O(m?n?) operations for an m x m mask and an n x n image. The mask is positioned
at each of the n? image locations and m? multiply and add operations are done at each
position. In the case of Gaussians, the operator is separable and we can use this fact to
speedup the convolution (for this restricted set of separable operators) to O(mn?). This
is a significant savings, both theoretically and in practice, over the direct implementation.
Any smoothing method (or edge detector) that uses separable filtering operators should
be implemented in this manner.

17

Figure 5: Lowpass filtering (smoothing) an image with a Gaussian filter.

We note that
1 =t (m2+21»'2
e 2

) = Gm(.’L', y) Gy(x’ y)

G = c
where ,
1 (2
Go(z,y) = NP ’ <”)
and

Gyl = A e*(5).

In other words, the rotationally symmetric Gaussian, G, is just the product GG, of
two orthogonal one-dimensional Gaussians. In the discrete case if we have two column
vectors g, and g, that contain values approximating G, and G, respectively, then g, gyT =g
(where g approximates the two-dimensional Gaussian G),

That is, each entry [i, j] of g is the product of the i-th entry of g, with the j-th entry of
Gy-

18

How do we use this fact to speed up the computation? We further note that G(z,y) =
Gi(,y) © Gi(a, y), where

-

1

2ro

|H

NN
[

& ay) = ——e? () 5y)

and

y2

—1

G0 = e () oe)
and 6 is the unit impulse (or Dirac delta function). Intuitively speaking, the unit impulse
can be thought of as being zero everywhere except at the origin where it is ‘infinite’. In
particular it obeys the property that [°§(x)dz equals 1 over any interval [a, b] containing
the origin, and equals zero over any other interval. The unit impulse is not a function in
the classical sense, because we do not specify it by giving a value of §(z) for each x. One
way to think of the unit impulse is in terms of its integral, which defines the unit step
function,

where u(z) = 1 for z > 0 and u(z) = 0 for < 0. Conversely, the derivative of u(x) is
o(z).

In effect we are using the delta function as a technical ‘trick’ to turn the product
G = G,Gy into the convolution G = G} @ G. The delta function acts to ‘select’ just
one value in computing the convolution — all the other values are zero. Recall from above
that convolution sums the product of all the elements of two functions in order to produce
one element of the output function, so the delta function can be thought of as selecting a
single element (by multiplying all the others by zero).

Thus,

GRIl=(GoG)al=G600(G,aI),

by the fact that G = G} ® G} and the associativity of the convolution operator. This
means that in order to compute the convolution of G with I, we can instead first convolve
G with I and then G with the result (note we could alternatively first convolve Gy with
I and then G% with the result, by the commutativity of convolution). Why is this an
advantage? Because most of the entries of G; and G, are zero (due to the delta function
in the definition of these functions), many of the multiplications and additions do not
need to be performed. It is easiest to see this in the discrete case, so we now turn to that.

When g is an m x m mask forming a discrete sampling of G, the arrays g, and g,
(corresponding to the functions G; and G7) only have m nonzero entries each. The array
gy has only one row of nonzero entries, and g, has only one column. The nonzero row of
gy is just the one-dimensional vector g, from above, and the nonzero column of g; is the

19

one-dimensional vector g,. Diagrammatically,

Since all of the zero entries in the convolution have no effect on the output, we can
simply replace g; with g,, and g; with g,. Thus, the convolution G @ I can be done
by first convolving I with a column vector g, and then convolving the result with a row
vector g,. The two-dimensional convolution G ® I is replaced by two one-dimensional
convolutions. Each of the one-dimensional convolutions involves O(mn?) operations, and
thus the overall time to compute the convolution has been reduced from O(m?n?) by the
direct method to O(mn?) by this method.

In practice, the method of smoothing by two successive convolutions with one-dimensional
masks is much faster than convolution with a two-dimensional mask. For example, when
o0 = 1 the two-dimensional mask (out to +40¢) is 9 x 9, and thus the savings is a factor
of about 5 (two 1 x 9 masks as opposed to one 9 x 9 mask). For ¢ = 2, it is about
10 times faster. Recall, however, that this method only works for functions that can be
decomposed into the product of two one-dimensional functions (such as the Gaussian).

Approximating G, ® [

Gaussian smoothing can be approximated quite accurately in an even more efficient man-
ner. The central idea for the speedup is based on the fact that the sum of the pixels
in a w x h region around each pixel of an image can be computed in 4 operations per
pixel, using dynamic programming. That is, the computation is independent of w and
h, the dimensions of the window over which the summation is done. This can easily be
seen in the one-dimensional case, where the sum in a window of width w can be updated
from one sample to the next by simply adding in one value, and subtracting out another.
This is independent of w. Using the above decomposition of symmetric functions, it
is straightforward to see that the two-dimensional case can simply be expressed as two
one-dimensional convolutions.

A Gaussian can be approximated as the convolution of such sums over windows (some-
times called box filters, because they add all the values in a box). The details of this are
covered in the paper by Wells.

4 Marr-Hildreth Edge Detector

The Marr-Hildreth edge detector [5] is based on computing the zero crossings of the
Laplacian of the Gaussian smoothed image,

V3G, @) .

20

Figure 6: The Laplacian of Gaussian.

We know from the previous section that both the Gaussian smoothed image and the
Laplacian can be implemented by convolution, and are hence linear operators. Thus, by
associativity we can equivalently express the computation as,

(VG oI .

The Marr-Hildreth edge detector is thus often referred to as a Laplacian of Gaussian
operator, because V2G, (the Laplacian of Gaussian) is convolved with the image, I.
The one-dimensional Laplacian of Gaussian operator is illustrated in Figure 6. The
two-dimensional operator is rotationally symmetric about the origin, and is often called
the ‘Mexican hat’ operator because of its appearance.
The Laplacian of Gaussian can be approximated by a difference of two Gaussians. In
the one-dimensional case this is

1 2 1 .2
DOG(o,,0;) = e20c? — €%

\V2To, \V21o;

which approximates a second derivative operation where o, < o; (generally o;/c. = 1.6).

A number of biological vision systems appear to compute difference of Gaussians in
their low-level visual processing. This was the original motivation for the Marr-Hildreth
edge operator — the fact that a biological mechanism had been identified which would
support a similar type of processing to the V2G operator. Computer vision research
has to varying degrees been motivated by ‘wetware’ (or biological systems) both through
neurophysiological results and psychophysical results. While it is generally difficult to
formulate a precise computational model of a biological system, the existence of partic-
ular physiological methods can serve as a guide for potential algorithms. Some vision
researchers argue for a tight coupling of computational vision methods to biological sys-
tems; in this course we will view such systems as providing interesting related methods,
but will not try to draw close parallels between artificial and natural vision systems.

The V%G, operator is a second derivative, and thus the portions of the original image,
I, where there are rapid intensity changes will show up as zero crossings of V2G, @ I
(changes in sign). These zero crossings are then the ‘edges’ of the image. In the discrete
case, the processing steps for this edge detection method are,

1. Smooth the image by convolution with G, (use the one-dimensional decomposition
from Section 3).

21

Figure 7: Laplacian of Gaussian edges for an image.

2. Apply the Laplacian to the result of the previous step (using convolution with the
mask from Section 2).

3. Identify edge pixels at the boundaries of regions of constant sign in the result of the
previous step.

The final step, of identifying edge pixels, can be done by viewing the sign of the
Laplacian of the Gaussian smoothed image as defining a binary image (e.g., with value
one where the sign is positive and zero where it is negative). Then the zero crossings
are simply the boundaries of the non-zero regions of this binary array. These boundaries
can be found by identifying any non-zero pixel in the binary array that has an immediate
neighbor which is zero. Thus for each pixel, if it is non-zero we consider its eight neighbors.
If any neighboring pixel is zero, then we classify the pixel as an edge. Figure 7 illustrates
the resulting edges for the image from Figure 1.

Note one issue with a V2G edge detector is that it always forms closed edge chains,
because an edge is the boundary of a region that has positive or negative sign in V2G ® I.

5 Canny Edge Operator

The Canny [2] edge detector is based on computing the squared gradient magnitude. Local
maxima of the gradient magnitude that are above some threshold are then identified as

22

edges. This thresholded local peak detection method is called non-mazimum suppression,
or NMS. The motivation for Canny’s edge operator was to derive an ‘optimal’ operator
in the sense that it,

e Minimizes the probability of multiply detecting an edge.
e Minimizes the probability of failing to detect an edge.
e Minimizes the distance of the reported edge from the true edge

The first two of these criteria address the issue of detection, that is, given that an edge
is present will the edge detector find that edge (and no other edges). The third criterion
addresses the issue of localization, that is how accurately the position of an edge is re-
ported. There is a tradeoff between detection and localization — the more accurate the
detector the less accurate the localization and vice versa.

Canny considers first derivative operators. First recall that computing a derivative is
a linear operation. In particular the first derivative f’(z) can be computed by convolving
f(z) with a special function, A(x), the unit doublet. This function is a positive unit
impulse and a negative unit impulse spaced £ apart (recall the definition of the unit
impulse §(x) from Section 3 is a function that is zero everywhere except at the origin).
The computation of a derivative by convolution with a unit doublet can be thought of as
corresponding to the finite difference approximation to a derivative (which becomes more
accurate as € gets smaller),

df ()
dx

~ f(r)— flz+e) = f(x) @ Az)

as e — 0.

In order to illustrate the tradeoff between localization and detection, consider the
problem of detecting a one-dimensional unit step-edge, u(z). Recall from Section 3 that
du(zx)/dx = 6(x); the derivative of the unit step edge is the unit impulse (which also equals
u(x)®A(x)). One possible method of detecting a step edge would be to differentiate u(z),
yielding 6(z), and then to consider [’§(z)dz for small intervals [a,b]. Those intervals
where the integral is nonzero (in fact equal to one) contain the step edge. However, this
is analogous to smoothing the (differentiated) function by adding together neighboring
values, which as we saw in Section 3 is not a very good smoothing method.

A better smoothing method is to convolve the original step edge with a Gaussian (or
other lowpass filter function) and then take the derivative, e(z) = d(G,(z) ® u(z))/dx.
This function will be nonzero near the location of the step edge. Given that differentia-
tion is a linear operator (can be implemented via convolution), and that convolution is
associative, we can express this edge operator e(x) in two equivalent forms,

(Go(2) @ u(z)) = Go(x) @ ulx),

(where we use the prime notation to denote taking the derivative).

23

Figure 8 One dimensional derivatives of Gaussians; (a) a step-edge and its derivative at
two scales of smoothing, (b) a step-edge with added noise and its derivative at one scale
of smoothing, (¢) a smoothed version of the step-edge from (b) making the step more
apparent.

The smaller the value of o, the smaller the domain over which e(z) will be nonzero in
response to a step edge. In other words, the smaller the value of o, the better the edge
is localized. This is illustrated in Figure 8a,which shows a step edge, and the convolution
of the step edge with G! (x) for a smaller and a larger value of 0. Note how the peak
corresponding to the step edge is narrower for the smaller 0. However, the smaller the
value of o, the less likely that we will detect an edge. In order to illustrate this, consider
a step edge with noise superimposed, as illustrated in Figure 8b. Here it is difficult to
see the step, because it is ‘buried’ in the added noise. Correspondingly, if the signal is
smoothed with a small value of o, there are relatively many large peaks in e(z) (also
illustrated in part b of the Figure). For larger values of o there are fewer such local peaks,
because the spatially local changes in the signal are smoothed out, leaving just the step
edge. The effect of smoothing the noisy step edge with a Gaussian of large ¢ is illustrated
Figure 8c. This makes the underlying step apparent. Thus using smaller values of ¢ leaves
many local changes, whereas using larger ones leaves primarily the step edge (but makes
its location less certain). We will return to the issue of choosing scales for smoothing
below.

In one dimension, Canny shows that the operator G’ (x) is an optimal detector for a
step edge in terms of the detection/localization tradeoff. The derivation of this result is
beyond the scope of these notes, but can be found in [2]. In 2D Canny similarly advocates

24

(without formal arguments) the use of first spatial derivatives. As we saw above, however,
the first derivative is an orientation sensitive operator (non-isotropic). Thus, rather than
using the first derivative, Canny uses the squared gradient magnitude of the smoothed

image,
oL * (oL’
— 2 __ s s
me,y) = V(G & L) = (a) - (ay)

which is isotropic (where I; denotes the smoothed image).

Rather than simply thresholding m(x,y) in order to identify edges, Canny’s method
detects local peaks in the magnitude and then thresholds the peaks. The justification for
this is that edge locations will have a higher gradient magnitude than non-edges (i.e., will
be local peaks in the gradient). However, rather than comparing the gradient magnitude
at a given location to the values at all neighboring locations, Canny observes that we are
only concerned that the gradient be a ‘peak’ with respect to its neighbors in the gradient
direction, and not in other directions. To help understand this, consider the analogy of
being on a ridge of a mountain range. The gradient direction points down from the ‘top’
of the ridge toward the valleys on either side. The ridge itself may move up and down
such that at a given location we can be standing on the ridge but not be at a local peak in
all directions (the ridge to both sides of us is higher). In the gradient direction, however,
we are at a peak whenever we are on the ridge (assuming that the direction of steepest
descent is always into the valley, not along the ridge). Thus defining a peak of the gradient
magnitude with respect to the gradient direction allows us to detect step edges that have
this type of ridge effect.

The unit vector in the gradient direction (which note is normal to a step edge) is given
by

. V(G®I)

V(z,y) = == -
V(G @I

If we denote V(z,y) by the unit vector (éz, 6y), then m(z, y) is defined to be a local peak

in the gradient direction when

m(x,y) > m(x + ox,y + by)

and

That is, we say that m(z,y) is a local peak whenever it is greater than the values in
the gradient direction and the opposite of the gradient direction. Canny calls this local
peak detection operation non-mazimum suppression (NMS). Note that in practice it is
generally better to use > in one direction and > in the other, rather than > in both
directions, to allow for ‘wide’ edges as peaks.

The NMS operation still leaves many local ‘peaks’ that are not very large. These are
then thresholded based on the gradient magnitude (or strength of the edge) to remove the
small peaks. The peaks that pass this threshold are then classified as edge pixels. Canny
uses a thresholding operation that has two thresholds, lo and hi. Any local maximum

25

for which m(x,y) > hi is kept as an edge pixel. Moreover, any local maximum for which
m(z,y) > lo and some neighbor is an edge pixel is also kept as an edge pixel. Note that
this is a recursive definition — any pixel that is above the low threshold and adjacent to an
edge pixel is itself an edge pixel. This form of using two thresholds allows the continuation
of weaker edges that are connected to strong edges, and is a form of hysteresis.

To summarize the steps of processing for the Canny edge detector, for a discrete image

Iz, yl,

1. Smooth the image using a 2D Gaussian (with the two 1D filters, as described in
Section 3), I, = G, ® 1.

2. Compute the gradient and squared magnitude of the smoothed image,

01, 0l
VI, =|—,
(33: 3y>

= () ()

3. Use the unit vector ;f;' = (6, by) at each point to estimate the gradient magnitude
in the gradient direction and opposite of the gradient direction. This can be done
by a weighted average of the neighboring pixels in the direction (6z,dy), or more

simply by selecting the neighboring pixel closest to the direction (z + 6z, y + 6y).

4. Let p =m(x,y), pr = m(x + bx,y + 6y), p— = m(x — dx,y — éy). Define a peak as
(p>pr Ap>p)V(p>p_Ap>py).

5. Threshold ‘strong’ peaks in order to get rid of little peaks due to noise, etc. Use
|V 1| as measure of edge strength. Use a hysteresis mechanism as described above
with two thresholds on edge strength, lo and hi.

The edges in Figure 1 are from the Canny edge detector. In practice, this edge operator
(or variants of it) is the most useful and widely used.

6 Multiscale Processing

A serious practical problem with any edge detector is the matter of choosing the scale
of smoothing (the value of o to use). For many scenes, using the Canny edge detector
with ¢ = 1 seems to produce ‘good’ results, but this is not very satisfactory. Clearly,
as o increases less and less of the detailed edges in an image are preserved (and spatial
localization gets worse and worse). For many applications it is desirable to be able to

26

process an image at multiple scales, in order to determine which edges are most significant
in terms of the range of scales over which they are observed to occur.

Witkin [6] has investigated more thoroughly the idea of multi-scale signals derived
from smoothing a signal with a Gaussian at different scales. He calls this scale space
— which is a function defined over the domain of the original function, plus another
dimension corresponding to the scale parameter. For example, say we have an image
I(x,y). The corresponding scale-space function is

L(x,y,0) = I(z,y) @ Go(,y),

where ¢ is the scale parameter.

A number of natural structures can be extracted from the scale-space function, the
most common of which is the ‘edges’ at each scale. These edges can be identified as
extrema of gradient magnitude (as in the Canny operator) or as zero crossings of the
Laplacian (as in the Marr-Hildreth operator). In either case, the result is a binary-valued
function (or space) £(z,y, o). Figure 9 shows a grey-level image and the edges at various
scales of smoothing.

Note that as we would expect, for larger values of ¢ there are fewer edges (extrema
of the first derivative of the smoothed function), and the spatial localization of the edges
becomes poorer. Another interesting observation is that the edges do not simply appear
or disappear at random as the scale parameter changes. Witkin stated two assumptions
about such scale space trees, which were more or less verified later by others

1. Zero crossings connected at adjacent scales correspond to the ‘same’ event in f(z)
— no new zero crossing are introduced as ¢ increases.

2. The location of a zero crossing in f(z) ® G,(x) tends to its true location in f(z) as
o—0.

The fact that no new edges are introduced as o increases, means that the edges form
a “tree”, with the root at the largest value of sigma for which there is an edge. This in
principle allows a given edge to be tracked across scales (from coarse to fine), although
this edge tracking problem is not easy. Note that scale space edges still do not solve the
problem of what scale to pick! One option is to do further processing using the entire scale
space tree, and thus avoid the problem of ever picking a scale of processing. The area
where this has worked the best is in matching one-dimensional function f(z), where the
entire scale space tree of zero crossings is compared in order to determine the similarity
of f(z) and g(x).

The scale space approach does partially address the issues of the tradeoff between
detectability and localization. As o gets smaller, the localization gets better and the
detection gets worse (as discussed in Section 5). With the scale space tree we in part get
the best of both worlds because it is possible to pick a value of ¢ where the detection
is good, and then follow the edge contour down in scale until the localization is also
good. The major problem with this approach is when a given edge contour splits into
two disjoint edges as o decreases, because then we are left with the issue of which path to

27

LG

. ™ :
-(-x{"(/ J/
RO

, T e I
P P :
Y g%" o~ A : - - _‘&
R A R ! Py : \
AEANINSR RN S T A T A T
’ ~

Figure 9: Canny edges at multiple scales of smoothing, o = .5,1,2,4,8,16. The scale-
space edges are a ‘stack’ of these binary images (for all values of o, not just those shown
here) forming a three-dimensional binary space £(z,y, o).

28

choose. Over ranges of ¢ where a contour does not split, however, this is a good technique
for overcoming the detection/localization tradeoff.

A natural question that arises is that of reconstructing I(z,y) given the edges at
multiple scales, £(x,y,0). This question has been investigated by a number of authors
(e.g., [4]). Here we are not concerned with the details of these results, but simply note
that for certain classes of functions I(z,y) can be reconstructed up to multiplicative
and additive constants. More interestingly, it is sufficient to know &(z,y,0) just for
certain values of ¢ in order to reconstruct I(x,y) in this manner. These values are simply
doublings of o (or octaves), such as the edges shown in Figure 9 (we will return to this
briefly below where dyadic wavelet transforms are introduced).

Wavelets

The entire issue of multi-scale representations and the characterization of signals from
their edges at multiple scales can be viewed in terms of wavelet theory (cf. [4]). Here we
briefly discuss wavelet transforms and how they apply in this context. A wavelet function
is a function whose integral is zero,
o0
/ h(z) =0,

—00

and which has a scaling property. This scaling property is simply

ho(z) = Lh (f) .

S S

The wavelet transform of f at scale s is then defined as

W, f(z) = f(z) ® h(x)

where h is a wavelet function (has integral zero and the scaling property). That is, a
wavelet transform of a function, f(z), is computed by convolving the function with a
wavelet function at some scale. When the wavelet function A is clear from the context,
we will generally denote the wavelet transform by W, f(x) rather than W/ f(z).

The Gaussian that we have been using for smoothing and edge detection has the
scaling property

1 _1(z\?
Go_(l‘) = 271,0_@ 2(6)

where the ‘scale factor’ sis o. Analogously the derivative (or n-th derivative) of a Gaussian
is such a scaled function. The derivative of a Gaussian also has the property that its area
is zero. Thus the derivative of a Gaussian is a wavelet transform. This means that
the scalespace edge representation of an image, £(x,y, o), introduced above is a form of
wavelet transform of I(z,y). In fact, one could think of all of the edge detectors that
operate by smoothing and differentiation (which have operators whose integral is zero)
in terms of wavelets. Now we take a look at why it might be worth thinking of edge
detection in terms of wavelets.

29

First of all, wavelet transforms are a highly redundant representation of a function.
One useful result regarding wavelets is that the so-called dyadic wavelet transform (the
smoothing at doublings in scale, or octaves) is a complete (in fact redundant) represen-
tation of a function. The sequence of wavelets at doublings in scale is referred to as the
dyadic wavelet transform,

Wf = (Wi f(x))jen

where N represents the positive integers {1,2,3,...}. From this transformation W it is
possible to reconstruct f, but more interestingly it is often possible to reconstruct f (or
a scaled version) just from from the ‘edges’ of Wf. These ‘edges’ are the extrema of the
wavelet transform when the wavelet function A is a first derivative or the zero crossings
when it is a second derivative. Such a set of edges is shown in Figure 9. This means that
just the edges, obtained at several scales, capture most of the information in the original
image (or function). In other words, simply representing an image in terms of its edges
for doublings of ¢ is sufficient to reconstruct the image (up to overall intensity scaling).
The details of these results are beyond the scope of this course, but more information
can be found in [4]. Note that similar results have also been derived without the wavelet
formulation.

A second, and perhaps more interesting, property of wavelet transforms is that they
can be used to represent the ‘degree of discontinuity’ at the edges (sharp changes) in a
function. These methods even apply to discrete (sampled) representations of functions
such as occur in digitization. In order to investigate this use of wavelets we must first
introduce the notion of Lipschitz regularity. Let f(z) be a ‘generalized function’, which
includes any function as well as things such as the Dirac delta, 6(z) introduced above
(ie., f(z) may be unbounded but [’ f(z) is bounded for any finite interval (a,b)). We
say that f(z) is uniformly Lipschitz « over an interval (a,b) if and only if there exists a
constant K such that for any 1,z € (a,b)

|f(z1) = f(z2)| < K|2p — 25|,

where —1 < o < 1.

We refer to the uniform Lipschitz regularity of f(x) as the upper bound «, of all such
«. The larger this upper bound at z,, the more ‘regular’ f(x) is at xy. For example,
if f(x) is differentiable at xy then it is Lipschitz o = 1 at xy. Intuitively, when f is
differentiable its slope is bounded by some K and |f(x1) — f(z2)| is thus bounded by
K|x1 — 23]. On the other hand, if f(x) is discontinuous but bounded at zo then it
is Lipschitz o« = 0. Intuitively, the slope is not bounded, but the magnitude of the
difference | f(x1) — f(x2)| is bounded by some constant because the function is bounded.
Finally if f(z) is discontinuous and unbounded at xy (such as a ¢ function) then it is
Lipschitz o = —1. Intuitively, the difference |f(z1) — f(22)| becomes arbitrarily large, but
only as the interval gets arbitrarily small. That is, it is bounded by some constant times
|z — 9| .

A theorem about wavelets is that f(z) is uniformly Lipschitz «a over (a, b) if and only
if there exists a constant K such that for all x € (a,b) the wavelet transform satisfies

Wi f(z) < K(29)* .

30

In particular, this implies that if the uniform Lipschitz regularity condition at xg is positive
then the amplitude of the wavelet transform at xy should decrease as the scale decreases.
On the other hand if it is zero the magnitude should be independent of scale, and if it is
negative, the magnitude should decrease as the scale increases. This provides a method
of classifying the type of edge (differentiable, step edge or delta function) based on the
evolution of the wavelet magnitude as a function of scale — does the magnitude of a
peak in the smoothed derivative get larger, smaller or stay the same as the scale changes?
While for sampled functions (e.g., digitized images) notions such as differentiable do not
make sense, there is an analogous property for sampled functions where there is a set of
scales over which an edge ‘appears continuous’ or ‘appears to be a discontinuity’. This
range of scales can be detected by examining the evolution of the magnitude of the wavelet
transform edges over a range of scales. This ability to classify edges based on their type
can be of considerable utility. For example, edges between an object and the background
are generally intensity discontinuities, whereas shadow edges are generally continuous.

31

References

[1] D.H. Ballard and C.M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs,
N.J., 1982.

[2] J.F. Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 34-43, 1986.

[3] B.K.P. Horn, Robot Vision, MIT Press, Cambridge, Mass., 1986.

[4] S. Mallat and S. Zhong, “Characterization of signals from edges”, IEEE Trans. Pat.
Anal. and Mach. Intel., 14(7), pp. 710-732, 1992.

[5] D. Marr and E. Hildreth, “Theory of Edge Detection”, Proc. of the Royal Society of
London B, Vol. 207, pp. 187-217, 1980.

[6] A.P. Witkin, “Scale Space Filtering”, Proc. of International Joint Conference on Ar-
tificial Intelligence, pp. 1019-1022, August 1983.

32

