
Panoramic Image Mosaics

Heung-Yeung Shum and Richard Szeliski

Microsoft Research

Technical Report

MSR-TR-97-23

Microsoft Research

One Microsoft Way

Redmond, WA 98052

http://www.research.microsoft.com/

Panoramic Image Mosaics

Heung-Yeung Shum and Richard Szeliski

Microsoft Research

Abstract

This paper presents some techniques for constructing panoramic image mosaics from se-

quences of images. Our mosaic representation associates a transformation matrix with each

input image, rather than explicitly projecting all of the images onto a common surface (e.g., a

cylinder). In particular, to construct a full view panorama, we introduce a rotational mosaic

representation that associates a rotation matrix (and optionally a focal length) with each

input image. A patch-based alignment algorithm is developed to quickly align two images

given motion models. Techniques for estimating and refining camera focal lengths are also

presented.

In order to reduce accumulated registration errors, we apply global alignment (block

adjustment) to the whole sequence of images, which results in an optimally registered image

mosaic. To compensate for small amounts of motion parallax introduced by translations

of the camera and other unmodeled distortions, we develop a local alignment (deghosting)

technique which warps each image based on the results of pairwise local image registrations.

By combining both global and local alignment, we significantly improve the quality of our

image mosaics, thereby enabling the creation of full view panoramic mosaics with hand-held

cameras.

We also present an inverse texture mapping algorithm for efficiently extracting environ-

ment maps from our panoramic image mosaics. By mapping the mosaic onto an arbitrary

texture-mapped polyhedron surrounding the origin, we can explore the virtual environment

using standard 3D graphics viewers and hardware without requiring special-purpose players.

1 Introduction

The automatic construction of large, high-resolution image mosaics is an active area of

research in the fields of photogrammetry, computer vision, image processing, and computer

graphics. Image mosaics can be used for many different applications [KAI+95, IAH95]. The

most traditional application is the construction of large aerial and satellite photographs

from collections of images [MM80]. More recent applications include scene stabilization and

change detection [HAD+94], video compression [IHA95, IAH95, L+97] and video indexing

[SA96], increasing the field of view [Hec89, MP94, Sze94] and resolution [IP91, CB96] of a

camera, and even simple photo editing [BA83]. A particularly popular application is the

emulation of traditional film-based panoramic photography [Mal83] with digital panoramic

mosaics, for applications such as the construction of virtual environments [MB95, Sze96] and

virtual travel [Che95].

In computer vision, image mosaics are part of a larger recent trend, namely the study

of visual scene representations [A+95]. The complete description of visual scenes and scene

models often entails the recovery of depth or parallax information as well [KAH94, Saw94,

SK95]. In computer graphics, image mosaics play an important role in the field of image-

based rendering, which aims to rapidly render photorealistic novel views from collections of

real (or pre-rendered) images [CW93, MB95, Che95, GGSC96, LH96, Kan97].

A number of techniques have been developed for capturing panoramic images of real-

world scenes (for references on computer-generated environment maps, see [Gre86]). One

way is to record an image onto a long film strip using a panoramic camera to directly capture

a cylindrical panoramic image [Mee90]. Another way is to use a lens with a very large field

of view such as a fisheye lens [XT97]. Mirrored pyramids and parabolic mirrors can also be

used to directly capture panoramic images [Nay97].

A less hardware-intensive method for constructing full view panoramas is to take many

regular photographic or video images in order to cover the whole viewing space. These images

must then be aligned and composited into complete panoramic images using an image mosaic

or “stitching” algorithm [MP94, Sze94, IAH95, Che95, MB95, Sze96].

For applications such as virtual travel and architectural walkthroughs, it is desirable to

have complete (full view) panoramas, i.e., mosaics which cover the whole viewing sphere

1

and hence allow the user to look in any direction. Unfortunately, most of the results to

date have been limited to cylindrical panoramas obtained with cameras rotating on leveled

tripods adjusted to minimize motion parallax [MB95, Che95, Ste95, Sze96, KW96]. This

has limited the users of mosaic building to researchers and professional photographers who

can afford such specialized equipment.

The goal of our work is to remove the need for pure panning motion with no motion

parallax. Ideally, we would like any user to be able to “paint” a full view panoramic mosaic

with a simple hand-held camera or camcorder. In order to support this vision, several

problems must be overcome.

First, we need to avoid using cylindrical or spherical coordinates for constructing the

mosaic, since these representations introduce singularities near the poles of the viewing

sphere. We solve this problem by associating a rotation matrix (and optionally focal length)

with each input image, and performing registration in the input image’s coordinate system

(we call such mosaics rotational mosaics [SS97]). A postprocessing stage can be used to

project such mosaics onto a convenient viewing surface, i.e., to create an environment map

represented as a texture-mapped polyhedron surrounding the origin.

Second, we need to deal with accumulated misregistration errors, which are always present

in any large image mosaic. For example, if we register a sequence of images using pairwise

alignments, there is usually a gap between the last image and the first one even if these two

images are the same. A simple “gap closing” technique can be used to force the first and last

image to be the same, to refine the focal length estimation, and to distribute the resulting

corrections across the image sequence. Unfortunately, this approach works only for pure

panning motions with uniform motion steps. In this paper, we develop a global optimization

technique, derived from simultaneous bundle block adjustment in photogrammetry [Wol74],

to find the optimal overall registration.

Third, any deviations from the pure parallax-free motion model or ideal pinhole (projec-

tive) camera model may result in local misregistrations, which are visible as a loss of detail

or multiple images (ghosting). To overcome this problem, we compute local motion estimates

(block-based optical flow) between pairs of overlapping images, and use these estimates to

warp each input image so as to reduce the misregistration. Note that this is less ambitious

2

Input Images

Patch-based Image Alignment

Estimate Focal Length

Block Adjustment

Deghosting

Panoramic Image Mosaics

Environment Maps

Rotational Mosaics

Section 5

Section 4

Section 3

Section 6

Section 7

Section 9

Figure 1: Panoramic image mosaicing system

than actually recovering a projective depth value for each pixel [KAH94, Saw94, SK95], but

has the advantage of being able to simultaneously model other effects such as radial lens

distortions and small movements in the image.

The overall flow of processing in our mosaicing system is illustrated in Figure 1. First, if

the camera intrinsic parameters are unknown, the user creates a small mosaic using a planar

projective motion model, from which we can compute a rough estimate of the focal length 5.

Next, a complete initial panoramic mosaic is assembled sequentially (adding one image at a

time and adjusting its position) using our rotational motion model (Section 3) and patch-

based alignment technique (Section 4). Then, global alignment (block adjustment) is invoked

to modify each image’s transformation (and focal length) such that the global error across all

3

possible overlapping image pairs is minimized (Section 6). This stage also removes any large

inconsistencies in the mosaic, e.g., the “gaps” that might be present in a panoramic mosaic

assembled using the sequential algorithm. Lastly, the local alignment (deghosting) algorithm

is invoked to reduce any local misregistration errors (Section 7). The final mosaic can be

stored as a collection of images with associated transformations, or optionally converted into

a texture-mapped polyhedron or environment map (Section 9).

The structure of our paper essentially follows the major processing stages, as outlined

above. In addition, we show in Section 2 how to construct cylindrical and spherical panora-

mas, which are special cases of panoramic image mosaics with a known camera focal length

and a simple translational motion model. Section 8 presents our experimental results using

both global and local alignment, and Section 10 discusses these results and summarizes our

contributions.

2 Cylindrical and spherical panoramas

Cylindrical panoramas are commonly used because of their ease of construction. To build a

cylindrical panorama, a sequence of images is taken by a camera mounted on a leveled tripod.

If the camera focal length or field of view is known, each perspective image can be warped

into cylindrical coordinates. Figure 2a shows two overlapping cylindrical images—notice how

horizontal lines become curved.

To build a cylindrical panorama, we map world coordinates p = (X, Y, Z) to 2D cylin-

drical screen coordinates (θ, v) using

θ = tan−1(X/Z) (1)

v = Y/
√

X2 + Z2 (2)

where θ is the panning angle and v is the scanline [Sze96]. Similarly, we can map world

coordinates into 2D spherical coordinates (θ, φ) using

θ = tan−1(X/Z) (3)

φ = tan−1(Y/
√

X2 + Z2). (4)

4

Once we have warped each input image, constructing the panoramic mosaics becomes

a pure translation problem. Ideally, to build a cylindrical or spherical panorama from a

horizontal panning sequence, only the unknown panning angles need to be recovered. In

practice, small vertical translations are needed to compensate for vertical jitter and optical

twist. Therefore, both a horizontal translation tx and a vertical translation ty are estimated

for each input image.

To recover the translational motion, we estimate the incremental δt = (δtx, δty) by min-

imizing the intensity error between two images,

E(δt) =
∑

i

[I1(x′
i + δt)− I0(xi)]2, (5)

where xi = (xi, yi) and x′
i = (x′

i, y
′
i) = (xi + tx, yi + ty) are corresponding points in the two

images, and t = (tx, ty) is the global translational motion field which is the same for all

pixels [BAHH92].

After a first order Taylor series expansion, the above equation becomes

E(δt) ≈∑
i

[gT
i δt + ei]2 (6)

where ei = I1(x′
i) − I0(xi) is the current intensity or color error, and gT

i = ∇I1(x′
i) is the

image gradient of I1 at x′
i. This minimization problem has a simple least-squares solution,(∑

i

gigT
i

)
δt = −

(∑
i

eigi

)
. (7)

Figure 2b shows a portion of a cylindrical panoramic mosaic built using this simple trans-

lational alignment technique. To handle larger initial displacements, we use a hierarchical

coarse-to-fine optimization scheme [BAHH92]. To reduce discontinuities in intensity and

color between the images being composited, we apply a simple feathering algorithm, i.e., we

weight the pixels in each image proportionally to their distance to the edge (or more pre-

cisely, their distance to the nearest invisible pixel) [Sze96]. More precisely, for each warped

image being blended, we first compute the distance map, d(x), which measures either the

city block distance [RK76] or the Euclidean distance [Dan80] to the nearest transparent pixel

(α = 0) or border pixel. We then blend all of the warped images using

C(x) =
∑

k w(d(x))Ĩk(x)∑
k w(d(x))

(8)

5

(a) (b)

Figure 2: Construction of a cylindrical panorama: (a) two warped images; (b) part of

cylindrical panorama composited from a sequence of images.

where w is a monotonic function (we currently use w(x) = x).

Once registration is finished, we can clip the ends (and optionally the top and bottom),

and write out a single panoramic image. An example of a cylindrical panorama is shown in

Figure 2b. The cylindrical/spherical image can then be displayed with a special purpose

viewer like QTVR or Surround Video. Alternatively, it can be wrapped onto a cylinder or

sphere using texture-mapping. For example, the Direct3D graphics API has a CreateWrap

primitive which can be used to wrap a spherical or cylindrical image around an object using

texture-mapping. However, the object needs to be finely tesselated in order to avoid visible

artifacts.

Creating panoramas in cylindrical or spherical coordinates has several limitations. First,

it can only handle the simple case of pure panning motion. Second, even though it is possible

to convert an image to 2D spherical or cylindrical coordinates for a known tilting angle, ill-

sampling at north pole and south pole causes big registration errors1. Third, it requires

knowing the focal length (or equivalently, field of view). While focal length can be carefully

calibrated in the lab[Tsa87, Ste95], estimating the focal length of lens by registering two or

more images is not very accurate, as we will discuss in section 5.
1Note that cylindrical coordinates become undefined as you tilt your camera toward north or south pole.

6

3 Alignment framework and motion models

In our work, we represent image mosaics as collections of images with associated geometrical

transformations. The first stage of our mosaic construction algorithm computes an initial

estimate for the transformation associated with each input image. We do this by processing

each input image in turn, and finding the best alignment between this image and the mosaic

constructed from all previous images.2 This reduces the problem to that of parametric motion

estimation [BAHH92]. We use the hierarchical motion estimation framework proposed by

Bergen et al., which consists of four parts: (i) pyramid construction, (ii) motion estimation,

(iii) image warping, and (iv) coarse-to-fine refinement [BAHH92].

An important element of this framework, which we exploit, is to perform the motion

estimation between the current new input image and a warped (resampled) version of the

mosaic. This allows us to estimate only incremental deformations of images (or equivalently,

instantaneous motion), which greatly simplifies the computation of the gradients and Hes-

sians required in our gradient descent algorithm. Thus, to register two images I0(x) and

I1(x′), where x′ is computed using some parametric motion model m, i.e., x′ = f(x;m), we

first compute the warped image

Ĩ1(x) = I1(f(x;m)) (9)

(in our current implementation, we use bilinear pixel resampling). The trick is then to find a

deformation of Ĩ1(x) which brings it into closer registration with I0(x) and which can also be

used to update the parameter m. The warp/register/update loop can then be repeated. In

the next three subsections, we describe how this can be done for two different transformation

models, namely 8-parameter planar projective transformations, and 3D rotations, and how

this can be generalized to other motion models and parameters.

3.1 8-parameter perspective transformations (homographies)

Given two images taken from the same viewpoint (optical center) but in potentially different

directions (and/or with different intrinsic parameters), the relationship between two overlap-

ping images can be described by a planar perspective motion model [MP94, IAH95, Sze96]
2To speed up this part, we can optionally register with only the previous image in the sequence.

7

(for a proof, see Section 3.2 below). The planar perspective transformation warps an image

into another using

x′ ∼Mx =




m0 m1 m2

m3 m4 m5

m6 m7 m8







x

y

1


 , (10)

where x = (x, y, 1) and x′ = (x′, y′, 1) are homogeneous or projective coordinates, and ∼
indicates equality up to scale.3 This equation can be re-written as

x′ =
m0x + m1y + m2

m6x + m7y + m8
(11)

y′ =
m3x + m4y + m5

m6x + m7y + m8
. (12)

To recover the parameters, we iteratively update the transformation matrix4 using

M← (I + D)M (13)

where

D =




d0 d1 d2

d3 d4 d5

d6 d7 d8


 . (14)

Resampling image I1 with the new transformation x′ ∼ (I+D)Mx is the same as warping

the resampled image Ĩ1 by x′′ ∼ (I + D)x,5 i.e.,

x′′ =
(1 + d0)x + d1y + d2

d6x + d7y + (1 + d8)
(15)

y′′ =
d3x + (1 + d4)y + d5

d6x + d7y + (1 + d8)
. (16)

We wish to minimize the squared error metric6

E(d) =
∑

i

[Ĩ1(x′′
i)− I0(xi)]2 (17)

≈ ∑
i

[Ĩ1(xi) +∇Ĩ1(xi)
∂x′′

i

∂d
d− I0(xi)]2 =

∑
i

[gT
i JT

i d + ei]2 (18)

3Since the M matrix is invariant to scaling, there are only 8 independent parameters.
4To improve conditioning of the linear system and to speed up the convergence, we update in practice

T−1M ← (I + D)T−1M, or M ← T(I + D)T−1M where T is translates the image plane origin from the

topleft corner to the center (see equation 23).
5Ignoring errors introduced by the double resampling operation.
6For robust versions of this metric, see [BR96, SA96].

8

where ei = Ĩ1(xi)− I0(xi) is the intensity or color error7, gT
i = ∇Ĩ1(xi) is the image gradient

of Ĩ1 at xi, d = (d0, . . . , d8) is the incremental motion parameter vector, and Ji = Jd(xi),

where

Jd(x) =
∂x′′

∂d
=


 x y 1 0 0 0 −x2 −xy −x

0 0 0 x y 1 −xy −y2 −y




T

(19)

is the Jacobian of the resampled point coordinate x′′
i with respect to d.8

This least-squares problem (18) has a simple solution through the normal equations

[PFTV92]

Ad = −b, (20)

where

A =
∑

i

JigigT
i JT

i (21)

is the Hessian, and

b =
∑

i

eiJigi (22)

is the accumulated gradient or residual. These equations can be solved using a symmetric

positive definite (SPD) solver such as Cholesky decomposition [PFTV92]. Note that for

our problem, the matrix A is singular unless we eliminate one of the three parameters

{d0, d4, d8}. In practice, we set d8 = 0, and therefore only solve an 8× 8 system. A diagram

of our alignment framework is shown in Figure 3.

Translational motion is a special case of the general 8-parameter perspective transforma-

tion where J is a 2×2 identity matrix because only the two parameters m2 and m5 are used.

The translational motion model can be used to construct cylindrical and spherical panora-

mas if we warp each image to cylindrical or spherical coordinates image using a known focal

length, as shown in Section 2.

The 8-parameter perspective transformation recovery algorithm works well provided that

initial estimates of the correct transformation are close enough. However, since the motion

model contains more free parameters than necessary, it suffers from slow convergence and
7Currently three channels of color errors are used in our system, but we can use the intensity error as

well.
8The entries in the Jacobian correspond to the optical flow induced by the instantaneous motion of a

plane in 3D [BAHH92].

9

I0(x) I1(x)

Warp

Gradient Jacobian

Transpose
M <- (I+D)M

summer
for all i

Normal Equation Solver

summer
for all i

M
+

-

xi

xi
ei

gi Ji

Jigi

eiJigi

Jigigi
TJi

T

I1(xi)

D

Figure 3: A diagram for our image alignment framework

10

sometimes gets stuck in local minima. For this reason, we prefer to use the 3-parameter

rotational model described next.

3.2 3D rotations and zooms

For a camera centered at the origin, the relationship between a 3D point p = (X, Y, Z) and

its image coordinates x = (x, y, 1) can be described by

x ∼ TVRp, (23)

where

T =




1 0 cx

0 1 cy

0 0 1


 ,V =




f 0 0

0 f 0

0 0 1


 , and R =




r00 r01 r02

r10 r11 r12

r20 r21 r22




are the image plane translation, focal length scaling, and 3D rotation matrices. For sim-

plicity of notation, we assume that pixels are numbered so that the origin is at the image

center, i.e., cx = cy = 0, allowing us to dispense with T (in practice, mislocating the image

center does not seem to affect mosaic registration algorithms very much). The 3D direction

corresponding to a screen pixel x is given by p ∼ R−1V−1x.

For a camera rotating around its center of projection, the mapping (perspective projec-

tion) between two images k and l is therefore given by

M ∼ VkRkR−1
l V−1

l = VkRklV−1
l (24)

where each image is represented by VkRk, i.e., a focal length and a 3D rotation.

Assume for now that the focal length is known and is the same for all images, i.e, Vk = V.

Our method for computing an estimate of f from an initial set of homographies is given in

Section 5. To recover the rotation, we perform an incremental update to Rk based on the

angular velocity Ω = (ωx, ωy, ωz),

Rkl ← R̂(Ω)Rkl or M← VR̂(Ω)RklV−1 (25)

where the incremental rotation matrix R̂(Ω) is given by Rodriguez’s formula [Aya89],

R̂(n̂, θ) = I + sin θX(n̂) + (1− cos θ)X(n̂)2 (26)

11

with θ = ‖Ω‖, n̂ = Ω/θ, and

X(Ω) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0




is the cross product operator. Keeping only terms linear in Ω, we get

M′ ≈ V[I + X(Ω)]RkR−1
l V−1 = (I + DΩ)M, (27)

where

DΩ = VX(Ω)V−1 =




0 −ωz fωy

ωz 0 −fωx

−ωy/f ωx/f 0




is the deformation matrix which plays the same role as D in (13).

Computing the Jacobian of the entries in DΩ with respect to Ω and applying the chain

rule, we obtain the new Jacobian,9

JΩ =
∂x′′

∂Ω
=

∂x′′

∂d
∂d
∂Ω

=


 −xy/f f + x2/f −y

−f − y2/f xy/f x




T

. (28)

This Jacobian is then plugged into the previous minimization pipeline to estimate the incre-

mental rotation vector (ωx ωy ωz), after which Rk can be updated using (25).

Figure 4 shows how our method can be used to register four images with arbitrary (non-

panning) rotation. Compared to the 8-parameter perspective model, it is much easier and

more intuitive to interactively adjust images using the 3-parameter rotational model.10

3.3 Other motion parameters

The same general strategy can be followed to obtain the gradient and Hessian associated

with any other motion parameters. For example, the focal length fk can be adjusted by

setting fk ← (1 + ek)fk, i.e.,

M← (I + ekD110)M (29)
9This is the same as the rotational component of instantaneous rigid flow [BAHH92].

10With only a mouse click/drag on screen, it is difficult to control 8 parameters simultaneously.

12

(a) (b)

Figure 4: 3D rotation registration of four images taken with hand-held camera: (a) four

original pictures; (b) image mosaic using 3D rotation.

where D110 is a diagonal matrix with entries (1, 1, 0). The Jacobian matrix Jek
is thus the

diagonal matrix with entries (x, y), i.e., we are estimating a simple re-scaling (dilation). This

formula can be used to re-estimate the focal length in a video sequence with a variable focal

length (zoom).

If we wish to update a single global focal length estimate, f ← (1 + e)f , the update

equation and Jacobian are more complicated. We obtain

M← (I + eD110)VRkR−1
l V−1(I− eD110) ≈ (I + eDe)M (30)

where

De = D110 −MD110M−1 (31)

(further simplifications of the second term are possible because of the special structure of

D110). The Jacobian does not have a nice simple structure, but can nevertheless be written

13

as the product of Jd and ∂d/∂e, which is given by the entries in De. Note, however, that

global focal length adjustment cannot be done as part of the initial sequential mosaic creation

stage, since this algorithm presupposes that only the newest image is being adjusted. We

will address the issue of global focal length estimate refinement in Section 6.

The same methodology as presented above can be used to update any motion parameter

p on which the image-to-image homography M(p) depends, e.g., the location of the optical

center, the aspect ratio, radial distortion [SK97], etc. We simply set

M←M(p + δp) ≈ (I + δp
∂M
∂p

M−1)M. (32)

Hence, we can read off the entries in ∂d/∂p from the entries in (∂M/∂p)M−1.

4 Patch-based alignment algorithm

The normal equations given in the previous section, together with an appropriately cho-

sen Jacobian matrix, can be used to directly improve the current motion estimate by first

computing local intensity errors and gradients, and then accumulating the entries in the

parameter gradient vector and Hessian matrix. This straightforward algorithm suffers from

several drawbacks: it is susceptible to local minima and outliers, and is also unnecessarily

inefficient. In this section, we present the implementation details of our algorithm which

makes it much more robust and efficient.

4.1 Patch-based alignment

The computational effort required to take a single gradient descent step in parameter space

can be divided into three major parts: (i) the warping (resampling) of I1(x′) into Ĩ1(x), (ii)

the computation of the local intensity errors ei and gradients gi, and (iii) the accumulation

of the entries in A and b (21–22). This last step can be quite expensive, since it involves

the computations of the monomials in Ji and the formation of the products in A and b.

Notice that equations (21–22) can be written as vector/matrix products of the Jacobian

J(xi) with the gradient-weighted intensity errors, eigi, and the local intensity gradient Hes-

sians gigT
i . If we divide the image up into little patches Pj, and make the approximation

14

that J(xi) = Jj is constant within each patch (say by evaluating it at the patch center), we

can write the normal equations as

A ≈∑
j

JjAjJT
j with Aj =

∑
i∈Pj

gigT
i (33)

and

b ≈∑
j

Jjbj with bj =
∑
i∈Pj

eigi. (34)

Aj and bj are the terms that appear in patch-based optical flow algorithms [LK81, BAHH92].

Our new algorithm therefore augments step (ii) above with the accumulation of Aj and bj

(only 10 additional multiply/add operations, which could potentially be done using fixpoint

arithmetic), and performs the computations required to evaluate Jj and accumulate A and

b only once per patch.

A potential disadvantage of using this approximation is that it might lead to poorer

convergence (more iterations) in the parameter estimation algorithm. In practice, we have

not observed this to be the case with the small patches (8× 8) which we currently use.

4.2 Local search

Another limitation of straightforward gradient descent is that it can get trapped in local min-

ima, especially when the initial misregistration is more than a few pixels. A useful heuristic

for enlarging the region of convergence is to use a hierarchical or coarse-to-fine algorithm,

where estimates from coarser levels of the pyramid are used to initialize the registration at

finer levels [Qua84, Ana89, BAHH92]. This is a remarkably effective technique, and we typi-

cally always use 3 or 4 pyramid levels in our mosaic construction algorithm. However, it may

still sometimes fail if the amount of misregistration exceeds the scale at which significant

image details exist (i.e., because these details may not exist or may be strongly aliased at

coarse resolution levels).

To help overcome this problem, we have added a local search component to our registra-

tion algorithm.11 Before doing the first gradient descent step at a given resolution level, the
11To compensate for even larger misregistration, phase correlation could be used to estimate a translation

for the whole image [Sze96].

15

algorithm can be instructed to perform an independent search at each patch for the integral

shift which will best align the I0 and Ĩ1 images (this block-matching technique is the basis of

most MPEG4 coding algorithms [LG91]). For a search range of ±s pixels both horizontally

and vertically, this requires the evaluation of (2s + 1)2 different shifts. For this reason, we

usually only apply the local search algorithm at the coarsest level of the pyramid (unlike,

say, [Ana89], which is a dense optic flow algorithm).

Once the displacements have been estimated for each patch, they must somehow be

integrated into the global parameter estimation algorithm. The easiest way to do this is to

compute a new set of patch Hessians Aj and patch residuals bj (c.f. (33–34)) to encode the

results of the search. Recall that for patch-based flow algorithms [LK81, BAHH92], Aj and

bj describe a local error surface

E(uj) = uT
j Ajuj + 2uT

j bj + c = (uj − u∗
j)

TAj(uj − u∗
j) + c′ (35)

where

u∗
j = −A−1

j bj (36)

is the minimum energy (optimal) flow estimate.

We have developed two techniques for computing Aj and bj from the results of the

local search. The first is to fit (35) to the discretely sampled error surface which was used

to determine the best shift u0. Since there are 5 free parameters in Aj and bj (Aj is

symmetric), we can simply fit a bivariate quadratic surface to the central E value and its

4 nearest neighbors (more points can be used, if desired). Note that this fit will implicitly

localize the results of the local search to sub-pixel precision (because of the quadratic fit).

A second approach is to compute Aj and bj using the gradient-based approach (33–

34), but with image Ĩ(x) shifted by the estimated amount u0. After accumulating the new

Hessian Âj and residual b̂j with respect to the shifted image, we can compute the new

gradient-based sub-pixel estimate

û∗
j = Â−1

j b̂j. (37)

Adding û∗
j to the local search displacement u0, i.e.,

u∗
j = û∗

j + u0 (38)

16

is equivalent to setting

Aj = Âj, bj = b̂j −Aju0. (39)

We prefer this second approach, since it results in Aj estimates which are non-negative

definite (important for ensuring that the normal equations can be solved stably), and since

it better reflects the certainty in a local match.12

5 Estimating the focal length

In order to apply our 3D rotation technique, we must first obtain an estimate for the camera’s

focal length. We can obtain such an estimate from one or more perspective transforms

computed using the 8-parameter algorithm. Expanding the V1RV−1
0 formulation, we have

M =




m0 m1 m2

m3 m4 m5

m6 m7 1


 ∼




r00 r01 r02f0

r10 r11 r12f0

r20/f1 r21/f1 r22f0/f1


 (40)

where R = [rij].

In order to estimate focal lengths f0 and f1, we observe that the first two rows (or

columns) of R must have the same norm and be orthogonal (even if the matrix is scaled),

i.e.,

m0
2 + m1

2 + m2
2/f0

2 = m3
2 + m4

2 + m5
2/f0

2 (41)

m0m3 + m1m4 + m2m5/f0
2 = 0 (42)

and

m0
2 + m3

2 + m6
2f1

2 = m1
2 + m4

2 + m7
2f1

2 (43)

m0m1 + m3m4 + m6m7f1
2 = 0. (44)

From this, we can compute the estimates

f0
2 =

m5
2 −m2

2

m0
2 + m1

2 −m3
2 −m4

2 if m0
2 + m1

2 6= m3
2 + m4

2

12An analysis of the relationship between these two approaches can be found in [TH86].

17

or

f0
2 = − m2m5

m0m3 + m1m4
if m0m3 6= m1m4.

Similar result can be obtained for f1 as well. If the focal length is fixed for two images, we

can take the geometric mean of f0 and f1 as the estimated focal length f =
√

f1f0. When

multiple estimates of f are available, the median value is used as the final estimate.

5.1 Closing the gap in a panorama

Even with our best algorithms for recovering rotations and focal length, when a complete

panoramic sequence is stitched together, there will invariably be either a gap or an overlap

(due to accumulated errors in the rotation estimates). We solve this problem by registering

the same image at both the beginning and the end of the sequence.

The difference in the rotation matrices (actually, their quotient) directly tells us the

amount of misregistration. This error can be distributed evenly across the whole sequence

by converting the error in rotation into a quaternion, and dividing the quaternion by the

number of images in the sequence (for lack of a better guess). We can also update the

estimated focal length based on the amount of misregistration. To do this, we first convert

the quaternion describing the misregistration into a gap angle θg. We can then update the

focal length using the equation f ′ = (360◦ − θg) ∗ f/360◦.

Figure 5a shows the end of registered image sequence and the first image. There is

a big gap between the last image and the first which are in fact the same image. The

gap is 32◦ because the wrong estimate of focal length (510) was used. Figure 5b shows

the registration after closing the gap with the correct focal length (468). Notice that both

mosaics show very little visual misregistration (except at the gap), yet Figure 5a has been

computed using a focal length which has 9% error. Related approaches have been developed

by [Har94, MB95, Ste95, KW96] to solve the focal length estimation problem using pure

panning motion and cylindrical images. In next section, we develop a different approach to

removing gaps and overlaps which works for arbitrary image sequences.

18

(a) (b)

Figure 5: Gap closing: (a) a gap is visible when the focal length is wrong (f = 510); (b) no

gap is visible for the correct focal length (f = 468).

6 Global alignment (block adjustment)

The sequential mosaic construction techniques described in Sections 3 and 4 do a good job

of aligning each new image with the previously composited mosaic. Unfortunately, for long

image sequences, this approach suffers from the problem of accumulated misregistration

errors. This problem is particularly severe for panoramic mosaics, where a visible gap (or

overlap) will exist between the first and last images in a sequence, even if these two images

are the same, as we have seen in the previous section.

In this section, we present a new global alignment method that reduces accumulated error

by simultaneously minimizing the misregistration between all overlapping pairs of images.

Our method is similar to the “simultaneous bundle block adjustment” [Wol74] technique used

in photogrammetry but has the following distinct characteristics:

• Corresponding points between pairs of images are automatically obtained using patch-

based alignment.

• Our objective function minimizes the difference between ray directions going through

corresponding points, and uses a rotational panoramic representation.

• The minimization is formulated as a constrained least-squares problem with hard linear

19

constraints for identical focal lengths and repeated frames.13

6.1 Establishing the point correspondences

Our first global alignment algorithm is a feature-based technique, i.e., it relies on first estab-

lishing point correspondences between overlapping images, rather than doing direct intensity

difference minimization (as in the sequential algorithm).

To find our features, we divide each image into a number of patches (e.g., 16×16 pixels),

and use the patch centers as prospective “feature” points.

For each patch center, its corresponding point in another image could be determined

directly by the current inter-frame transformation MkM−1
l . However, since we do not believe

that these alignments are optimal, we instead invoke the local search-based patch alignment

algorithm described in Section 4.2. (The results of this patch-based alignment are also used

for the deghosting technique discussed in the next section.)

Pairs of images are examined only if they have significant overlap, for example, more than

a quarter of the image size. In addition, instead of using all patch centers, we select only

those with high confidence (or low uncertainty) measure. Currently we set the threshold for

the minimum eigenvalue of each 2× 2 patch Hessian (available from patch-based alignment

algorithm) so that patches with uniform texture are excluded. Other measures such as the

ratio between two eigenvalues can also be used so that patches where the aperture problem

exists can be ignored. Raw intensity error, however, would not make a useful measure for

selecting feature patches because of potentially large inter-frame intensity variations (varying

exposures, vignetting, etc.).

6.2 Optimality criteria

For a patch j in image k, let l ∈ Njk be the set of overlapping images in which patch j

is totally contained (under the current set of transformations). Let xjk be the center of

this patch. To compute the patch alignment, we use image k as I0 and image l as I1 and
13We have found that it is easier to use certain frames in the sequence more than once during the sequential

mosaic formation process (say at the beginning and at the end), and to then use the global alignment stage

to make sure that these all have the same associated location.

20

Figure 6: Illustration of simultaneous bundle block adjustment: adjust the bundle of rays

xjk so that they converge to xj.

invoke the algorithm of Section 4.2, which returns an estimated displacement ujl = u∗
j .

The corresponding point in the warped image Ĩ1 is thus x̃jl = xjk + ujl. In image l, this

point’s coordinate is xjl ∼MlM−1
k x̃jl, or xjl ∼ VlRlR−1

k V−1
k x̃jl if the rotational panoramic

representation is used.

Given these point correspondences, one way to formulate the global alignment is to

minimize the difference between screen coordinates of all overlapping pairs of images,

E({Mk}) =
∑

j,k,l∈Njk

‖xjk − P(MkM−1
l xjl)‖2 (45)

where P(MkM−1
l xjl) is the projected screen coordinate of xjl under the transformation

MkM−1
l (Mk could be a general homography, or could be based on the rotational panoramic

representation). This has the advantage of being able to incorporate local certainties in the

point matches (by making the above norm be a matrix norm based on the local Hessian Ajk).

The disadvantage, however, is that the gradients with respect to the motion parameters are

complicated (Section 3). We shall return to this problem in Section 6.4.

A simpler formulation can be obtained by minimizing the difference between the ray

directions of corresponding points using a rotational panoramic representation with unknown

21

Figure 7: Comparison between two methods: (a) minimizing the difference between xj and

all xjk; (b) minimizing the difference between all pairs of xjk and xjl; (c) desired flow for

deghosting ujk is a down-weighted average of all pairwise flows ujl.

focal length. Geometrically, this is equivalent to adjusting the rotation and focal length for

each frame so that the bundle of corresponding rays converge, as shown in Figure 6.

Let the ray direction in the final composited image mosaic be a unit vector pj, and

its corresponding ray direction in the kth frame as pjk ∼ R−1
k V−1

k xjk. We can formulate

block adjustment to simultaneously optimize over both the pose (rotation and focal length

{Rk, fk}) and structure (ray direction {pj}) parameters,

E({Rk, fk}, {pj}) =
∑
j,k

‖pjk − pj‖2 =
∑
j,k

‖R−1
k x̂jk − pj‖2 (46)

where

x̂jk =




xjk

yjk

fk


 /ljk (47)

is the ray direction going through the jth feature point located at (xjk, yjk) in the kth frame,

and

ljk =
√

xjk
2 + yjk

2 + fk
2 (48)

(note that this absorbs the fk parameter in Vk into the coordinate definition).

The advantage of the above direct minimization (46) is that both pose and structure

can be solved independently for each frame. For instance, we can solve pj using linear

least-squares, Rk using relative orientation, and fk using nonlinear least-squares. The dis-

advantage of this method is its slow convergence due to the highly coupled nature of the

22

equations and unknowns.14

For the purpose of global alignment, however, it is not necessary to explicitly recover the

ray directions. We can reformulate block adjustment to only minimize over pose ({Rk, fk})
for all frames k, without computing the {pj}. More specifically, we estimate the pose by

minimizing the difference in ray directions between all pairs (k and l) of overlapping images,

E({Rk, fk}) =
∑

j,k,l∈Njk

‖pjk − pjl‖2 =
∑

j,k,l∈Njk

‖R−1
k x̂jk −R−1

l x̂jl‖2 (49)

Once the pose has been computed, we can compute the estimated directions pj using the

known correspondence from all overlapping frames Njk where the feature point j is visible,

pj ∼ 1
njk + 1

∑
l∈Njk∪k

R−1
l V−1

l xjl. (50)

where njk = |Njk| is the number of overlapping images where patch j is completely visible

(this information will be used later in the deghosting stage).

Figure 7 shows the difference between the above two formulations.

6.3 Solution technique

The least-squares problem (49) can be solved using our regular gradient descent method. To

recover the pose {Rk, fk}, we iteratively update the ray directions pjk(xjk;Rk, fk) to

R−1
k ← R̂(Ωk)R−1

k and fk ← fk + δfk. (51)

The minimization problem (49) can be rewritten as

E({Rk, fk}) =
∑

j,k,l∈Njk

‖Hjkyk −Hjlyl + ej‖2 (52)

where

ej = pjk − pjl,

yk =


 Ωk

δfk


 ,

14Imagine a chain of spring-connected masses. If we pull one end sharply, and then set each mass to the

average of its neighbors, it will take the process a long time to reach equilibrium. This situation is analogous.

23

Hjk =




∂pjk

∂Ωk

∂pjk

∂fk


 ,

and

∂pjk

∂Ωk

=
∂(I + X(Ω))pjk

∂Ωk

=
∂

∂Ωk




1 −ωz ωy

ωz 1 −ωx

−ωy ωx 1


pjk = −X(pjk), (53)

∂pjk

∂fk

= R−1
k

∂x̃jk

∂fj

= R−1
k



−xjkfk

−yjkfk

ljk
2 − fk

2


 /ljk

3. (54)

We therefore have the following linear equation for each point j matched in both frames

k and l, [
Hjk −Hjl

]  yj

yk


 = −ei (55)

which leads to normal equations

Ay = −b (56)

where the 4 × 4 (k, k)th block diagonal term and (k, l)th block off-diagonal term 15 of the

symmetric A are defined by

Akk =
∑
j

Hjk
THjk (57)

Akl = −∑
j

Hjk
THjl (58)

and the kth and lth 4× 1 blocks of b are

bk =
∑
j

Hjk
Tej (59)

bl = −∑
j

Hjl
Tej. (60)

Because A is symmetric, the normal equations can be stably solved using a symmetric

positive definite (SPD) linear system solver. By incorporating additional constraints on the

15The sequential pairwise alignment algorithm described in Section 2 and Section 3 can be regarded as a

special case of the global alignment (56) where the off-diagonal terms Ajk and yk are zero if frame k is set

fixed.

24

pose, we can formulate our minimization problem (49) as a constrained least-squares problem

which can be solved using Lagrange multipliers. Details of the constrained least-squares can

be found in Appendix A. Possible linear constraints include:

• Ω0 = 0. First frame pose is unchanged. For example, the first frame can be chosen as

the world coordinate system.

• δfk = 0 for all N frames j = 0, 1, ..., N − 1. All focal lengths are known.

• δfk = δf0 for j = 1, ..., N . All focal lengths are the same but unknown.

• δfk = δfl, Ωk = Ωl, Frame j is the same as frame k. In order to apply this constraint,

we also need to set fk = fl and Rk = Rl.

The above minimization process converges quickly (several iterations) in practice. The

running time for the iterative non-linear least-squares solver is much less than the time

required to build the point correspondences.

6.4 Optimizing in screen coordinates

Now we return to Equation (45) to solve global alignment using screen coordinates. If we

update Mk and Ml by

Mk ← (I + Dk)Mk and Ml ← (I + Dl)Ml, (61)

we get

Mkl ← (I + Dkl)Mkl

= (I + Dk)MkM−1
l (I−Dl)

= (I + Dk −MklDlM−1
kl)Mkl.

Because of linear relationship between Dkl and Dk, Dl, we can find out the Jacobians

Jk =
∂dkl

∂dk

and Jl =
∂dkl

∂dl

. (62)

In fact, Jk = I. Since we know how to estimate Dkl from patch-based alignment, we can

expand the original 8 × 8 system (assuming perspective case) Adkl = b to four blocks of

8× 8 system, much like equations (57)-(60).

25

7 Deghosting (local alignment)

After the global alignment has been run, there may still be localized mis-registrations present

in the image mosaic, due to deviations from the idealized parallax-free camera model. Such

deviations might include camera translation (especially for hand-held cameras), radial distor-

tion, the mis-location of the optical center (which can be significant for scanned photographs

or Photo CDs), and moving objects.

To compensate for these effects, we would like to quantify the amount of mis-registration

and to then locally warp each image so that the overall mosaic does not contain visible

ghosting (double images) or blurred details. If our mosaic contains just a few images, we

could choose one image as the base, and then compute the optical flow between it and all

other images, which could then be deformed to match the base. Another possibility would

be to explicitly estimate the camera motion and residual parallax [KAH94, Saw94, SK95],

but this would not compensate for other distortions.

However, since we are dealing with large image mosaics, we need an approach which

makes all of the images globally consistent, without a preferred base. One approach might

be to warp each image so that it best matches the current mosaic. For small amounts of

misregistration, where most of the visual effects are simple blurring (loss of detail), this

should work fairly well. However, for large misregistrations, where ghosting is present, the

local motion estimation would likely fail.

An alternative approach, which is the one we have adopted, is to compute the flow

between all pairs of images, and to then infer the desired local warps from these computations.

While in principle, any motion estimation or optical flow technique could be used, we use

the the patch-based alignment algorithm described in Section 4.2, since it provides us with

the required information and allows us to reason about geometric consistency.

Recall that the block adjustment algorithm (50) provides an estimate pj of the true

direction in space corresponding to the jth patch center in the kth image, xjk. The projection

of this direction onto the kth image is

xjk ∼ VkRk
1

njk + 1
∑

l∈Njk∪k

R−1
l V−1

l xjl =
1

njk + 1


xjk +

∑
l∈Njk

x̃jl


 . (63)

26

This can be converted into a motion estimate

ujk = xjk − xjk =
1

njk + 1
∑

l∈Njk

(x̃jl − xjk) =
1

njk + 1
∑

l∈Njk

ujl. (64)

This formula has a very nice, intuitively satisfying explanation (Figure 7c). The local motion

required to bring patch center j in image k into global registration is simply the average of

the pairwise motion estimates with all overlapping images, downweighted by the fraction

njk/(njk + 1). This factor prevents local motion estimates from “overshooting” in their

corrections (consider, for example, just two images, where each image warps itself to match

its neighbor). Thus, we can compute the location motion estimate for each image by simply

examining its misregistration with its neighbors, without having to worry about what warps

these other neighbors might be undergoing themselves.

Once the local motion estimates have been computed, we need an algorithm to warp each

image so as to reduce ghosting. One possibility would be to use a forward mapping algorithm

[Wol90] to convert each image Ik into a new image I ′
k. However, this has the disadvantage

of being expensive to compute, and of being susceptible to tears and foldovers.

Instead, we use an inverse mapping algorithm, which was already present in our system

to perform warpings into cylindrical coordinates and to optionally compensate for radial

lens distortions [SS97]. Thus, for each pixel in the new (warped) image I ′
k, we need to know

the relative distance (flow) to the appropriate source pixel. We compute this field using

a sparse data interpolation technique. The input to this algorithm is the set of negative

flows −ujk located at pixel coordinates xjk = xjk + ujk. At present, we simply place a tent

(bilinear) function over each flow sample (the size is currently twice the patch size). To make

this interpolator locally reproducing (no “dips” in the interpolated surface), we divide each

accumulated flow value by the accumulated weight (plus a small amount, say 0.1, to round

the transitions into regions with no motion estimates16).

The results of our deghosting technique can be seen in Figures 9–12 along with some

sample computed warping fields. Note that since the deghosting technique may not give

perfect results (because it is patch-based, and not pixel-based), we may wish to iteratively

apply the algorithm (the warping field is simply incrementally updated).

16This makes the interpolant no longer perfectly reproducing.

27

Even though we have formulated local alignment using rotational mosaic representation,

the deghosting equation (63) is valid for other motion models (e.g., 8-parameter perspective)

as well. We need only to modify (63) to

xjk ∼Mk
1

njk + 1
∑

l∈Njk∪k

M−1
l xjl =

1
njk + 1


xjk +

∑
l∈Njk

x̃jl


 . (65)

8 Experiments

In this section we present the results of applying our global and local alignment techniques

to image mosaicing. We have tested our methods on a number of real image sequences. In

all of the experiments, we have used the rotational panoramic representation with unknown

focal length. In general, two neighbor images have about 50% overlap.

The speed of our patch-based image alignment depends on the following parameters:

motion model, image size, alignment accurary, level of pyramid, patch size, and initial mis-

alignment. Typically, we set patch size 16, alignment accuracy 0.04 pixel, and 3 levels of

pyramid. Using rotational model, it takes a few seconds (on a Pentium 200MHz PC) to

align two images of size 384× 300, with initial misregistration of about 30 pixels. The speed

of global alignment and local alignment mainly depends on the local search range while

building feature correspondence. It takes several minutes to do the block adjustment for a

sequence of 20 images with patch size 16 and search range 4.

8.1 Global alignment

The first example shows how misregistration errors quickly accumulate in sequential regis-

tration. Figure 8a shows a big gap at the end of registering a sequence of 24 images (image

size 384 × 300) where an initial estimate of focal length 256 is used. The double image of

the right painting on the wall signals a big misalignment. This double image is removed, as

shown in Figure 8b, by applying our global alignment method which simultaneously adjusts

all frame rotations and computes a new estimated focal length of 251.8.

In Section 5, we proposed an alternative “gap closing” technique to handle the accumu-

lated misregistration error. However, this technique only works well for a sequence of images

28

(a) (b)

(c) (d)

Figure 8: Reducing accumulated errors of image mosaics by block adjustment. (a),(c): image

mosaics with gaps/overlap; (b),(d): corresponding mosaics after applying block adjustment.

29

(a) (b) (c)

(d) (e)

Figure 9: Deghosting an image mosaic with motion parallax: (a) image mosaic with parallax;

(b) after single deghosting step (patch size 32); (c) after multiple deghosting steps (patch

sizes 32, 16 and 8); (e) flow field of the left image; (d) the left image.

with uniform motion steps. It also requires that the sequence of images follow a great circle

on the viewing sphere. The global alignment method, on the other hand, does not make

such assumptions. For example, our global alignment method can handle the misalignment

(double image on the right side of the big banner and the skylight frame, as shown in Figure

8c) of an image mosaic which is constructed from a sequence of 10 images taken with a cam-

era tilted up. Figure 8d shows the image mosaic after block adjustment where the visible

artifacts are no longer apparent.

8.2 Local alignment

The next two examples illustrate the use of local alignment for sequences where the global

motion model is clearly violated. The first example consists of two images taken with a hand-

held digital camera (Kodak DC40) where some camera translation is present. The parallax

introduced by this camera translation can be observed in the registered image (Figure 9a)

30

(a) (b) (c)

(d) (e) (f)

Figure 10: Deghosting an image mosaic with optical distortion: (a) image mosaic with

distortion; (b) after single deghosting step (patch size 32); (c) after multiple deghosting

steps (patch sizes 32, 16 and 8); (d) original left image; (e–f) flow fields of the two images

after local alignment.

where the front object (a stop sign) causes a double image because of the misregistration.

This misalignment is significantly reduced using our local alignment method (Figure 9b).

However, some visual artifacts still exist because our local alignment is patch-based (e.g.

patch size 32 is used in Figure 9b). To overcome this problem, we repeatedly apply local

alignment with successively smaller patches, which has the advantage of being able to handle

large motion parallax and refine local alignment. Figure 9c shows the result after applying

local alignment three times with patch sizes of 32, 16 and 8. The search range has been set

to be half of the patch size for reliable patch motion estimation. Figure 9d shows the flow

field corresponding to the left image (Figure 9e). Red values indicate rightward motion (e.g.

the stop sign).

The global motion model is also invalid when registering two images with strong optical

31

distortion. One way to deal with radial distortion is to carefully calibrate the camera. An-

other way is to Using local alignment, it is possible to register images with optical distortion,

without using explicit camera calibration (i.e., recovering lens radial distortion).17 Figure

10d shows one of two images taken with a Pulnix camera and a Fujinon F2.8 wide angle lens.

This picture shows significant radial distortion; notice how straight lines (e.g., the door) are

curved. The registration result is shown in Figure 10a. The mosaic after deghosting with

a patch size 32 and search range 16 is shown in Figure 10b. Figure 10c shows an improved

mosaic using repeated local alignment with patch sizes 32, 16, 8. The flow fields in Figure

10e–f show that the flow becomes larger towards the corner of the image due to radial dis-

tortion (bright green is upward motion, red is rightward motion). Notice however that these

warp fields do not encode the true radial distortion. A parametric deformation model (e.g.,

the usual quadratic plus quartic terms) would have to be used instead.

8.3 Additional examples

We present two additional examples of large panoramic mosaics. The first mosaic uses a

sequence of 14 images taken with a hand-held camera by an astronaut on the Space Shuttle

flight deck. This sequence of images has significant motion parallax and is very difficult to

register. The accumulated error causes a very big gap between the first and last images as

shown in Figure 11a (notice the repeated “1 2 3” numbers, which should only appear once).

We are able to construct a good quality panorama (Figure 11b) using our block adjustment

technique (there is some visible ghosting, however, near the right pilot chair). This panorama

is further refined with deghosting as shown in Figure 11c. These panoramas were rendered

by projecting the image mosaic onto a tessellated spherical map.

The final example shows how to build a full view panoramic mosaic. Three panoramic

image sequences of a building lobby were taken with the camera on a tripod tilted at three

different angles (with 22 images for the middle sequence, 22 images for the upper sequence,

and 10 images for the top sequence). The camera motion covers more than two thirds of

17The recovered deformation field is not guaranteed, however, to be the true radial distortion, especially

when only a few images are being registered. Recall that the minimum norm field is selected at each

deghosting step.

32

⇓ ⇓

(a)

⇓

⇑
(b)

⇑
(c)

Figure 11: Panoramic image mosaics constructed from images taken with a hand-held cam-

era: (a) significant accumulated error is visible in the center (repeated numbers 1-2-3); (b)

with block adjustment, only small imperfections remain, such as the double image on the

right pilot’s chair; (c) with deghosting, the mosaic is virtually perfect.

33

Figure 12: Four views of an image mosaic of lobby constructed from 3 sequences of 54 images.

34

Figure 13: Tessellated spherical panorama covering the north pole (constructed from 54

images). The white triangles at the top are the parts of the texture map not covered in the

3D tesselated globe model (due to triangular elements at the poles).

the viewing sphere, including the top. After registering all of the images sequentially with

patch-based alignment, we apply our global and local alignment techniques to obtain the

final image mosaic, shown in Figure 12. These four views of the final image mosaic are

equivalent to images taken with a very large rectilinear lens. Each view is twice as big as

the input image (300× 384 with focal length 268), therefore, is equivalent to vertical field of

view 110 degrees. A tessellated spherical map of the full view panorama is shown in Figure

13. Our algorithm for building texture-mapped polyhedra from panoramic image mosaics is

described in the next section.

9 Environment map construction

Once we have constructed a complete panoramic mosaic, we need to convert the set of input

images and associated transforms into one or more images which can be quickly rendered or

viewed.

A traditional way to do this is to choose either a cylindrical or spherical map (Section

2). When being used as an environment map, such a representation is sometimes called a

latitude-longitude projection [Gre86]. The color associated with each pixel is computed by

35

first converting the pixel address to a 3D ray, and then mapping this ray into each input

image through our known transformation. The colors picked up from each image are then

blended using the weighting function (feathering) described earlier. For example, we can

convert our rotational panorama to spherical panorama using the following algorithm:

1. for each pixel (θ, φ) in the spherical map, compute its corresponding 3D position on

unit sphere p = (X, Y, Z) where X = cos(φ)sin(θ), Y = sin(φ), and Z = cos(φ)cos(θ);

2. for each p, determine its mapping into each image k using x ∼ TkVkRkp;

3. form a composite (blended) image from the above warped images.

Unfortunately, such a map requires a specialized viewer, and thus cannot take advan-

tage of any hardware texture-mapping acceleration (without approximating the cylinder’s

or sphere’s shape with a polyhedron, which would introduce distortions into the rendering).

For true full-view panoramas, spherical maps also introduce a distortion around each pole.

As an alternative, we propose the use of traditional texture-mapped models, i.e., envi-

ronment maps [Gre86]. The shape of the model and the embedding of each face into texture

space are left up to the user. This choice can range from something as simple as a cube

with six separate texture maps [Gre86], to something as complicated as a subdivided do-

decahedron, or even a latitude-longitude tesselated globe.18 This choice will depend on the

characteristics of the rendering hardware and the desired quality (e.g., minimizing distortions

or local changes in pixel size), and on external considerations such as the ease of painting

on the resulting texture maps (since some embeddings may leave gaps in the texture map).

In this section, we describe how to efficiently compute texture map color values for any

geometry and choice of texture map coordinates. A generalization of this algorithm can

be used to project a collection of images onto an arbitrary model, e.g., non-convex models

which do not surround the viewer.

We assume that the object model is a triangulated surface, i.e., a collection of triangles

and vertices, where each vertex is tagged with its 3D (X, Y, Z) coordinates and (u, v) texture
18This latter representation is equivalent to a spherical map in the limit as the globe facets become

infinitessimally small. The important difference is that even with large facets, an exact rendering can be

obtained with regular texture-mapping algorithms and hardware.

36

coordinates (faces may be assigned to different texture maps). We restrict the model to

triangular faces in order to obtain a simple, closed-form solution (projective map, potentially

different for each triangle) between texture coordinates and image coordinates. The output

of our algorithm is a set of colored texture maps, with undefined (invisible) pixels flagged

(e.g., if an alpha channel is used, then α← 0).

Our algorithm consists of the following four steps:

1. paint each triangle in (u, v) space a unique color;

2. for each triangle, determine its (u, v, 1)→ (X, Y, Z) mapping;

3. for each triangle, form a composite (blended) image;

4. paint the composite image into the final texture map using the color values computed

in step 1 as a stencil.

These four steps are described in more detail below.

The pseudocoloring (triangle painting) step uses an auxilliary buffer the same size as the

texture map. We use an RGB image, which means that 224 colors are available. After the

initial coloring, we grow the colors into invisible regions using a simple dilation operation,

i.e., iteratively replacing invisible pixels with one of their visible neighbor pseudocolors. This

operation is performed in order to eliminate small gaps in the texture map, and to support

filtering operations such as bilinear texture mapping and MIP mapping [Wil83]. For example,

when using a six-sided cube, we set the (u, v) coordinates of each square vertex to be slightly

inside the margins of the texture map. Thus, each texture map covers a little more region

than it needs to, but operation such a texture filtering and MIP mapping can be performed

without worrying about edge effects.

In the second step, we compute the (u, v, 1)→ (X, Y, Z) mapping for each triangle T by

finding the 3× 3 matrix MT which satisfies

ui = MTpi

for each of the three triangle vertices i. Thus, MT = UP−1, where U = [u0|u1|u2] and

P = [p0|p1|p2] are formed by concatenating the ui and pi 3-vectors. This mapping is

37

essentially a mapping from 3D directions in space (since the cameras are all at the origin)

to (u, v) coordinates.

In the third step, we compute a bounding box around each triangle in (u, v) space and en-

large it slightly (by the same amount as the dilation in step 1). We then form a composite im-

age by blending all of the input images j according to the transformation u = MTR−1
k V−1

k x.

This is a full, 8-parameter perspective transformation. It is not the same as the 6-parameter

affine map which would be obtained by simply projecting a triangle’s vertices into the image,

and then mapping these 2D image coordinates into 2D texture space (in essence ignoring

the foreshortening in the projection onto the 3D model). The error in applying this naive

but erroneous method to large texture map facets (e.g., those of a simple unrefined cube)

would be quite large.

In the fourth step, we find the pseudocolor associated with each pixel inside the compos-

ited patch, and paint the composited color into the texture map if the pseudocolor matches

the face id.

Our algorithm can also be used to project a collection of images onto an arbitrary object,

i.e., to do true inverse texture mapping, by extending our algorithm to handle occlusions.

To do this, we simply paint the pseudocolored polyhedral model into each input image

using a z-buffering algorithm (this is called an item buffer in ray tracing [WHG84]). When

compositing the image for each face, we then check to see which pixels match the desired

pseudocolor, and set those which do not match to be invisible (i.e., not to contribute to the

final composite).

Figure 13 shows the results of mapping a panoramic mosaic onto a longitude-latitude

tesselated globe. The white triangles at the top are the parts of the texture map not covered

in the 3D tesselated globe model (due to triangular elements at the poles). Figures 14–16

show the results of mapping three different panoramic mosaics onto cubical environment

maps. We can see that the mosaics are of very high quality, and also get a good sense for

the extent of viewing sphere covered by these full-view mosaics. Note that Figure 14 uses

images taken with a hand-held digital camera.

Once the texture-mapped 3D models have been constructed, they can be rendered directly

with a standard 3D graphics system. For our work, we are currently using a simple 3D viewer

38

Figure 14: Cubical texture-mapped model of conference room (from 75 images taken with a

hand-held digital camera).

Figure 15: Cubical texture-mapped model of lobby (from 54 images).

written on top of the Direct3D API running on a personal computer with no hardware

graphics acceleration.

10 Discussion

In this paper, we have developed some novel techniques for constructing full view panoramic

image mosaics from image sequences. Instead of projecting all of the images onto a com-

mon surface (e.g., a cylinder or a sphere), we use a representation that associates a rotation

matrix and a focal length with each input image. Based on this rotational panoramic repre-

sentation, block adjustment (global alignment) and deghosting (local alignment) techniques

39

Figure 16: Cubical texture-mapped model of hallway and sitting area (from 36 images).

have been developed to significantly improve the quality of image mosaics, thereby enabling

the construction of mosaics from images taken by hand-held cameras.

When constructing an image mosaic from a long sequence of images, we have to deal

with error accumulation problems. Our solution is to simultaneously adjust all frame poses

(rotations and focal lengths) so that the sum of registration errors between all matching

pairs of images is minimized. Geometrically, this is equivalent to adjusting all ray directions

of corresponding pixels in overlapping frames until they converge. Using corresponding

“features” in neighboring frames, which are obtained automatically using our patch-based

alignment method, we formulate the minimization problem to recover the poses without

explicitly computing the converged ray directions. This leads to a linearly-constrained non-

linear least-squares problem which can be solved very efficiently.

To compensate for local misregistration caused by inadequate motion models (e.g., cam-

era translation19 or moving object) or imperfect camera projection models (e.g., lens distor-

tion), we refine the image mosaic using a deghosting method. We divide each image into

19We assume in our work that the camera translation is relatively small. When camera translation is

significant, a “manifold mosaic”[Pel97] can still be constructed from a dense seqeunce of images using only

center columns of each image. However, the resulting mosaic is no longer metric.

40

small patches and compute patch-based alignments. We then locally warp each image so that

the overall mosaic does not contain visible ghosting. To handle large parallax or distortion,

we start the deghosting with a large patch size. This deghosting step is then repeated with

smaller patches so that local patch motion can be estimated more accurately. In the future,

we plan to implement a multiresolution patch-based flow algorithm so that the alignment

process can be sped up and made to work over larger displacements. We also plan to develop

more robust versions of our alignment algorithms.

Our deghosting algorithm can also be applied to the problem of extracting texture maps

for general 3D objects from images [SWI97]. When constructing such texture maps by

averaging a number of views projected onto the model, even slight misregistrations can

cause blurring or ghosting effects. One potential way to compensate for this is to refine

the surface geometry to bring all projected colors into registration [FL94]. Our deghosting

algorithm can be used as an alternative, and can inherently compensate for problems such

as errors in the estimated camera geometry and intrinsic camera models.

To summarize, the global and local alignment algorithms developed in this paper, to-

gether with our efficient patch-based implementation, make it easy to quickly and reliably

construct high-quality full view panoramic mosaics from arbitrary collections of images, with-

out the need for special photographic equipment. We believe that this will make panoramic

photography and the construction of virtual environments much more interesting to a wide

range of users, and stimulate further research and development in image-based rendering

and the representation of visual scenes.

References

[A+95] P. Anandan et al., editors. IEEE Workshop on Representations of Visual Scenes,

Cambridge, Massachusetts, June 1995. IEEE Computer Society Press.

[Ana89] P. Anandan. A computational framework and an algorithm for the measure-

ment of visual motion. International Journal of Computer Vision, 2(3):283–310,

January 1989.

41

[Aya89] N. Ayache. Vision Stéréoscopique et Perception Multisensorielle. InterEditions.,

Paris, 1989.

[BA83] P. J. Burt and E. H. Adelson. A multiresolution spline with applications to image

mosaics. ACM Transactions on Graphics, 2(4):217–236, October 1983.

[BAHH92] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierarchical model-

based motion estimation. In Second European Conference on Computer Vision

(ECCV’92), pages 237–252, Santa Margherita Liguere, Italy, May 1992. Springer-

Verlag.

[BR96] M. J. Black and A. Rangarajan. On the unification of line processes, outlier

rejection, and robust statistics with applications in early vision. International

Journal of Computer Vision, 19(1):57–91, 1996.

[CB96] M.-C. Chiang and T. E. Boult. Efficient image warping and super-resolution. In

IEEE Workshop on Applications of Computer Vision (WACV’96), pages 56–61,

Sarasota, Florida, December 1996. IEEE Computer Society.

[Che95] S. E. Chen. QuickTime VR – an image-based approach to virtual environment

navigation. Computer Graphics (SIGGRAPH’95), pages 29–38, August 1995.

[CW93] S. Chen and L. Williams. View interpolation for image synthesis. Computer

Graphics (SIGGRAPH’93), pages 279–288, August 1993.

[Dan80] P. E. Danielsson. Euclidean distance mapping. Computer Graphics and Image

Processing, 14:227–248, 1980.

[FL94] P. Fua and Y. G. Leclerc. Using 3–dimensional meshes to combine image-based

and geometry-based constraints. In Third European Conference on Computer

Vision (ECCV’94), volume 2, pages 281–291, Stockholm, Sweden, May 1994.

Springer-Verlag.

[GGSC96] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In

Computer Graphics Proceedings, Annual Conference Series, pages 43–54, Proc.

SIGGRAPH’96 (New Orleans), August 1996. ACM SIGGRAPH.

42

[Gre86] N. Greene. Environment mapping and other applications of world projections.

IEEE Computer Graphics and Applications, 6(11):21–29, November 1986.

[GV96] G. Golub and C. VanLoan. Matrix Computation, third edition. The John Hopkins

University Press, Baltimore and London, 1996.

[HAD+94] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P. Burt. Real-time scene

stabilization and mosaic construction. In IEEE Workshop on Applications of

Computer Vision (WACV’94), pages 54–62, Sarasota, Florida, December 1994.

[Har94] R. I. Hartley. Self-calibration from multiple views of a rotating camera. In Third

European Conference on Computer Vision (ECCV’94), volume 1, pages 471–478,

Stockholm, Sweden, May 1994. Springer-Verlag.

[Hec89] P. Heckbert. Fundamentals of texture mapping and image warping. Master’s

thesis, The University of California at Berkeley, June 1989.

[IAH95] M. Irani, P. Anandan, and S. Hsu. Mosaic based representations of video se-

quences and their applications. In Fifth International Conference on Computer

Vision (ICCV’95), pages 605–611, Cambridge, Massachusetts, June 1995.

[IHA95] M. Irani, S. Hsu, and P. Anandan. Video compression using mosaic representa-

tions. Signal Processing: Image Communication, 7:529–552, 1995.

[IP91] M. Irani and S. Peleg. Improving resolution by image registration. Graphical

Models and Image Processing, 53(3):231–239, May 1991.

[KAH94] R. Kumar, P. Anandan, and K. Hanna. Shape recovery from multiple views:

a parallax based approach. In Image Understanding Workshop, pages 947–955,

Monterey, CA, November 1994. Morgan Kaufmann Publishers.

[KAI+95] R. Kumar, P. Anandan, M. Irani, J. Bergen, and K. Hanna. Representation

of scenes from collections of images. In IEEE Workshop on Representations of

Visual Scenes, pages 10–17, Cambridge, Massachusetts, June 1995.

43

[Kan97] S. B Kang. A survey of image-based rendering techniques. Technical Report

97/4, Digital Equipment Corporation, Cambridge Research Lab, August 1997.

[KW96] S. B. Kang and R Weiss. Characterization of errors in compositing panoramic

images. Technical Report 96/2, Digital Equipment Corporation, Cambridge Re-

search Lab, June 1996.

[L+97] M.-C. Lee et al. A layered video object ocding system using sprite and affine

motion model. IEEE Transactions on Circuits and Systems for Video Technology,

7(1):130–145, February 1997.

[LG91] D. Le Gall. MPEG: A video compression standard for multimedia applications.

Communications of the ACM, 34(4):44–58, April 1991.

[LH96] M. Levoy and P. Hanrahan. Light field rendering. In Computer Graphics Pro-

ceedings, Annual Conference Series, pages 31–42, Proc. SIGGRAPH’96 (New

Orleans), August 1996. ACM SIGGRAPH.

[LK81] B. D. Lucas and T. Kanade. An iterative image registration technique with

an application in stereo vision. In Seventh International Joint Conference on

Artificial Intelligence (IJCAI-81), pages 674–679, Vancouver, 1981.

[Mal83] H. E. Malde. Panoramic photographs. American Scientist, 71(2):132–140, March-

April 1983.

[MB95] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering

system. Computer Graphics (SIGGRAPH’95), pages 39–46, August 1995.

[Mee90] J. Meehan. Panoramic Photography. Watson-Guptill, 1990.

[MM80] F. H. Moffitt and E. M. Mikhail. Photogrammetry. Harper & Row, New York, 3

edition, 1980.

[MP94] S. Mann and R. W. Picard. Virtual bellows: Constructing high-quality images

from video. In First IEEE International Conference on Image Processing (ICIP-

94), volume I, pages 363–367, Austin, Texas, November 1994.

44

[Nay97] S. Nayar. Catadioptric omnidirectional camera. In IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR’97), pages 482–488,

San Juan, Puerto Rico, June 1997.

[Pel97] M. Peleg. Panoramic mosaics by manifold projection. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’97), pages 338–

343, San Juan, Puerto Rico, June 1997.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press,

Cambridge, England, second edition, 1992.

[Qua84] L. H. Quam. Hierarchical warp stereo. In Image Understanding Workshop, pages

149–155, New Orleans, Louisiana, December 1984. Science Applications Interna-

tional Corporation.

[RK76] A. Rosenfeld and A. C. Kak. Digital Picture Processing. Academic Press, New

York, New York, 1976.

[SA96] H. S. Sawhney and S. Ayer. Compact representation of videos through dominant

multiple motion estimation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(8):814–830, August 1996.

[Saw94] H. S. Sawhney. Simplifying motion and structure analysis using planar parallax

and image warping. In Twelfth International Conference on Pattern Recognition

(ICPR’94), volume A, pages 403–408, Jerusalem, Israel, October 1994. IEEE

Computer Society Press.

[SK95] R. Szeliski and S. B. Kang. Direct methods for visual scene reconstruction. In

IEEE Workshop on Representations of Visual Scenes, pages 26–33, Cambridge,

Massachusetts, June 1995.

[SK97] H. S. Sawhney and R. Kumar. True multi-image alignment and its application to

mosaicing and lens distortion correction. In IEEE Computer Society Conference

45

on Computer Vision and Pattern Recognition (CVPR’97), pages 450–456, San

Juan, Puerto Rico, June 1997.

[SS97] R. Szeliski and H.-Y. Shum. Creating full view panoramic image mosaics and

texture-mapped models. In Computer Graphics Proceedings, Annual Conference

Series, pages 251–258, Proc. SIGGRAPH’97 (Los Angeles), August 1997. ACM

SIGGRAPH.

[Ste95] G. Stein. Accurate internal camera calibration using rotation, with analy-

sis of sources of error. In Fifth International Conference on Computer Vision

(ICCV’95), pages 230–236, Cambridge, Massachusetts, June 1995.

[SWI97] Y. Sato, M. Wheeler, and K. Ikeuchi. Object shape and reflectance modeling

from observation. In Computer Graphics Proceedings, Annual Conference Series,

Proc. SIGGRAPH’97 (Los Angeles), August 1997. ACM SIGGRAPH.

[Sze94] R. Szeliski. Image mosaicing for tele-reality applications. In IEEE Workshop on

Applications of Computer Vision (WACV’94), pages 44–53, Sarasota, Florida,

December 1994. IEEE Computer Society.

[Sze96] R. Szeliski. Video mosaics for virtual environments. IEEE Computer Graphics

and Applications, pages 22–30, March 1996.

[TH86] Q. Tian and M. N. Huhns. Algorithms for subpixel registration. Computer Vision,

Graphics, and Image Processing, 35:220–233, 1986.

[Tsa87] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D ma-

chine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal

of Robotics and Automation, RA-3(4):323–344, August 1987.

[WHG84] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved computational methods

for ray tracing. ACM Transactions on Graphics, 3(1):52069, January 1984.

[Wil83] L. Williams. Pyramidal parametrics. Computer Graphics, 17(3):1–11, July 1983.

[Wol74] P. R. Wolf. Elements of photogrammetry. McGraw-Hill, New York, 1974.

46

[Wol90] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, Los Alami-

tos, California, 1990.

[XT97] Y. Xiong and K. Turkowski. Creating image-based VR using a self-calibrating

fisheye lens. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’97), pages 237–243, San Juan, Puerto Rico, June

1997.

A Linearly-constrained least-squares

We would like to solve the linear system

Ax = b (66)

subject to

Cx = q. (67)

It is equivalent to minimizing ∑
i

(AT
i x− bi)2 (68)

subject to

cT
j x− qj = 0 (69)

for all j, where cj are rows of C.

A.1 Lagrange multipliers

This problem is a special case of constrained nonlinear programming (or more specifically

quadratic programming). Thus, it can be formulated using Lagrange multipliers by mini-

mizing

e =
∑

i

(AT
i x− bi)2 +

∑
j

2λj(CT
j x− qj). (70)

Taking first order derivatives of e with respect to x and λ, we have

∂e

∂x
=
∑

i

AiAT
i x−∑

i

biAi +
∑
j

λjCj = 0 (71)

47

and
∂e

∂λj

= CT
j xj + qj = 0 (72)

or 
 H CT

C 0




 x

λ


 =


 d

g


 (73)

where H =
∑

i AiAT
i , d =

∑
i Aibi, x = [xj], λ = [λj], and g = [gj].

If H is invertible, we can simply solve the above system by

 x

λ


 =


 H−1 −KCH−1 K

KT −P




 d

g


 (74)

where

P = (CH−1CT)−1

K = H−1CTP

Unfortunately, this requires additional matrix inversion operations.

A.2 Elimination method

We now present a simple method to solve the linearly-constrained least-squares problem by

eliminating redundant variables using given hard constraints.

If there are no hard constraints (i.e., Cx = q), we can easily solve the least-squares

problem Ax = b using normal equations, i.e.,

Hx = d (75)

where H = ATA, and d = ATb. The normal equations can be solved stably using a SPD

solver. We would like to modify the normal equations using the given hard linear constraints

so that we can formulate new normal equations H̃x = d̃ which are also SPD and of the same

dimensions as H.

Without loss of generality, we consider only one linear constraint and assume the biggest

entry is lk = 1. Let Hk be the kth column of H, and Ak be the kth column of A. If we

48

subtract the linear constraint properly from each row of A so that its k-th column becomes

zero, we change the original system to

Ãx = d̃ (76)

subject to

cTx = q (77)

where Ã = A−AkcT and d̃ = d−Akq.

Because the constraint (77) is linearly independent of the linear system (76), we can

formulate new normal equations with

H̃ = ÃT Ã + ccT

= (A−AkcT)TA−AkcT + ccT

= H− cHT
k −HkcT + (1 + hkk)ccT

and

d̃ = ÃT d̃ + cq

= d−Hkq − cdk + (1 + hkk)cq

where Hk is the kth column of H and hkk = AT
k Ak is the kth diagonal element of H.

It is interesting to note that the new normal equations are not unique because we can

arbitrarily scale the hard constraint.20 For example, if we scale Equation (77) by hkk, we

have H̃ = H− cHT
k −HkcT + 2hkkccT and d̃ = d−Hkq − cdk + 2hkkcq.

To add multiple constraints, we simply adjust the original system multiple times, one

constraint at a time. The order of adding multiple constraints does not matter.

A.3 QR factorization

The elimination method is very efficient if we have only a few constraints. When the number

of constraints increases, we can use QR factorization to solve the linearly-constrained least-
20One can not simply scale any soft constraints (i.e., the linear equations Aixi = bi) because it adds

different weights to the least-squares formulation, that leads to incorrect solutions.

49

squares [GV96]. Suppose A and C are of full ranks, let

CT = Q


 R

0


 (78)

be the QR factorization of cT where Q is orthorgonal, QQT = I. If we define QTx =


 x1

x2


,

AQ = (A1,A2), we can solve x1 because R is upper diagonal and

Cx = CQQTx

= RTx1 = q.

Then we solve x2 from the unconstrained least-squares ‖A2x2 − (b−A1x1)‖2 because

Ax− b = AQQTx− b

= A1x1 + A2x2 − b

= A2x2 − (b−A1x1).

Finally x = Q


 x1

x2


. Note that this method requires two factorizations.

50

