Efficient Matching of Pictorial Structures *

Pedro F'. Felzenszwalb
Artificial Intelligence Laboratory
MIT
Cambridge, MA 02139
pff@ai.mit.edu

Abstract

A pictorial structure is a collection of parts arranged in
a deformable configuration. FEach part is represented
using a simple appearance model and the deformable
configuration is represented by spring-like connections
between pairs of parts. While pictorial structures were
introduced a number of years ago, they have not been
broadly applied to matching and recognition problems.
This has been due in part to the computational difficulty
of matching pictorial structures to images. In this pa-
per we present an efficient algorithm for finding the
best global match of a pictorial structure to an image.
The rumning time of the algorithm is optimal and it
it takes only a few seconds to match a model with five
to ten parts. With this improved algorithm, pictorial
structures provide a practical and powerful framework
for qualitative descriptions of objects and scenes, and
are suitable for many generic image recognition prob-
lems. We illustrate the approach using simple models
of a person and a car.

1. Introduction

In this paper we consider the problem of matching
pictorial structures to images, as introduced by Fis-
chler and Elschlager [8] nearly 30 years ago. A pic-
torial structure is a collection of parts arranged in a
deformable configuration. The deformable configura-
tion is represented by spring-like connections between
the parts. The matching problem is that of finding
the best placement of the parts in an image, where the
quality of a placement depends both on how well each
part matches the image and on how well the placements
agree with the deformable configuration.

The main contribution of our work is the develop-
ment of an efficient matching algorithm for a natural
class of pictorial structures. A secondary contribution

*Work supported in part by DARPA contract DAALO01-97-
K-0104

Daniel P. Huttenlocher
Computer Science Department
Cornell University
Ithaca, NY 14853
dph@cs.cornell.edu

is providing a Bayesian interpretation of the problem,
in terms of MAP estimation. The running time of our
algorithm is optimal, in the sense that it runs as quickly
as simply matching each part separately, without ac-
counting for the relationships between parts. In prac-
tice the algorithm is also fast, finding the globally best
match of a pictorial structure to an image in just a few
seconds.

Pictorial structures provide a powerful framework
for qualitative descriptions of objects and scenes, mak-
ing them suitable for many generic image recognition
problems. In [8] and in [7], pictorial structures were
used to form generic models of a human face. Simple
generic appearance models were used for parts such
as the eyes, mouth, etc., and the connections between
parts ensured that the geometric arrangement of the
parts was face-like. In [16], pictorial structures were
used to model generic scene concepts such as a water-
fall, a snowy montain, or a sunset. For example, a
waterfall was modeled as a bright white region (water)
in the middle of darker regions (rocks). The method
that we present in this paper can be used to efficently
solve a broad range of generic recognition problems,
including those investigated in [8, 7, 16], as well as the
recognition of articulated objects.

Following [8], a deformable configuration is repre-
sented by pairwise relationships between the locations
of the parts. Certain pairs of parts are connected by
virtual “springs” that pull one part to be in a given
relative location with respect to the other. These
“springs” can enforce different kinds of relationships
between the locations of the parts. For example, in the
person model in Section 6.1, the body parts of a person
are connected together by flexible revolute joints. This
allows the limbs to move while remaining connected.
In the car model in Section 6.2, the wheels of a car are
connected to the body using a flexible prismatic joint.
This allows the wheels to move along the bottom of the
car but not in any other direction.

The matching problem as posed in [8] involves min-

imizing a certain energy function which takes into ac-
count both the “spring” forces between parts and the
match quality for each part. Minimizing this energy is
a hard problem in general. We develop a new solution
to this minimization problem for a natural class of pic-
torial structures. This method requires that the set of
relationships between parts form a tree structure, and
that the relationships between each pair of parts be of
a particular form. The restriction to a tree structure
allows us to use standard dynamic programming tech-
niques, and the restriction in the form of the pairwise
relationship between parts allows us to use a novel gen-
eralization of distance transforms. Combining the two
techniques we obtain an algorithm that runs as fast as
simply matching each part separately, without consid-
ering the relationships between the parts.

Restricting the relationships between parts to a tree
structure is natural because the connections between
parts of many animate objects form a tree correspond-
ing to the skeletal structure. Many other kinds of ob-
jects can be represented as a star-graph, where there is
one central part that all the other parts are connected
to. For instance, in modeling a car the wheels and win-
dows can all be positioned relative to the body. The
restriction that we impose on the form of the pairwise
relationships between parts similarly allows a broad
range of objects to be modeled, such as those with flex-
ible revolute joints as we use in modeling a person and
flexible prismatic joints as we use in modeling a car.

We present examples illustrating that the algorithm
enables efficient search of an image for the globally best
match of relatively generic objects, such as a “dark-
haired fair-skinned person wearing a blue shirt and
black pants” or a “red car”.

2. Related Work

As noted in the introduction, we use the same frame-
work as Fischler and Elschlager [8], posing the match-
ing problem as energy minimization. They also pro-
posed a dynamic programming approach as we do here.
There are two key differences in our work. First, we fo-
cus specifically on the case of tree-structured objects,
because they are an interesting class that can be effi-
ciently recognized. Second, we develop a method that
is linear rather than quadratic in the number of possi-
ble placements for each part. This difference is impor-
tant because the quadratic time method is simply not
of practical use for most cases.

In the introduction we discussed the work of [16] and
[7], both of whom use pictorial structures. In [16], only
coarse pictorial structures are used and no algorithm
is presented. The work in [7] uses a similar energy

function to the one presented here. In their work in-
stead of having connections between pairs of parts, all
parts are constrained with respect to a central coordi-
nate system, this makes it impossible to represent, ob-
jects with more than one articulation point. Moreover,
they only give heuristic algorithms that don’t necessar-
ily find the global optimal solution. Our approach can
find the globally optimal match for this kind of model
by locating each part relative to a virtual part that acts
as the central coordinate system.

There are many approaches to recognizing models
represented by parts and connections or constraints
between the parts, such as [11],[2],[12],[6] and [15].
While these techniques address a similar problem to
the matching of pictorial structures, one key difference
is that they all make hard (yes or no) decisions as to
whether a given location in the image can contain a
given part. These methods then seek a set of such de-
tected parts that are arranged in a valid configuration.
Moreover, all such valid configurations are treated as
being equally good. The use of binary decisions is not
well suited to simple qualitative parts models such as
the ones used in this paper and in other applications
of matching pictorial structures [8, 16, 7]. With sim-
ple generic part models, it is better to determine how
well each part matches at each location, rather than
only finding acceptable locations for the parts. The
work in [17] is similar to ours, in that it represents ar-
ticulated objects using a tree of dependencies between
parts. Again, however, all valid configurations of the
parts are treated as equally good. Furthermore, the
algorithm presented in [17] is for local minimization
only, as opposed to a global match that searches over
all possible placements of the model as is done here.

3. The Recognition Framework

We are concerned with representing pictorial structures
using the scheme first proposed in [8]. A pictoral struc-
ture is represented as a collection of parts, with connec-
tions between certain pairs. A natural way to express
such a model is in terms of a graph G = (V, E) where
the vertices V' = {vy,...,v,} correspond to the parts
and there is an edge (v;,v;) € E for each pair of con-
nected parts v; and v;.

An instance of a part in an image is specified by a
location [. For the examples in this paper, [specifies
position, rotation, and scale parameters for simple two
dimensional parts. For each part v;, a match cost func-
tion m;(I,l) measures how well the part matches the
image I when placed at location I. The examples in
this paper use fairly simple template matching for this
cost function. Other possibilities would be to use more

complex apperance models (e.g., [18]) or edge based
techniques (e.g., [13]).

The connections between parts indicate relation-
ships between their locations. For each connection
(vs,v;) there is a deformation cost function d;;(l;,1;)
measuring how well the locations I; of v; and I; of v;
agree with the object model. For instance, in the per-
son model in Section 6.1 the connections enforce that
the body parts of a person be arranged in a human-like
configuration.

A configuration L = (Iy,...,[,) specifies a location
for each of the parts v; € V with respect to the image.
The goal is to find the best such configuration, as mea-
sured by the match cost for the individual parts and
by the pairwise cost for the connected pairs of parts.
Following [8], we express this best match as,

Z dij(li,1;) + Z mi(1,1;)

(vi,vj)EE v, €V

L* = arg min
L

(1)
The form of this minimization problem is quite general,
and it appears in a number of problems in computer
vision, such as MAP estimation of Markov Random
Fields (MRFs) and optimization of dynamic contour
models (snakes). While the form of the minimization
problem is shared with these other problems, the struc-
ture of the graph and space of possible configurations
differ substantially. This changes the computational
nature of the problem.

In its most general form the minimization in (1)
takes exponential time, O(m™) where m is the num-
ber of discrete values for each [; and n is the num-
ber of vertices in the graph. However when the graph
G = (V, E) has a restricted form, the problem can be
solved more efficiently. For instance, with first-order
snakes the graph is simply a chain, which enables a dy-
namic programming solution that takes O(m?n) time
([1]). Moreover, with snakes the minimization is done
over a small number of locations for each vertex (e.g.,
the current location plus the 8 neighbors on the im-
age grid). This minimization is then iterated until the
change in energy is small. The key to an efficient so-
lution is that the number of locations, m, be small, as
the dynamic programming solution is quadratic in m.
Another source of efficient algorithms has been in re-
stricting d;; to a particular form. This approach has
been particularly fruitful in some recent work on MRFs
([5, 14]). In our algorithm, we use constraints on both
the structure of the graph and the form of d;;.

For the matching problem that we consider here, the
graph structure can in principle be arbitrary. How-
ever, as discussed in the introduction, many objects

can naturally be represented using tree structures. By
restricting the graphs to trees, a similar kind of dy-
namic programming can be applied to trees as is done
for chains, making the minimization problem polyno-
mial rather than exponential time. The precise tech-
nique is described in Section 4. However, this O(m?n)
algorithm is not practical, because the number of pos-
sible locations for each part, m, is generally quite large.
When searching for the best possible match of a picto-
rial structure to an image, there is no natural way to
limit this location space. Even if the location param-
eters are coarsely sampled — say with 50 values each
for z-translation, y-translation, rotation and scale —
m is already over six million. Thus a straightforward
application of dynamic programming on trees is not
practical.

We investigate a restriction of the pairwise cost func-
tion, d;;, that yields a minimization algorithm which
runs in O(mn) rather than O(m?n) time. This makes
it quite practical to find the globally optimal match of
a pictorial structure to an image, up to the discretiza-
tion of the possible locations. Intuitively the pairwise
cost function measures the degree to which the model
is deformed, increasing as connected parts are moved
away from their ideal relative locations. We restrict d;;
to the following form,

dij(li, 1) = |Tij (L) = Tja(l5) (2)
where || - || is some norm (recall that a norm obeys
the properties of identity, symmetry and triangle in-
equality), and Tj;, T}; are invertible functions. We fur-
ther require that it be possible to discretize T};(l;) in
a grid. Intuitively, the deformation cost is restricted
to be a distance between reparameterized location vec-
tors. The functions T;; and T}; together capture the
ideal relative configuration of the parts v; and v;. That
is, if /; and [; specify ideal locations of v; and v; with re-
spect to one another, then T;;(l;) = Tj;(l;). The norm
then measures the degree of deviation from this ideal
relative configuration. In Section 6.1 we show how d;;
can behave like a flexible revolute joint between two
parts and in Section 6.2 we show how it can behave
like a flexible prismatic joint.

4. Efficient Minimization

In this section we show how to use dynamic program-
ming to find the configuration L* = (I3, ...,0%), mini-
mizing equation (1) when the graph G is a tree. This is
an instance of a known class of dynamic programming
techniques and is a generalization of the technique for
chains that is used in solving snakes problems (e.g.,
[1]). The computation involves n — 1 functions, each

of which specifies the best location of one part with
respect to the possible locations of another part.

Given a tree G = (V, E), let v, € V be an arbitrarily
chosen root vertex. From this root, each vertex v; € V
has a depth d; which is the number of edges between
it and v, (and the depth of v, is 0). The children, C;
of vertex v; are those neighboring vertices, if any, of
depth d; + 1. Every vertex v; other than the root has a
unique parent, which is the neighboring vertex of depth
d; — 1.

First we note that for any vertex v; with no children
(i.e., any leaf of the tree), the best location I} of that
vertex can be computed as a function of the location
of just its parent, v;. The only edge incident on v;
is (v;,v;) and thus the only contribution of I; to the
energy in (1) is di; (1;,1;) + m;(I,1;). Hence the quality
of the best location of v; given location /; of v; is

B;j(li) = H}Jin (dij(Lis 1j) +my(1,15)) (3)

and the best location of v; as a function of [; can be
obtained by replacing the min in the equation above
with argmin.

For any vertex v; other than the root, assume that
the function B.(l;) is known for each child v, € Cj.
That is, the quality of the best location of each child
is known with respect to the location of v;. Then the
quality of the best location of v; given the location of
its parent v; is

Bj(l) = min | dij(ls, 1) +m;(L,15) + > B.(ly)

v €C;
(4)
Again, the best location of v; as a function of /; can be
obtained by replacing the min in the equation above
with argmin. Note that this equation subsumes (3)
because for a leaf node the sum over its children is
simply empty.
Finally, for the root v, if B.(l;) is known for each
child v. € C, then the best location of the root is

I = argnlljn (mr(lalr) + Z Bc(lj)>

v €CH

That is, the minimization in (1) can be expressed
recursively in terms of the n — 1 functions B;(l;) for
each vertex v; € V (other than the root).

These recursive equations in turn specify an algo-
rithm. Let d be the maximum depth node in the tree.
For each node v; with depth d, compute B;(l;), where
v; is the parent of v;. These are all leaf nodes, so clearly
B;(l;) can be computed as in (3). Next, for each node

v; with depth d — 1 compute B;(l;), where again v; is
the parent of v;. Clearly B.(l;) has been computed for
every child v, of v;, because the children are of depth
d. Thus Bj(l;) can be computed as in (4). Continue
in this manner, decreasing the depth until reaching the
root at depth zero. Besides computing each B; we also
compute B}, which indicates the best location of v; as
a function of its parent parent location (obtained by
replacing the min in B; with argmin). At this point
we compute the optimal location I} of the root. The
optimal location L* of all the parts can now be com-
puted by tracing from the root to each leaf. That is,
we know the optimal location of v; given the location
of its parent, and the optimal location of each parent
is now known starting from the root. The overall run-
ning time of this algorithm is O(nM), where M is the
time required to compute each Bj(l;) and Bj(l;). We
now show how to compute B;(l;) and B}(l;) in O(m),
yielding an O(mn) algorithm overall.

5. Generalized Distance Trans-
forms

Traditional distance transforms are defined for sets of
points on a grid. Given a point set B C G, the distance
transform specifies for each location in the grid, the
distance to the closest point in the set,

Dp(z) = min ||z — w]|
weB
In order to compute the distance transform, it is com-
monly expressed as

Dp(2) = min (|lz — w]| + 15 (w)) ()

where 1p(w) is an indicator function for membership
in the set B, that has the value 0 when w € B and oo
otherwise. The algorithm presented in [3, 4] to com-
pute (5) efficiently, still works if we replace the indi-
cator function by an arbitrary function on the grid.
This suggests a generalization of distance transforms
to functions as follows. Let the distance transform of
a function f defined over a grid G be

Dy(2) = min (|2 — w]| + f(w)) (6)

Intuitively, for each grid location z, this function finds
a location w that is close to z and for which f(w) is
small. Note that differences between the value of Dy
at two locations are bounded by the distance between
the locations, regardless of how quickly the function f
changes. In particular, if there is a location where f(z)

has a small value, Dy will have small value at z and
nearby locations.

Given the restricted form of d;; in equation (2),
equation (4) can be rewritten as a generalized distance
transform,

Bj(l;) = Dy(Ti;(1:))

where
fw) =m;(I,T;; (w) + > Be(Ty;" (w))

and the grid G specifies a discrete set of Tj;(I;) that
are considered during the minimization (this in turn
specifies a discrete set of locations [;).

The algorithm in [3, 4] for computing (5) runs in
O(mD) time for m locations on a D-dimensional grid.
As just noted, this same algorithm works for (6). In
general the dimension D is a small fixed number. In
this paper the grid is the four-dimensional space of, -
translation, y-translation, rotation 6, and scale s. In
order to compute (6) under the Ly norm in this four-
dimensional parameter space, an array Dlz,y,#, s] is
initialized to the values of the function f(w). The first
pass over this array goes from the minimum [z,y, 6, s]
location (in order of increasing x, then y, then 6, then
s) computing

Diz,y,6,s] = min(D]

D[l‘ - 1>y7075] +kz7
D[l‘,y - 1>9)S] +ky)
Diz,y,0 — 1,s] + ko,
Diz,y,0,5 — 1] + k)

This computation is done “in place”, changing values
in the array as it goes. Note that the value z — 1
indicates the neighbor in the z-dimension of the array,
and so forth. The constants k;, ky, ks and ks account
for different scales of the axes. The second pass over the
array goes from the maximum [z,y,0,s] location (in
order of decreasing z, then y, then 6, then s) computing

Diz,y,0,s] = min(D[z,y,6, s],

D[z +1,y,0,s] + k,
D[l‘,y-l— 1>9)S] +ky)
D[x)y70+]-75] +k97
Diz,y,0,s+ 1] + k)

This algorithm does not consider the fact that 6 is pe-
riodic. Special handling of the boundary cases and two
additional passes can be performed to handle this peri-
odicity. Computing the generalized distance transform
under any L, norm can be approximated using similar
procedures. The resulting approximation has a fixed
percentage error (see [3, 4]). This solves the problem

of computing B;(l;) in O(m) time. The algorithm can
be easily modified to keep track of the location that
gets propagated to each position in the grid, which al-
low us to compute B’ as we compute B;.

6. Object Models

The experiments reported in this paper use a simple
model of a person and of a car, shown in Figures 4
and 5 respectively. The parts of these models are just
rectangles with fixed aspect ratio, an average color and
a color variance. However, nothing about the matching
algorithm requires such simple part models. The parts
can be anything for which a match cost can be com-
puted efficiently at each possible location in the image
(e.g., more complicated appearance models, color or
edge-based templates, etc).

The color models for the parts use the opponent
color space defined in [20]. The average color of each
part was estimated from one example and the covari-
ance matrix was chosen by hand (currently we use a
diagonal matrix instead of a full covariance matrix).
The location of each part in the image is defined by a
4-tuple, (z,y,0, s) specifying the position of the center
of mass, the orientation and the height of the rectan-
gle. The match costs are computed using a convolution
kernel composed of a “match” rectangle embedded in a
larger “no match” rectangle, as illustrated in Figure 1.
To compute a match cost for a part at any given loca-
tion, we first generate a new image that measures how
much each pixel in the input image matches the color
of the part, using a truncated quadratic error function.
That is, generate I’ by:

ayy) = win (3 (TCe) = 7S (1 e,) =). 0)

where I(z,y) is the color of pixel (z,y) in the input im-
age, u and X are the average color and color variance
of a part, and o is an upper bound on the error. Trun-
cating the error function allows for partial oclusion
of parts. We then convolve I' with the “match” /“no
match” kernel at each possible orientation and scale to
generate a match cost for the part at every location.

The connections between parts behave differently for
the person and car models. In the person model, body
parts are connected by flexible revolute joints while in
the car model, the wheels are connected to the body
by flexible prismatic joints. These connections are de-
scribed in detail below.

6.1. Person Model

For the person model, the deformation costs model flex-
ible revolute joints between two connected parts. A

Figure 1: Convolution kernel used to compute match
cost for a rectangular part.

]
SH

a b

Figure 2: Two parts of the person model, (a) in their own
coordinate system and (b) the ideal configuration of the
pair.

pair of connected parts is illustrated in Figure 2. The
location of the joint is specified by two points (x5, yij)
and (zj;,y;i), one in the coordinate frame of each part,
as indicated by circles in Figure 2a. In an ideal configu-
ration these points coincide, as illustrated in Figure 2b.
The ideal relative orientation is given by 6;;, the angle
between the main axes (in the “height” direction). The
ideal relative size is given by s;;, the ratio of the two
heights.

Given the observed locations I; = (6;, s;, x;,y;) and
l; = (8;,s5,z;,y;) of two parts, the deformation cost
measures the deviation between the ideal values and
these observed values. Each joint specifies weights wfj,
wi, Wi, wﬁ’j for the cost associated with deviations in
each of the relative orientation, size and joint align-
ment. Thus we define the pairwise deformation cost
for the person model to be,

dij(li, 1) = wi;|(8; — 0:) — 03]
+ wfj|(10g s; — log s;) — log s
+ wzzj|a:}] - x;z|
+ wij|yij - yji|

where the first term is the difference between the ideal
relative angle and the observed relative angle, the sec-
ond term is the difference between the ideal relative size

1Xij - Xjil

Figure 3: Two parts of the car model. The distance be-
tween the joints is measured along the horizontal and
vertical directions with respect to their orientation.

and the observed relative size (using log for size ratios),
and the third and fourth terms are the horizontal and
vertical distances between the observed joint positions
in the image (z};,y;;) for v; and (z%;,yj;) for v;.

In our experiments we let wf;, wj;, w}; be large val-
ues and wfj be a small value. Thus the deformation
cost stays relatively small as the parts rotate about
the joint and is large if the parts are not aligned at the
joint or have different relative sizes.

The deformation cost must be expressed in the form
of equation (2), as a distance between Tj;(l;) and

Tji(1j). Given the location I; = (8;, 54, i,y;) we de-
fine T;;(l;) = (6}, s}, =}, y}) where
0, = wl(0;—0i/2)
sto= w; (log s; — log s;5/2)
(i, y)t = Wi((ws,y0)" + siRe, (w5, yi5)")

Wij is a diagonal weight matrix with entries wj; and
wi.’j, and Ry, is a matrix that performs a rotation of 6;
radians about the origin. The new position coordinates
x},y} indicate the position of the joint in the image
(scaled according to the weights). Now we note that
the L; distance between Tj;(l;) and T};(l;) is equal to
the deformation cost d;;(l;,1;) just given above, yield-
ing an expression as in (2).

6.2. Car Model

For the car model, the deformation costs model flexible
prismatic joints between the car wheels and the car
body. The wheels have an ideal position with respect
to the car body and can move along the bottom of the
car with a cost proportional to the distance from their
ideal position.

Like in the person model, the location of a joint is
specified by two points (z;5,y:;) and (z;;,y;:), one in

the coordinate frame of each part. In an ideal config-
uration these points coincide. The ideal relative size
is given by s;;, the ratio of the two heights. In the
joints used in the car model, the parts always have the
same orientation. Each joint specifies weights wj;, wj;,
w%’j for the cost associated with deviations in the rel-
ative size and joint alignment. We define the pairwise

deformation cost for the car model to be,

dij(li,15) oo |(8; — ;)]
wfjl(llog 5~ log s;) — log 55|
wiylzi; — o
w?ﬂy;j - y;z|

+ o+

where the first term insures that the orientation of v;
and v; is the same, the second term is the difference
between the ideal relative size and the observed relative
size (using log for size ratios), and the third and fourth
terms are the horizontal and vertical distances between
the joint positions in the image, measured with respect
to the orientation of the parts (see Figure 3).

In our experiments we let wﬁ/j = oo so the wheels of
the car can only slide horizontally with respect to the
orientation of the body. We let w;; be a large value,
making a strong connection between sizes of the parts,
and w{; be a smaller value, allowing the wheels to slide
along the bottom of the car body without increasing
the deformation cost too much.

Given the location I; = (0;,s;,2i,y;) we define
T;;(l;) = (0, sk, z},yi) where
9; = & 0l
s = wy; (log s; — log si;/2)
(x,y)T = Wi (Rog, (xi,yi)T + si(zij,yi)T)

Wij is a diagonal weight matrix with entries wj; and
w%’j, and R_y, is a matrix that performs a rotation of
—6; radians about the origin. The new position coor-
dinates z},y; indicate the position of the joint in the
image with respect to a coordinate frame that is ro-
tated to be in the same orientation as the part. Now we
note that the L; distance between T;;(l;) and T};(l;)
is equal to the deformation cost d;;(l;,1;) just given
above, yielding an expression as in (2).

7. Implementation and Experi-
ments

We discretized the space of possible part locations into
50 buckets for each of the z and y positions, 10 buckets
for size and 20 buckets for orientation. Using these
parameters our system finds the best configuration of
a model with five to ten parts in a 320 x 240 pixel image
in about 10 seconds on a 450 MHz Pentium-III.

Figure 4 shows recognition results using the person
model. Note that we can recognize the person under
a broad range of lighting condition and varied poses,
with a simple generic model. This illustrates the abil-
ity to recognize articulated objects. Figure 5 shows
recognition results using the car model. Note that we
can recognize fairly different kinds of cars under a wide
variety of poses with a single model. This illustrates
the ability of our method to recognize generic objects
such as a “red car”.

8. Bayesian Formulation

In this section we note that the best match as expressed
by equation (1) can be reformulated as the maximum a
posteriori (MAP) estimate of the model configuration.

The MAP estimate is the configuration with maxi-
mum probability given the input image:

L* = arg max Pr(L|T)
Bayes rule then implies

L* = arg max Pr(I|L)Pr(L) (7)

The prior, Pr(L), captures information about the
object that is known before observing the image. This
prior information is given by the “spring” connections
between parts. The larger the deformation costs in
a configuration, the less probable this configuration
should be. We can capture this notion using:

Pr(L) = %e‘ > s opyem i ds) -

where d;; is the deformation cost associated with edge
(vs,v5), and K is a normalization constant. Note that
this is the typical Gibbs distribution used in Markov
Random Field estimation problems.

The likelihood function, Pr(7|L), measures the prob-
ability of observing image I given a particular config-
uration of the model. Intuitively, the likelihood should
be high when the apperance of the parts agree with
the image data at the positions they are placed, and
low otherwise. Even though the parts of a model may
overlap in the image, we approximate the likelihood
by assuming it is proportional to the product of match
qualities for individual parts,

Pr(I|L) o Hgi(Iali) 9)

The function g¢;(I,1;) measures the match quality for
part v; at location [; in image I. This function depends

Figure 4: Recognition results using the person model. The top leftimage shows the model, which has revolute joints,
in its default configuration. The remaining three images show examples of the globally best matching configuration.

Figure 5: Recognition results using the car model. The top left image shows the model, which has prismatic joints,
in its default configuration. The remaining seven images show the globally best matching configuration.

on the particular modeling scheme used for individual
parts.

The standard approach to finding the MAP estimate
in (7) is to minimize the energy function obtained by
taking the negative logarithm. Substituting (8) and (9)
into (7) we obtain,

L* = arg min Z dij(l;,15) — Z Ing;(1,1;)

(vi,vj)EE v; €V

which is exactly the same as (1) if we let the match
costs m; be the negative logarithm of the match qual-
ities g;.

9. Future Work

In this paper the quality of an object configuration
is based purely on the relative positions of individual
parts. It is simple to incorporate prior information
about the absolute location of each part in the frame-
work. This allows an integrated approach to model-
based tracking and recognition. The recognition on
the first image of a sequence can be done using uni-
form prior on absolute locations. On subsequent im-
ages information about the previous match can be used
to impose a non-uniform prior on absolute locations.

We also have new results that allow the deforma-
tion cost d;; to be the squared distance between trans-
formed locations. This better models the idea that flex-
ible joints can be “pulled” by small amounts without
great cost, while large deformations are very expen-
sive. The algorithm by Karzanov described in [19] can
be changed to efficiently compute a modified general-
ized distance transform, with the norm replaced by its
square.

References

[1]

[10]

[11]

[12]

[13]

A. Amini, T. Weymouth, R. Jain. Using Dynamic
Programming for Solving Variational Problems in
Vision. PAMI, Vol. 12, No. 9, September 1990,
Pages 855-867.

A. Beinglass, H. Wolfson. Articulated Object
Recognition, or: How to Generalize the Gener-
alized Hough Transform. CVPR, 1991, Pages 461-
466.

G. Borgefors. Distance Transformations in Arbi-
trary Dimensions. CVGIP, Vol. 27, No. 3, Septem-
ber 1984, Pages 321-345.

G. Borgefors. Distance Transformations in Digital
Images. CVGIP, Vol. 34, No. 3, June 1986, Pages
344-371.

Y. Boykov, O. Veksler, R. Zabih. Markov Ran-
dom Fields with Efficient Approximations. CVPR,
1998, Pages 648-655.

M.C. Burl, T.K. Leung, P. Perona. Recognition of
Planar Object Classes. CVPR, 1996, Pages 223-
230.

M.C. Burl, M. Weber, P. Perona. A Probabilis-
tic Approach to Object Recognition Using Local
Photometry and Global Geometry. ECCV, Vol. 2,
1998, Pages 628-641.

M.A. Fischler and R.A. Elschlager. The Represen-
tation and Matching of Pictorial Structures. IEEE
Trans. on Computers, Vol. 22, No. 1, January
1973, Pages 67-92.

D.A. Forsyth and M.M. Fleck. Body Plans.
CVPR, 1997, Pages 678-683.

S. Geman, D. Geman. Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restora-
tion of Images. PAMI, Vol. 6, No. 6, November
1984, Pages 721-741.

W.E.L. Grimson. On the Recognition of Param-
eterized 2D Objects. IJCV, Vol. 2, No. 4, April
1989, Pages 353-372.

Y. Hel-Or, M. Werman. Constraint-Fusion for Lo-
calization and Interpretation of Constrained Ob-
jects. CVPR, 1994, Pages 39-45.

D.P. Huttenlocher, G.A. Klanderman, W.J. Ruck-
lidge. Comparing Images Using the Hausdorff Dis-
tance. PAMI, Vol. 15, No. 9, September 1993,
Pages 850-863.

10

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Ishikawa and D. Geiger. Segmentation by
Grouping Junctions. CVPR, 1998, Pages 125-131.

J. Krumm. Object Detection with Vector Quan-
tized Binary Features. CVPR, 1997, Pages 179-
185.

P. Lipson, E. Grimson, P. Sinha. Configuration
Based Scene Classification and Image Indexing.
CVPR, 1997, Pages 1007-1013.

D.G. Lowe. Fitting Parameterized Three-
Dimensional Models to Images. PAMI, Vol. 13,
No. 5, May 1991, Pages 441-450.

H. Murase and S.K. Nayar. Visual Learning And
Recognition Of 3-D Objects From Appearance.
1JCV, Vol. 14, No. 1, January 1995, Pages 5-24.

W. Rucklidge Efficient Visual Recognition Using
the Hausdorff Distance. LNCS 1173, Springer-
Verlag, 1996.

M.J. Swain and D.H. Ballard. Color Indexing.
1JCV, Vol. 7, No. 1, November 1991, Pages 11-
32.

