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Abstract

There has recently been significant interest in using rep-
resentations based on abstractions of Blum’s skeleton into
a graph, for qualitative shape matching. The application of
these techniques to large databases of shapes hinges on the
availability of numerical algorithms for computing the me-
dial axis. Unfortunately, this computation can be extremely
subtle. Approaches based on Voronoi techniques preserve
topology, but heuristic pruning measures are introduced to
remove unwanted edges. Methods based on Euclidean dis-
tance functions can localize skeletal points accurately, but
often at the cost of altering the object’s topology. In this pa-
per we introduce a new algorithm for computing subpixel
skeletons which is robust and accurate, has low computa-
tional complexity, and preserves topology. The key idea is
to measure the net outward flux of a vector field per unit
area, and to detect locations where a conservation of en-
ergy principle is violated. This is done in conjunction with
athinning process applied in a rectangular lattice. We illus-
trate the approach with several examples of skeletal graphs
for biological and man-made silhouettes.

1. Introduction

In recent years there has been significant interest in using
graph-based abstractions of Blum’s skeleton for qualitative
shape recognition [10, 6, 11, 8, 14]. The application of such
methods to large image databases hinges on the availability
of robust and efficient algorithms for computing the medial
axis, or approximations to it. Unfortunately, this is a subtle
numerical problem. Methods based on Voronoi techniques
preserve topology, but heuristic pruning measures are intro-
duced to remove unwanted edges. Methods based on Eu-
clidean distance functions can localize skeletal points accu-
rately, but often at the cost of altering the object’s topology.
In this paper we introduce a new algorithm for computing
subpixel skeletons which is robust and accurate, has low

computational complexity, and preserves topology. The key
idea is to measure the net outward flux of a vector field per
unit area, and to detect locations where a conservation of en-
ergy principle is violated. This is done in conjunction with
a thinning process applied in a rectangular lattice. We illus-
trate the approach with several examples of skeletal graphs
for biological and man-made silhouettes.

2. Divergence-Based Skeletons

Consider Blum’s grassfire flow [3]
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acting on a 2D closed curve C, such that each point on its
boundary is moving with unit speed in the direction of the
inward normal A. In recent work, we have shown that
this formulation leads to a Hamilton-Jacobi equation on the
Euclidean distance function to the initial curve [12]. In
physics, such equations are typically solved by looking at
the evolution of the phase space of the equivalent Hamilto-
nian system. Since Hamiltonian systems are conservative,
the locus of skeletal points coincides with locations where
a conservation of energy principle is violated. This loss of
energy can be used to formulate a natural criterion for de-
tecting singularities of the distance function.

More specifically, let D be the Euclidean distance func-
tion to the initial curve Co. The magnitude of its gradi-
ent, || VD |, is identical to 1 in its smooth regime. With
q= (z,y), p = (D, Dy), the Hamiltonian system is given
by
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with an associated Hamiltonian function H = 1 —
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(D3 + D2)? [12]. It is straightforward to show that all
Hamiltonian systems are conservative and hence divergence
free. Conversely, when trajectories of the system intersect,



a conservation of energy principle is violated. This suggests
a natural approach for detecting the skeleton: compute the
divergence of the gradient vector field g and detect loca-
tions where it is not zero. The divergence is defined as the
net outward flux per unit area, as the area about the point
shrinks to zero:
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Here Aaq is the area, L is its bounding contour and N is

the outward normal at each point on the contour. Via the
divergence theorem
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In other words, the integral of the divergence of the vector
field within a finite area gives the net outward flux through
the contour which bounds it. Locations where the flux is
negative, and hence energy is lost, correspond to sinks or
skeletal points of the interior. Similarly, locations where the
flux is positive correspond to sources or skeletal points of
the exterior.

Figure 1 illustrates the divergence-based computation on
a panther silhouette. The gradient vector field of the Eu-
clidean distance function is shown on the top, with the total
outward flux on the bottom. Observe that the smooth regime
of the vector field gives zero flux (medium gray), its sinks
coincide with the skeleton of the interior (dark gray), and its
sources with the skeleton of the exterior (light gray). Hence,
a threshold on the divergence map yields a close approxi-
mation to the skeleton, as used in [12]. However, in general
it is impossible to guarantee that the result is homotopic to
the original object by simple thresholding. A high threshold
may yield a connected set, but it is not thin and unwanted
branches are present, Figure 2 (top). A low threshold yields
a thin set, but it may be disconnected, Figure 2 (bottom).
The solution, as we shall now show, is to introduce addi-
tional constraints to ensure that the topology of the object
is preserved. The main idea is to incorporate a homotopy
preserving thinning process in a rectangular lattice, where
the removal of points is guided by their divergence values.

3. Homotopy Preserving Skeletons
3.1. Divergence-Ordered Thinning

There is a long history of approaches to computing the
skeleton which are rooted in thinning operations [1]. These
methods attempt to realize Blum’s grassfire formulation by
peeling away layers from the object, while retaining special

INote that the classical defi nition of divergence asthe sum of the partial
derivatives of the vector fi eld in its component directions cannot be used
whereit is singular, and these are precisely the points we are interested in.
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Figure 1: The gradient vector field of a signed distance func-
tion to the boundary of a panther shape (top), with the as-
sociated total outward flux (bottom). Whereas the smooth
regime of the vector field gives zero flux (medium gray), its
sinks correspond to the skeleton of the interior (dark gray)
and its sources to the skeleton of the exterior (light gray).

\

Figure 2: Thresholding the divergence map in Figure 1. A
high threshold yields a connected set, but it is not thin, and
unwanted branches are present (top). A low threshold yields
a closer approximation to the desired skeleton, but the result
is now disconnected (bottom).

points. It is possible to define erosion rules such that the
topology of the object is preserved, but these methods are
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Figure 3: LEFT: A 3x3 neighborhood of a 2D digital point P
in a rectangular lattice. RIGHT: An example neighborhood
graph for which P can be removed. Note that there is no
edge between neighbors 6 and 8 (see text).

quite sensitive to Euclidean transformations of the data and
typically fail to localize skeletal points accurately. We shall
exploit the interpretation based on divergence developed in
the previous section to address these latter concerns.

To see how topology preserving erosion rules can be de-
fined for a rectangular lattice let P be a 2D digital point
which is contained in the object. The topology of the object
can be altered if the removal of P either disconnects the ob-
ject, or creates a hole in it. It is convenient to view this as
a graph problem. Consider the 3x3 neighborhood of P, as
shown in Figure 3 (left), and select those neighbors which
are also contained within the object. Construct a neighbor-
hood graph by placing edges between all pairs of neighbors
(not including P) that are 4-adjacent or 8-adjacent to one
another. If any of the 3-tuples {2, 3,4}, {4, 5,6}, {6,7,8},
or {8, 1, 2}, are nodes of the graph, remove the correspond-
ing diagonal edges {2,4}, {4,6}, {6, 8}, or {8, 2}, respec-
tively. This ensures that there are no degenerate cycles in
the neighborhood graph (cycles of length 3). Now, observe
that if the removal of P disconnects the object, or intro-
duces a hole, the neighborhood graph will not be connected,
or will have a cycle, respectively. Conversely, a connected
graph that has no cycles is a tree. Hence, we have a simple
criterion to decide whether or not P can be removed:

Proposition 1 A 2D digital point P can be removed if and
only if its 3x3 neighborhood graph, with cycles of length 3
removed, is a tree.

A straightforward way of determining whether or not a
graph is a tree is to check that its Euler characteristic
|V| — |E| (the number of vertices minus the number of
edges) is identical to 1. Note that this check only has to be
performed locally, in the 3x3 neighborhood of P. Figure 3
(right) shows an example neighborhood graph for which P
can be removed.

The above proposition allows us to guarantee that a thin-
ning process on a rectangular lattice preserves topology.
However, the end result depends entirely on the order in
which points are removed, so its relationship to the skeleton
is unclear. In fact, most thinning methods give only a coarse

approximation to the skeleton unless additional constraints
are introduced [2]. In the current context, we have derived a
natural criterion for localizing skeletal points based on prin-
ciples from physics. Specifically, since the total outward
flux of the gradient vector field of the Euclidean distance
function provides a continuous measure on the likelihood
of a point being a sink or skeletal point, it is natural to order
the removal of points by thinning according to this measure.

The outline of our approach is now in place. We shall ap-
ply a homotopy preserving thinning process to the interior
of the object, where candidate points for removal will be
considered in order of decreasing divergence. We shall pre-
serve end points that are significant, i.e., their total outward
flux is below some selected threshold, but will thin the rest
of the object until no further points can be removed. The
result will be a thin set in a rectangular lattice (a set without
any interior), that is homotopic to the object and by the di-
vergence measure will be as close as possible to the “true”
skeleton.

3.2. End Points, Curve Points and Branch Points

In the continuous case, the distinction between an end
point, a curve point and a branch point of the skeleton fol-
lows from the number of times a disc centered at the point
intersects the skeleton, Figure 4. Specifically: 1) if 3 an
interval (0, a] such that for any e in that interval a disc of
radius e centered at P intersects the skeleton once, then P
is an end point, 2) if 3 an interval (0, a] such that for any
e in that interval a disc of radius e centered at P intersects
the skeleton twice, then P is a curve point, and 3) if 3 an
interval (0, a] such that for any e in that interval a disc of
radius e centered at P intersects the skeleton three or more
times, then P is a branch point.

For a digital skeleton in a rectangular lattice, i.e., a 4-
connected or 8-connected 1 pixel thick curve, a very similar
characterization applies. The smallest e disc is now the or-
dered set of neighbors {1, 2, 3,4, 5,6, 7,8}, and one simply
has to count the number of times the path through these
neighbors intersects the digital skeleton. It is also easy to
see that in the course of thinning, a candidate end point of a
4-connected or 8-connected digital curve may be character-
ized as follows:

Proposition 2 A point P could be an end point of a 1 pixel
thick digital curve if, in a 3x3 neighborhood, it has a sin-
gle neighbor, or it has two neighbors, both of which are
4-adjacent to one another.

We now have criteria to identify end points as the object
is being thinned and also to detect branch points, once no
more digital points can be removed.



Figure 4: An end pointe, a curve point c and a branch pointb
can each be distinguished from one another by determining
the number of times a disc with infinitesimal radius centered
at the point intersects the skeleton (see text).

3.3. The Algorithm

The thinning process can be made very efficient by ob-
serving that a point within the object which does not have at
least one background point as an immediate neighbor can-
not be removed, since this would create a hole. Therefore,
the only potentially removable points are on the border of
the object. Once a border point is removed, only its neigh-
bors may become removable. This suggests the implemen-
tation of the thinning process using a heap. We now present
the algorithm.

Algorithm 1 The divergence-ordered thinning algorithm
Part I: Total Outward Flux
Compute the signed distance transform of the object D [4].
Compute the gradient vector field V D.
Compute the net outward flux of VD using Eq. 4
For each point P in the interior of the object
Flug(P) =Y} | < N;,VD(P;) >,
where P; is an 8-neighbor of P and NV; is the
outward normal at P; of the unit disc centered at P.
Part I1: Homotopy Preserving Thinning
For each border point P
if (P is removable)
insert(P, Heap) with Fluz(P)
as the sorting key for insertion
While (Heap.size > 0)
P = HeapExtractMax(Heap)
if (P is removable)
if (P is not an end point) or (Fluxz(P) > Thresh)
Remove P
for all neighbors Q) of P
if (Q is removable)
insert(Q), Heap)
else mark P as a skeletal (end) point
end { if }
end { if }
end { while }

The complexity of the algorithm can be determined as
follows. The computation of the distance transform [4], the
gradient vector field and the total outward flux are all O(n)

Figure 5: The digital skeleton of the panther silhouette
obtained by divergence-ordered thinning. The skeleton is
shown in light gray, with its end points and branch points
shown in black. Compare with Figures 1 and 2.

operations, where n is the total number of points in the 2D
array. The worst case complexity of the thinning process
is O(klog(k)), where k is the number of points in the in-
terior of the object. The reasoning is as follows. A point
can be inserted into the heap only when one of its neighbors
is removed, and this can happen at most 8 times. Hence,
the while loop may go through all k£ points of the object at
most 8 times. At each iteration, insertion into a heap as well
as the extraction of its minimum, are both O(log(l)) oper-
ations, done no more than 8 times. Here [ is the number of
elements in the heap. There cannot be more than & elements
in the heap, because we only have a total of & points in the
object. The worst case complexity for thinning is therefore
08k8(log(k)) = Oklog(k). Hence, the complexity of the
entire method is O(n) + O(klog(k)). The algorithm con-
verges when the heap is empty, at which stage the set of
points which remain comprise the skeleton. The end points
have been labelled, and the branch points and interior points
can be detected via the procedure described in Section 3.2.

Figure 5 illustrates the output of the algorithm on the
panther silhouette, with the digital skeleton shown in light
gray and the end points and branch points shown in black.
Observe that the skeleton corresponds closely to the sink
points in the divergence map of Figure 1. However, in
contrast to the earlier results obtained by thresholding (Fig-
ure 2), the result is now 1 pixel thin (without an interior) and
is homotopic to the object. In fact, this property is ensured
by Propositions 1 and 2. 2

3.4. A Subpixel Skeletal Graph
It is straightforward to interpret the digital skeleton, with

end points and branch points labelled, as a graph. Let the set
of end points and branch points comprise the vertices, with

2The one exception isthe case of a2x2 square block, which can occur if
there are branches at each of its corners. In order to preserve this symmetry,
when we abstract the skeleton into a graph, each lattice point of the 2x2
square will be stored with its corresponding branch, and anew branch point
will be placed in the middle.



an edge representing the ordered list of digital points con-
necting two vertices. The digital points can be ordered by
applying a depth-first-search algorithm, starting at a vertex,
where one pixel follows another if the two are 4-adjacent or
8-adjacent, but do not neighbor the same branch point. The
search terminates when another vertex is reached.

Figure 6: Top: A subpixel skeletal graph, with branch points
shown as empty circles and end points as filled circles.
Compare with the digital skeleton, Figure 5, from which it
was derived. BoTToM: The reconstruction as the envelope
of the maximal inscribed disks (grey) of the skeleton, over-
layed on the original object.

In our implementation we have used a subpixel contour
tracer to obtain a piecewise circular arc representation of the
boundary of the object [13]. In this case, all simulations can
be based on an exact distance function, by determining the
distance of each lattice point to the closest circular arc. As
shown in Appendix A, it is then possible to move each point
on the digital skeleton so that it is within arbitrary precision
of a true skeletal point, leading to a subpixel skeletal graph.
For curve points the idea is to search in a direction defined
by the pan-normal from the object’s boundary to the point,
and to iteratively refine this search. For branch points the
idea is to move the point till it is arbitrarily close to the cen-
ter of a maximal inscribed disc which touches the contour
at three or more points.

4. Examples

We now present examples of subpixel skeletal graphs. In
each case, the same divergence threshold was used to deter-
mine which end points to preserve. Figure 6 (top) shows the
subpixel skeleton for the panther silhouette, derived from

the earlier digital skeleton in Figure 5. Branch points are de-
picted with empty circles and end points with filled circles.
Figure 6 (bottom) shows the object reconstructed as the en-
velope of the maximal inscribed discs associated with each
skeletal point. Figure 7 depicts subpixel skeletal graphs for
a wide variety of 2D shapes representing a range of ob-
ject categories. The results demonstrate the robustness of
the framework under Euclidean transformations, as well as
changes in scale.

5. Discussion and Related Work

We have introduced a novel algorithm for computing
subpixel skeletal graphs which is robust, accurate, compu-
tationally efficient, invariant to Euclidean transformations,
and homotopy preserving. The essential idea is to combine
a divergence computation on the gradient vector field of the
Euclidean distance function, which we introduced in earlier
work [12], with a thinning process that preserves topology.
The identification of end points and branch points allows
the result to be interpreted as a graph. The digital skeleton
is then shifted to be within arbitrary precision of the “true”
skeleton. We have illustrated the approach on a variety of
2D shapes. It should be clear that framework applies to
shapes with arbitrary topology. We have also extended the
method to a framework for computing medial surfaces of
3D objects [5].

We note that in related work, Leymarie and Levine have
utilized the magnitude of the gradient vector field to de-
sign a potential function to attract a snake moving in from
the shape’s boundary [7]. This leads to an intuitive sim-
ulation of the grassfire, however the interpretation of its
singularities as a skeletal graph is not immediate. Geiger
et. al have introduced a variational approach to comput-
ing symmetric axis trees, where portions of a curve are
matched against others, incorporating constraints including
co-circularity and parallelism [8]. Zhu has posed the com-
putation of the medial axis as a statistical inference prob-
lem, leading to an approximation of the skeleton [16]. Tek
and Kimia have introduced a promising approach for cal-
culating symmetry maps, which is based on the combina-
tion of a wavefront propagation technique with the use of an
exact (analytic) distance function [15]. Finally, Malandain
and Fernandez-Vidal obtain two sets based on thresholding
a function of two measures, ¢ and d, to characterize the sin-
gularities of the Euclidean distance function [9]. Whereas
empirical results are good, the choice of appropriate thresh-
olds for these measures, as well as strategies for combining
them, are based on heuristics.

In contrast, our method is rooted in a physics-based anal-
ysis of the gradient vector field of the Euclidean distance
function. This justifies the use of the divergence theorem
to compute the total outward flux of the vector field, and to
locate points where energy is absorbed. In this paper we



Figure 7: Subpixel skeletons for a wide variety of 2D shapes, obtained by divergence-ordered thinning.



have combined this measure with a homotopy preserving
thinning algorithm in 2D, followed by a subpixel shift to
efficiently obtain robust and accurate skeletal graphs.

A. Subpixe Shifting

We now show how points on a digital skeleton can be
shifted to be within arbitrary precision of “true” skeletal
points, by making use of an exact distance function. Con-
sider a closed contour and its digital skeleton obtained by
divergence-ordered thinning. For each end point of the dig-
ital skeleton find the closest point on the contour, and use
the set of closest points to partition the contour. Following
the partition, we can refer to the contour segments Cy, and
Cr associated with either side of a digital branch B.

We now proceed to shift the points contained in the
branch B. Let p € Band a € Cg, b € (g
be such that d(p,a) = mingeco, d(p,z) and d(p,b) =
mingeo, d(p,z). Without loss of generality, assume
d(p,a) < d(p,b), see Figure 8. If we extend the line
segment ap to a point « so that the triangle aub becomes
isosceles, we must get that « is on the other side of the true
skeleton with respect to p. This is true because the line
segment ap is normal to the contour segment Cg, at a, by
the definition of a closest point, and thus a is closest to a
skeletal point on the extension of the line segment. Since
d(p,a) < d(p,b), uis at least on the skeleton if not further,
by the definition of a skeletal point.

Now, given p and u as above, find the mid-point m be-
tween them. Update p to m if m is closer to Cr thanto C7p,,
otherwise update » to m. When the segment pu is small
enough, return one of p or u. Note that the actual precision
of the shifting depends on the precision of the end points
which were used to segment the contour.

Next, we consider the shifting of a digital branch point,
using a slightly different approach. Here the essential idea
is to move the point so that it is arbitrarily close to the center
of a maximal inscribed disc which touches the boundary at
at least three points.

Using the digital branch point as a first approximation,
identify the closest contour points to it, one on each of the
three closest contour segments. Then, shift the branch point
to the center of the unique circle which passes through these
three contour points. Repeat the procedure until the dis-
tances to the three closest points are within a specified tol-
erance of one another.
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