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Stereo vision

We have seen how it is impossible to recover 3D
scene structure from a single image. Even if the
camera is calibrated, we can only deduce the ray on
which each image feature lies.

-— Feature located

o, o

If we can observe the same feature in two views,
however, we can solve for the intersection of the rays
and recover the 3D location of the feature. This is
the essence of stereo vision.

While this might sound straightforward, there are
many subtleties to stereo vision. For instance, to
what extent do we need to calibrate the cameras?
How do we establish correspondences between fea-
tures in the two views?
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Recovering 3D structure

If the left and right cameras are calibrated with
respect to the world coordinate system, then it is
straightforward to recover 3D structure.

Recall from handout 3 that each point observed by
one camera gives us two equations in three unknowns

(X,Y, 2):

u — su _ puX + p12Y +pi13Z + pu
s puX + p3aY + pssZ + psy

o= SV _ P2 X + p2Y + pasZ + poy
s puX +p3Y +ps3sZ + pss

Observing the same point with the other camera
provides two further equations. The system of four
equations in three unknowns is over-constrained.

To understand what is required for the equations to
be consistent, we need to reformulate the equations
in terms of 3D vectors. The analysis will also iden-
tify a key constraint to help with the correspondence
problem.
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Triangulation

Suppose we know the relative positions of the cam-

eras and their intrinsic parameters!. Given the

CCD parameters, we can translate pixel coordinates

(u,v) into image plane coordinates (x,y):
u=1uy+k,x, v=uvy+ kyy

With the focal length, we can translate image plane

coordinates into a ray in 3D space. Let’s define the

ray by the point p (in camera-centered coordinates)
where it pierces the image plane:

xr

*We can extract most of this information from the two calibration
matrices.
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Triangulation

Ray vectors p and world positions X, are related
via the unknown depth Z,:

x fX./Z, f
P=\|Y|= fY;/Zc = 7Xc
f fZ.]2Z, ‘

With two rays from two calibrated cameras, we can
locate the point where the rays intersect (assuming
they do). We assume that the two camera-centered
coordinate systems are related by a known rotation
R and translation T (defined in the right camera’s
coordinate system):

X! =RX, + T
Since X! and p’ are parallel, we have
4 X.xp' =0

s RXc+T)xp' =0

Ze

This provides us with three equations in the single
unknown Z.. If the equations are inconsistent, the
rays do not intersect and the left and right image
features do not correspond to the same world point.
Given Z., we can recover full 3D scene structure

using X, = (Z./ )p.

Stereo Vision 5

Triangulation: example

Let’s consider the case when the image planes of the
two cameras are aligned and the cameras have the
same focal length:

£,
R=I1, T=[-d 0 0]

The triangulation equations reduce to:

Ze
7 pxp) = —Txp
d
& Z(pxp)=f|0]xp
0

P 3Kk i3k
<:>Zcmyf:fd00
f

x/ yl f xl yl
Equating coefficients in i, j and k:
Zfly—y) =0 (1)
Zf(x —a') = df* (2)
Ze(zy —ya') = fdy' (3)

(3) is not independent of (1) and (2). (2) allows us
to recover the depth from the horizontal disparity
(x—2a'): Z, =df [(x —2'). This result is intuitively
correct: distant objects have smaller disparities than
nearby objects.
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Epipolar geometry

Equation (1) tells us that corresponding features lie
on the same horizontal line in left and right image
planes. This is an example of an epipolar con-
straint, and follows directly from the fact that the
rays must intersect in 3D space.

Epipolar constraints are useful when searching for
correspondences: they constrain the search to a line
in each image. To derive general epipolar constraints,
we'll investigate the epipolar geometry of two
cameras.

Epipolar plane I X

;

Left epipole Baseline Right epipole

Left epipolar line Right epipolar line

The epipolar plane is the plane defined by a 3D
point X and the optical centres.
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Epipolar geometry

The baseline is the line joining the optical centres.

An epipole is the point of intersection of the base-
line with the image plane. There are two epipoles,
one for each image.

An epipolar line is a line of intersection of the
epipolar plane with an image plane. It is the image
in one camera of the ray from the other camera’s
optical centre to the point X.

o} o/

C Cc

For different world points X, the epipolar plane ro-
tates about the baseline. All epipolar lines intersect
at the epipole.
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Epipolar geometry

The epipolar line constrains the search for corre-
spondence from a region to a line. If a point feature
x is observed in one image, then its location x’ in
the other image must lie on the epipolar line.

ray

We can derive a mathematical expression for the
epipolar line. The two camera-centered coordinate
systems are related by a rotation R and translation
T:

X, =RX.+T
Taking the vector product with T, we obtain

TxX, =TxRX. +TxT
< T x X, =T x RX.
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The essential matrix

Taking the scalar product with X[, we obtain
X .(TxX!) = XL(T x RX,)
< X (TxRX,:) =0 (4)

Recall that a vector product can be expressed as a
matrix multiplication:

T x X, = TyX,

0 T, T,
where Ty = | T, 0 =T,
-7, T, O

So equation (4) can be rewritten as

X! (TyRX.) = 0
& X!'TEX, = 0, where E=T,R

E is a 3 X 3 matrix known as the essential ma-
trix. The constraint also holds for rays p, which
are parallel to the camera-centered position vectors
X

p Ep=0 (5)
This is the epipolar constraint. If we observe a point
p in one image, then its position p’ in the other
image is constrained to lie on the line defined by (5).
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Essential matrix: example

Let’s calculate the essential matrix for the parallel
camera configuration we examined in the triangula-
tion example:

—d 0 0 0
R=1, T=| 0|, E=T,R=|0 0 d
0 0 —d 0

The epipolar constraint p’TEp = ( is therefore

/,

0 0 0][=z]

[y f]|0 0 d||y| =0
0-do||f|
0

sy fll df | =0
—dy |

Sy =1y

Hence the image of any point X must lie on the
same horizontal line in each image plane.

For parallel cameras, the epipolar lines are parallel,
and the epipole is at infinity. This is what we’d
expect: neither camera can “see” the optical centre
of the other camera.
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The essential matrix

The essential matrix can also be used to find the
locations of the epipoles.

Referring to the figure, the position of the left cam-
era’s epipole is p. in the left camera’s coordinate
system and AT in the right camera’s coordinate sys-
tem. Relating the coordinate systems, we obtain

AT =Rp.+T
Taking the vector product with T, we obtain
£ 0 = T x Rpe
& Epe =0

So the location of the epipole in the left image lies in
the null space of E. It follows that E is non-invertible
(det E = 0) and is therefore of maximum rank 2.
The corresponding result for the other epipole is
E'p. = 0.
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Epipolar geometry examples

Converging cameras

3 corner features Epipolar lines
in left image in right image

[\ AP

¥ 3
E.

Epipolar lines 3 corner features
in left image in right image
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Epipolar geometry examples

Near parallel cameras

e at infinity

S

~
(0] e’at infinity

3 corner features Epipolar lines
in left image in right image

Epipolar lines 3 corner features
in left image in right image
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From rays to pixels

Up until now we have been assuming calibrated cam-
eras, so we can go from pixel coordinates w to rays
p. But what if we do not know the calibration?

We have seen how pixel coordinates and image plane
coordinates are related by the CCD calibration ma-
trix:

u ky O ug||zx
v =0k, vo||y
1 0 0 1 1

We can modify this to derive a relationship between
pixel coordinates and rays:
£,

u k, 0 w/f]||=

v|i=10 kv UO/f Y

1 00 1/f||f

If we define the matrix K as follows:

fku 0 Ug
K= 0 fkv Vo
0 0 1
then we can write
w = Kp
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The fundamental matrix

The epipolar constraint becomes
p Ep = 0
oW KTEK 'w = 0
& W'FWw = 0, where F = K" TEK™!

F is a 3 x 3 matrix known as the fundamental
matrix.

For any given point W in the left image, if we know
F' we can derive an epipolar constraint on the point’s
location W' in the right image.

The locations of the epipoles W, and w,, (in pixels)
are given by
Ep. = 0
& EK 'w, = 0
& K TEK W, = 0
& Fw, = 0 and likewise F'w, =0

At first sight, F' appears to have 9 degrees of free-
dom. However, its overall scale does not matter (so
we could set f33 to 1) and, as with E, it has zero
determinant (maximum rank 2). So F has only 7
degrees of freedom.
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Computing F from correspondences Computing F from correspondences

Since the cameras are uncalibrated, we do not know Given 8 or more perfect correspondences (image points

E, K or K’ and so we do not know F a-priori. How-
ever, we can estimate F' from point correspondences.

Each point correspondence w <+ W' generates one
constraint on F:

/,
Ju fi2 fiz||u
[u' " 1]| far far fos||v|=0
fa1 fa2 faz] |1

n of these constraints can be arranged in the follow-
ing form:

fu
fi2
f13
wjuy wjvy u) viug vivy v wg vy 1| fa
. . . . . . . .. f22 -0
UL Uy ULV, W) UhUp UhUp UL U Un 1| | fos
fa
f32
| f3 |

in general position, no noise), F can be determined
uniquely up to scale. In practice, we may have
more than 8 correspondences and the image mea-
surements will be noisy. The system of equations is
then solved by least squares.

Note that we have not attempted to enforce the con-
straint that det F = 0. If the 8 image points are
noisy, then we will find that our estimate of F does
not have zero determinant and the epipolar lines do
not meet at a point. Nonlinear techniques exist to
estimate F' from 7 point correspondences, enforcing
the rank 2 constraint.

Given F, we can establish correspondences with rel-
ative ease. If we know the intrinsic camera pa-
rameters K, we can also find the essential matrix,
decompose E into Ty and R, and recover metric
structure by triangulation. Without K we can only
recover structure up to a 3D projective transforma-
tion, which is not ideal but nevertheless useful for
object recognition.
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The correspondence problem

Even with the epipolar constraint, establishing cor-
respondences between points in the left and right im-
age is not trivial. Comparing image patches by cor-
relation is unreliable since the grey levels are view-
point dependent.

e Hypothesis 1
o Hypothesis 2
O Hypothesis 3

Left image Right image OC/

In the illustration, we are trying to match three cor-
ners in the left image with three corners in the right
image. We have three hypotheses, all of which sat-
isfy the epipolar constraint. How can we discover
which hypothesis is correct?
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The correspondence problem

The correspondence problem is very difficult to solve,
but we can make some progress by identifying more
constraints.

Uniqueness

The most obvious constraint is uniqueness. For opaque
objects, each point in the left image has at most one
match in the right image.

o Violates uniqueness
constraint

O/

o) Left image Right image

Cc

For transparent objects, we cannot rely on the unique-
ness constraint. Two features may be visible in the
right image but instantaneously aligned in the left
image.
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The correspondence problem

Ordering

Corresponding points lying on the surface of an opaque
object will be ordered identically in left and right
images.

e Satisfies ordering
constraint

Left image Right image o/

o Violates ordering
constraint

Left image Right image
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The correspondence problem

The ordering constraint will not necessarily hold if
the points do not lie on the surface of the same
opaque object. Given point X observed in both im-
ages, any point lying in X’s “forbidden zone” will
violate the ordering constraint.

Forbidden zone
of X

Left image Right image

Figural continuity

When distinguished points lie on image contours, we
can sometimes use figural continuity as a matching
constraint. In the following example, the point in
the left image must match the point towards the
right of the right image.
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The correspondence problem

point epipolar
e line
Left image Right image

Disparity gradient

If surfaces are smooth, then disparities (differences
in location between points in the left and right im-
ages) must be locally smooth. So, away from oc-
cluding boundaries, a further constraint comes from
imposing a limit on the allowable spatial derivatives
of disparity.

Left image Right image

Epipolar
line

Given matches e and o, point o in the left image
must match point 1 in the right image. Point 2
would exceed the disparity gradient limit.
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Finding correspondences

Here is the outline of an algorithm for finding corre-
spondences between corners (typically 200-300 per
image).

1. Unguided matching.

F T

Use local search and nor-
malized cross-correlation to
obtain a small number of
seed matches.

Seed matches

2. Compute epipolar geometry. Use seed
matches and robust regression to compute F.

h Rl ] a ¥

Find an F which is consis-
tent with many of the seed
matches — reject the rest
as outliers.

Matches consistent with F
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Finding correspondences

3. Guided matching. Now that we know F,
the search for matches can be restricted to a narrow
band around epipolar lines.

Epipolar
line

./Point /\

Search band

Left image Right image

Using the epipolar and other constraints (ordering,
grey level correlation, etc.), we obtain a large num-
ber of matches.

With calibrated cameras, we can now recover the
structure of the building by triangulation. We only
recover structure at the detected corners: to recon-
struct more of the scene, we could try intensity-
based matching between corners.
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Affine stereo

Recall that when depth variations in the scene are
small compared with the viewing distance, an affine
camera IS appropriate:

u
(%

_ [pn P12 P13 p14]
D21 P22 P23 P24

N

The affine camera can be calibrated by observing
four points in space.

With two calibrated affine cameras, it is straightfor-
ward to triangulate to recover structure:

u P11 P12 P13 pua || X

V| | P21 P22 P23 Pu||Y 6
/ - / / / / Z ( )

u P11 P12 Pi3 Pis

v p'21 p'22 p’23 p’24 1

Each point observed in left and right images gives
us 4 equations in the 3 unknowns (X,Y, Z). These
can be solved using least squares.

But what about an epipolar constraint to help with
the correspondence problem?
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Affine stereo

Assume (without loss of generality), that the left
camera is aligned with the world coordinate sys-
tem: this will simplify the algebra considerably. It is
straightforward to show (by inspection of the weak
perspective camera matrix) that the left camera ma-
trix reduces to

/,

u

v 0 pa2 0 pou

_ [Pn 00 p14]

B

We can now easily eliminate X and Y from the equa-
tions for u’ and v’ in (6):

/ / (u - p14) / (U - p24)

u = pl————F Pl + P32 + Dy
D11 D22
(U - p14) (U - p24)
Vo= py APy Pyt Py
P11 P22

Rewriting these equations, we obtain

1 (u—p14) 1 (v—pa4) /
u'] [Py, TP, TPu +Z{p,13}
! - - !
v plzl(qulm +p/22% +ph, Phs
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Affine stereo

We can rewrite the preceding equation as
w =a+7Zb (7)

This is one form of the epipolar constraint for affine
stereo.

Given calibrated cameras and a point w in the left
image, we do not know Z but we do know a and b.
Thus, the corresponding point w’ must lie on the
epipolar line in the right image described by (7).

Since b is independent of w, it follows that all epipo-
lar lines are parallel under affine stereo.

Epipolar
line for w,

//
W, Sl\

[
ope b
W, w
Epipolar
line forwz/
Left image Right image
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Random dot stereograms Case study: 3D stereograms

We won't be looking at random dot stereograms. 3D stereograms give the illusion of depth, even though

the viewer is in fact looking at a planar image. They
can take several forms, including random dot stere-

Tha

ograms and red/green stereograms. Here we focus
c on the latter.
£
o
=
]
_g World
0 _ , L] ] scene
= C Red image
@ = ]
@
©
O Green image
fw]
3 )|
E Red filter Oc Parallel cameras w
i O - ]
s % ﬁ
-
-, : o/
= = “ - ¢
E % Lefteye ﬁ\\\ Green filter
E é‘. Right eye
= =
= . .
l To see an RG stereogram, the viewer is presented
Frank finally got the hang of seeing the 3-D plctures with a different image of the scene in each eye. To
but.Ine problem T::kzgvége de s L achieve this, the two images are printed in red and

green and the viewer wears appropriate filter glasses.
If the two images are acquired by parallel cameras,
mimicing the human visual system, the brain is able
to fuse the two images together and perceive depth.



Stereo Vision 30

Case study: 3D stereograms

Traditionally, RG stereograms are created using highly

calibrated stereoscopic cameras, ensuring parallel im-
age planes. However, epipolar geometry can be ex-
ploited to create an RG stereogram from any stereo
pair of images.

The idea is to take two pictures with the same cam-
era and estimate the fundamental matrix F by search
ing for corresponding features in the left and right
images. Assuming we know the camera calibration
matrix K, we can recover the essential matrix:

E = KTFK

We can then find the epipoles p, and p. from the
null space of E and ET, and hence the direction of
translation T,
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Case study: 3D stereograms

The next stage is to rectify the images: that is,
warp the images to recover what they would have
looked like had the cameras been parallel.

It is relatively straightforward to find the rotation
matrix R which aligns the X -axis of each camera’s
coordinate system with T. We can now relate rays p
in the raw images to rays p, in the rectified images:

éi) p:Rpr
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Case study: 3D stereograms

Next, using the camera calibration, we relate pixels
in the raw (w) and rectified (w,) images:

p = Rp:
K 'w = RK 'w,
& w = KRK 'w, (8)

The warped images are created using (8) to find the
grey level I(w) associated with each pixel w; in the
rectified image. Finally, a similar warping is applied
to rectify any relative rotation about the cameras’
X ~axes.

Rectified images - epipolar lines horizontal. Can be fused if super-
imposed in red and green and viewed through filtered glasses.
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Summary

Image pair with detected corners

Fully calibrated
cameras

Not fully
calibrated cameras

Work with pixels w
Compute F from
correspondences

Match corners using epipolar and other constraints

parameters K parameters K

Metric 3D structure Projective 3D structure

. Unknown intrinsic Known intrinsic
Triangulate

Recover rays p
Calculate E from F al
Decompose E into T,

Triangulate

Metric 3D structur
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