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Edge  Detection

l Why Detect Edges?

u Information reduction

l Replace image by a cartoon in which objects and surface markings are 

outlined  ⇒ create line drawing description

l These are the most informative parts of the image

u Biological plausibility

l Initial stages of mammalian vision systems involve detection of edges 

and local features

u Applications

l Object recognition, stereo, texture analysis, motion analysis, image 

enhancement, image compression
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What  Causes  Image  Intensity  Changes?

l Many types of physical events cause intensity changes

u Surface reflectance discontinuity - change in the fraction of light 

incident on the surface that is reflected to viewer

u Illumination discontinuity - shadow

u Surface orientation (normal) discontinuity

u Depth discontinuity - at occluding contour, where surface orientation is 

perpendicular to line of sight
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What type of real-world edge is this contrast border?

4Need global information too
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What  Does  an  Edge  Look  Like?

l Step

l Ramp

l Roof

l Line (bar)
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Edge Detectors in the HVS

l Sum activity from an array of oriented simple cells

Complex

Simple (border)
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Orientation Columns in V1

l A “hypercolum” = complete set of orientations
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Craik-O’Brien-Cornsweet Illusion
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Koffka Ring

14

Luminance Differences Affect our Perceptions

l Artists use the technique of “equiluminance” to 

blur outlines and suggest motion. We cannot 

perceive the edges of objects where object and 

background have the same luminance. If parts of a 

painting are equiluminant, their positions become 

ambiguous. They may seem to shift position or to 

float

l Equiluminant colors have special properties, e.g., 

they can make a painting appear unstable 
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Equiluminant Colors

l An object that can be seen by both subdivisions of the visual 
system will be perceived accurately. But if the two 
subdivisions are not balanced in their response to an object, it
may look peculiar.

l For example, an object defined by equiluminant colors can be 
seen by the What system but is invisible (or poorly seen) by 
the Where system. It may seem flat, it may seem to shift 
position, or it may seem to float ambiguously because there is 
too little luminance contrast to provide adequate information 
about its three-dimensional shape, its location in space, or its 
motion (or lack of it).

l Conversely, something defined by very low contrast contours 
is seen by the Where system but not the What system and may 
seem to have depth and spatial organization but no clear shape. 
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Detail from Richard Anuszkiewicz’s Plus Reversed, 1960

The red and blue seem to move around because they are equiluminant
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Edge  Detection  Goals

l Good detection:  Low false alarm rate and low false 

dismissal rate  ⇒ maximize signal-to-noise (S/N) ratio

l Good localization:  Mark point closest to “center” of true 

edge  ⇒ minimize distance between marked point and 

center

l Uniqueness:  Only one response to a single edge

l Good property measurement:  Orientation, contrast, etc.
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Edge  Operator  Properties

l Shift invariant (translation invariant, position invariant)

u If g(x,y) = Op[f(x,y)]  then  g(x-a, y-b) = Op[f(x-a, y-b)]

l Isotropic (rotation invariant) vs. non-isotropic

l Derivative order (if differentiation-based method)

l Linear vs. non-linear

u Op[a f1(x,y)  + b f2(x,y)]  = a Op[f1(x,y)]  +  b Op[f2(x,y)]

= a g1(x,y)  +  b g2(x,y)

l Scale (operator neighborhood size)

u g(x,y) = Op[f(x+a, y+b),  ∀ -k < a, b < k ]

l Convolution (linear and shift-invariant)
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Edge  and  Local  Feature  Detection  Methods

l Gradient-based edge detection

l Edge detection by function fitting

l Second derivative edge detectors

l Edge linking and the construction of the chain graph
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1D  Edge  Detection

l An ideal edge is a step function

x

I(x)

x

I′(x)
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1D  Edge  Detection

l The first derivative of I(x) has a peak at the edge

l The second derivative of I(x) has a zero crossing at the 

edge

x

I′′(x)
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1D  Edge  Detection

l More realistically, image edges are blurred and the regions 

that meet at those edges have noise or variations in 

intensity

u Blur - high first derivatives near edges

u Noise - high first derivatives within regions that meet at edges

x

I(x)

x

I′(x)
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Edge  Detection  in  2D

l Let I(x,y) be the image intensity function.  It has 

derivatives in all directions

u ∂I(x, y)/∂x =  lim I(x+∆x, y) - I(x, y) / ∆x  ≈ I(u+1, v) - I(u,v)

u Gradient of I(x, y) is a vector ∇∇∇∇I(x, y) = [∂I/∂x, ∂I/∂y]T specifying 

the direction of greatest rate of change in intensity (i.e., 

perpendicular to the edge’s direction)

u From gradient can determine the direction in which the first 

derivative is highest, and the magnitude of the first derivative in 

that direction

u Magnitude = [(∂ I/∂x)2 + (∂I/∂y)2]1/2

u Direction = tan-1 (∂I/∂y)/(∂I/∂x)
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Computing  First  Derivative

l To compute first derivative in direction θ, calculate from 

linear combination of derivatives from any two

non-collinear directions
ä x = x′cos θ - y′sin θ

y = x′sin θ + y′cos θ
ä ∂I/∂x′ = ∂I/∂x ∂x/∂x′ +  ∂I/∂y ∂y/∂y′

= ∂I/∂x cos θ +  ∂I/∂y sin θ
∂I/∂y′ = -∂I/∂x sin θ +  ∂I/∂y cos θ

ä (∂I/∂x′)2 + (∂I/∂y′)2 =  (∂I/∂x)2 + (∂I/∂y)2

ä So, sum of squares of first derivative is 
isotropic, non-linear

ä Similarly, all derivatives of odd ordcr
raised to an even power are isotropic

y

x

x′
y′

θ
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Gradient

l Gradient = [∂I/∂x, ∂I/∂y]T

l What direction is first derivative a maximum?

u Set ∂/∂θ (∂I/∂x′) = 0, and solve for θ
⇒ ∂/∂θ (∂I/∂x cos θ +  ∂I/∂y sin θ)  =  0

⇒ θ =  tan-1 (∂I/∂y / ∂I/∂x)

l Gradient direction is perpendicular to “edge direction”

l Gradient magnitude is isotropic
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Edge  Detection  in  2D

l With a digital image, the partial derivatives are replaced by 

finite differences:

u ∆xI = I(u+1, v) - I(u, v)

u ∆yI = I(u, v) - I(u, v+1)

l An alternative (Sobel)

u ∆sobel_XI = I(u+1, v+1) + 2I(u+1, v) + I(u+1, v-1) - I(u-1, v+1) - 2I(u-1, v) - I(u-1, v-1)

u ∆sobel_YI = I(u-1, v-1) + 2I(u, v-1) + I(u+1, v-1) - I(u-1, v+1) - 2I(u, v+1) - I(u+1, v+1)

l Roberts’s “Cross”

u ∆+I = I(u, v) - I(u+1, v-1)

u ∆-I = I(u, v-1) - I(u+1, v)

1   0

0  -1

0 -1

1  0

u

v
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Gradient Operator Example

l I = 0 0 0 1 2 3 4 4 4 8 8 8 3 3 3

l ∆x = -1 1

l ∆xI =  * 0 0 1 1 1 1 0 0 4 0 0 -5 0 0 



15

30

Directional Edge Operators

l Kirsch 8-direction masks

l Gradient magnitude =

l Gradient direction =  45° argmax k n
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Directional Edge Operators

l Robinson masks

l Nevatia and Babu used 6 5x5 masks, detecting orientations 
at multiples of 30°
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Edge  Detection  in  2D

l How do we combine the directional derivatives to compute 

the gradient magnitude?

u Use the root mean square (RMS) as in the continuous case

u Sum of the absolute values of the directional derivatives

u Maximum of the absolute values of the directional derivatives

l Advantages of the latter

u Avoids computing square root (although this can be done using 

table lookups)

u Keeps result in the same range as the original image

u Gives a magnitude that is invariant with respect to orientation of 

the edge in the image (∆sobel_X overestimates diagonal edges and ∆+

overestimates horizontal and vertical edge magnitudes)
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Finite Differences and Noise

l Finite difference filters respond 

strongly to noise

u obvious reason: image noise 

results in pixels that look very 

different from their neighbors

l Generally, the larger the noise 

the stronger the response

l What is to be done?

u intuitively, most pixels in 

images look quite a lot like 

their neighbors

u this is true even at an edge; 

along the edge they’re similar, 

across the edge they’re not

u suggests that smoothing the 

image should help, by forcing 

pixels different from their 

neighbors (=noise pixels?) to 

look more like their neighbors

34

Finite Differences Responding to Noise

Increasing noise ->

(this is zero mean additive gaussian noise)
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Combining  Smoothing  and  Differentiation -

Fixed  Scale

l Local operators like the Roberts operator give high 

responses to any intensity variation

u local surface texture 

u noise from the sensing process

l If the picture is first smoothed by an averaging process, 

then these local variations are removed and what remains 

are the “prominent” edges

l Example:   I2x2(u,v) = 1/4[I(u,v) + I(u+1,v) + I(u,v+1) + I(u+1,v+1)]
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Smoothing  - Basic  Problems

l What function should be used to smooth or average the 
image before differentiation?
u Mean smoothing (aka box filters or uniform smoothing or 

averaging)

l easy to compute (linear)

l for large smoothing neighborhoods assigns too much weight to points 
far from an edge

u Median smoothing

l doesn’t blur corners

l unaffected by outliers

u Gaussian smoothing

l [1/(2πσ2)] e -(u
2 + v2)/2σ2
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Example: Smoothing by Averaging
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Smoothing with a Gaussian

40

The Mystery of the Mona Lisa Smile

l Margaret Livingstone has conjectured that the elusive smile is 

because of the differences in resolution in the fovea and the 

periphery of the retina

Low-pass filtered         Middle-pass                High-pass
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Changing small details can affect the mood we perceive. A few pixels of 

change switches her from happy to sad.  Adding random “noise” also 

changes our perception of her expression.
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Smoothing  and  Convolution

l The convolution of two functions, f(x) and g(x), is defined 

as

h(x)  =  ∫ g(x′) f(x-x′) dx′ =  g(x) * f(x)

l When f and g are discrete and when g is nonzero only over 

a finite range [-n, n], this integral is replaced by the 

summation

h(u)  =  ∑ g(i) f(u-i)
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Example  of  1D  Convolution

8    7     8    22    23  12   10   11    9    5    6     4
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1      3     5    3     1
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Smoothing  and  Convolution

l These integrals and summations extend simply to functions 

of two variables:

h(u,v)  =  g(u,v) * f(u,v)  =  ∑∑ g(i,j) f(u-i, v-j)

l Convolution computes the weighted sum of the gray levels 

in each n x n neighborhood of the image, f, using the 

“kernel” matrix of weights, g

l Convolution is a linear operator because

u g*(af1 + bf2)  =  a(g*f1)  +  b(g*f2)

46

Convolution
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2D  Convolution
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Smoothing  and  Convolution
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Properties  of  Convolution

l Commutative

l Associative

l Cascadable

l Linear, shift-invariant

l Any linear, shift-invariant operation can be implemented 

as a convolution

l Convolution in spatial domain = multiplication in 

frequency domain.  I.e., g = f * h  iff G = F·H, where * 
denotes convolution and F = (f)

l An alternative for computing g:   g = -1(F·H)

50

Combining Smoothing and Edge Detection

l Let S = 1 1

1 1

1 1

l ∆x =  -1 1

l Smooth, then differentiate:

∆x * (S  *  I),  where I is original image and * is convolution

=  (∆x * S) * I

1 0 -1

l ∆x * S  =  1 0 -1  =  ∆Prewitt_x

1 0 -1
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Back  to  Smoothing  Functions

l To smooth an image using a Gaussian filter, e-(u2 + v2)/2σ2
,

we must

u Choose an appropriate value for σ, which controls how quickly the 

Gaussian falls to near 0

l Small σ produces filter which drops to near 0 quickly - can be 

implemented using small digital array of weights

l Large σ produces a filter which drops to near 0 slowly - will be 

implemented using a larger size digital array of weights

u Determine the size weight array needed to adequately represent 

that Gaussian

l To represent 98.76% of the area under the Gaussian using σ=σ0  use a 

mask of size 5σ0 x 5σ0

l In practice, size of mask is often closer to size 3σ x 3σ
l Weight array needs to be of odd size (2k+1 x 2k+1) to allow for 

symmetry
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l To smooth an image using a Gaussian filter we must

u Sample the Gaussian by integrating it over the square pixels of the 

array of weights and multiplying by a scale factor to obtain integer 

weights

u Because we have truncated the Gaussian, the weights will not sum

to 1.0 x scale factor

l In “flat” areas of the image we expect our smoothing filter to leave 

the image unchanged

l But if the filter weights do not sum to 1.0 x scale factor,  it will either 

amplify (> 1.0) or de-amplify (< 1.0) the image

Gaussian  Smoothing
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Gaussian  Smoothing

l Gaussian smoothing steps

u Normalize the weight array by dividing each entry by the sum of 

the all of the entries (integral equal to 1)

u Convert to integers

l Advantages of Gaussian filtering

u Rotationally symmetric (for large filters)

u Filter weights decrease monotonically from central peak, giving 

most weight to central pixels

u Simple and intuitive relationship between size of σ and size of 

objects whose edges will be detected in image.

u The Gaussian is separable

54

Building Discrete Gaussian Kernels

l Given σ and w, compute real-valued weights for w x w

kernel array

l Divide all entries by minimum weight and round result to 

nearest integer, obtaining kernel G

l Compute normalization factor n = ∑ weights

l I' = 1/n (G * I)
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Separability

l A function g(x, y) is separable if g(x, y) = g1(x) g2(y)

l The Gaussian function is separable:

e -[(x
2 + y2)/2σσσσ2] =  e -[x

2/2σσσσ2]
* e 

-[y2/2σσσσ2]

l First convolve the image with a 1D horizontal filter

l Then convolve the result of the first convolution with a 1D  

vertical filter

l For a k x k Gaussian filter, 2D convolution requires k2

multiplications and k2-1 additions per pixel

l But using the separable filters, we reduce this to 2k

multiplications and 2k-1 additions per pixel
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Separability
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Advantages  of  Gaussians

l Cascading Gaussians:  Convolution of a Gaussian with 

itself is another Gaussian

u So, we can first smooth an image with a small Gaussian

u Then, we convolve that smoothed image with another small 

Gaussian and the result is equivalent to smoother the original 

image with a larger Gaussian

u If we smooth an image with a Gaussian having standard deviation 

σ twice, then we get the same result as smoothing the image with a  

Gaussian having standard deviation 2σ

58

Combining  Smoothing  and  Differentiation -

Fixed  Scale

l Non-maxima suppression - Retain a point as an edge point 

if

u its gradient magnitude is higher than a threshold

u its gradient magnitude is a local maximum in the gradient direction

l “Lateral inhibition” process
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Summary  of  Basic  Edge  Detection  Steps

l Smooth the image to reduce the effects of local intensity 

variations

u Choice of smoothing operator practically important

l Differentiate the smoothed image using a digital gradient 

operator that assigns a magnitude and direction of the 

gradient at each pixel

u Mathematically, we can apply the digital gradient operator to the 

digital smoothing filter, and then just convolve the differentiated 

smoothing filter to the image

u Requires using a slightly larger smoothing array to avoid border

effects

l Threshold the gradient magnitude to eliminate low contrast 

edges

60

Summary  of  Basic  Edge  Detection  Steps

l Apply a non-maximum suppression step to thin the edges 

to single pixel wide edges

u Smoothing will produce an image in which the contrast at an edge

is spread out in the neighborhood of the edge

u Thresholding operation will produce thick edges
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Canny  Edge  Operator

l Design operator that is optimal with respect to good 

detection, good localization, and unique response criteria

l Good detection criterion: Maximize SNR, which is the 

ratio of the step size of a step edge over the standard 

deviation of the 0-mean, additive Gaussian noise

l Good localization criterion:  Maximize inverse distance 

of detected edge from true edge

l Optimal 1D step-edge detector = detector that maximizes 

the product of the two terms above subject to third 

criterion

l First derivative of a Gaussian is within 20% of optimal 

62

Directional  Derivatives

l Isotropic operators smooth across edges 

⇒ Poor localization

l Instead, average pixels along edge direction only

⇒ Use a set of directional derivatives at a large number of 

orientations

111
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Canny  Edge  Operator

l Gaussian smooth image:  G * I

l Estimate gradient direction (i.e., edge normal), n, at each 

pixel:

l Compute first derivative in the gradient direction, n.  That 

is, ∂G/∂n * I

l Suppress non-maxima

u If value is not a local max in direction n, then change value to 0

u Or, find zero-crossings in direction n.  I.e., zero-crossings of 

∂([∂G/∂n] * I)/∂n = ∂2(G * I)/∂n2

)*(

)*(

IG

IG

∇
∇=n
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Canny  Edge  Operator

l To get rid of spurious edges created by noise 

(false positives) and to fill in missing edges (false 

negatives) use hysteresis thresholding:

u Define two thresholds, thigh and tlow

u Mark all pixels with edge magnitude > thigh as edge 

pixels

u For each marked pixel, search in edge direction, both 

ways, marking all pixels with edge magnitude > tlow as 

edge pixels.  Stop search when a pixel is reached with 

edge magnitude < tlow



33

65

Laplacian Edge  Detectors

l Directional second derivative in direction of gradient has a 

zero crossing at gradient maximum

l Can approximate directional second derivative with 

Laplacian:

∇2I =  ∂2I/∂x2 + ∂2I/∂y2

l Laplacian is lowest order linear isotropic operator

l Digital approximation (2nd forward difference) is

u ∇2I(u,v) = [I(u+1,v) + I(u-1,v) + I(u,v+1) + I(u,v-1)] - 4I(u,v)

=   [I(u+1,v) - I(u,v)] - [I(u,v) - I(u-1,v)] + [I(u,v+1) - I(u,v)] -

[I(u,v) - I(u,v-1)]
0   1   0

1   -4  1
0   1   0
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Laplacian Examples

l I =  ... 2 2 2 8 8 8 ...

l ∇2 =  1 -2 1

⇒ ∇2 I =  ... 0 0 0 6 -6 0 0 0 ...

l I =  ... 2 2 2 5 8 8 8 ...

⇒ ∇2 I =  ... 0 0 0 3 0 -3 0 0 0 ...
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Problems with Laplacian of Small Size

l Responds most strongly at isolated points (spots)

⇒ noise sensitive

l Responds strongly at lines and endpoints of lines

l Responds relatively less at edges

l Ramp edges detected at two ends, not once at center
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Using  Laplacian for  Edge  Enhancement

l Given a blurred image g ≈ I′ =  1/5  (I *  | 0 1 0 | )

| 1 1 1 |

| 0 1 0 |

l ∇2I ∝ I - I′
l g - k∇2g  ≈ I′ - k(-1/5 (I - I′))

=  k/5 I +  I′(1 - k/5)

≈ I when k=5

l ==> Can deblur an image by subtracting a multiple of its 

Laplacian

l Simulates Mach Band effect in human visual system

l Analogous to unsharp masking technique in photography

70

Mach Bands

l In 1865, Mach discovered that we perceive an edge (change of intensity) at 

lines that separate surface regions with identical intensity on both sides but 

different intensity derivatives

l It is caused by the lateral inhibition of the receptors in the eyes
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Mach Bands

Actual 

brightness

Perceived 

by you
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Laplacian Edge  Detectors

l Laplacians are also combined with smoothing for 

edge detectors

u Take the Laplacian of a Gaussian-smoothed image -

called the Laplacian-of-Gaussian (LoG), Mexican Hat 

operator, Difference-of-Gaussians (DoG), Marr-

Hildreth, ∇∇∇∇2G operator

u Locate the zero-crossing of the operator

l these are pixels whose LoG is positive and which have 

neighbor’s whose LoG is negative or zero

u Usually, measure the gradient or directional first 

derivatives at these points to eliminate low contrast 

edges
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Laplacian of Gaussian  (LoG)

∇2Gσ(x, y)  =  -[1/2πσ4] (2 - (x2 + y2)/σ2) e -(x
2 + y2)/2σ2
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LoG Properties

l Linear, shift invariant  ⇒ convolution

l Circularly symmetric  ⇒ isotropic

l Size of LoG operator approximately 6σ x 6σ
l LoG is separable

l LoG ≈ Gσ1
- Gσ2

, where σ1 = 1.6σ2  

l Analogous to spatial organization of receptive fields of 

retinal ganglion cells, with a central excitatory region and 

an inhibitory surround

76
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Receptive Field

u Region on retina that influences activity of a ganglion cell

u Firing rate of neuron

u Excitatory center, inhibitory surround

+ -

78

u Ganglion cells detect differences

in luminance at a border, line, or 

spot

u Retina is NOT a spot-meter
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Lateral Inhibition Explanation

B < A
B inhibited 

by surround

D > E
D less inhibited 

by surround

dark 

band

light

band

80

Hermann Grid

l Illustrates lateral inhibition
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Visual illusions

82

Lateral Inhibition Explanation

Inhibited less by white 

stripes

Inhibited more by white stripes
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The  Scale  Space  Problem

l Usually, any single choice of σ does not produce a good 

edge map

u a large σ will produce edges from only the largest objects, and they 

will not accurately delineate the object because the smoothing 

reduces shape detail

u a small σ will produce many edges and very jagged boundaries of 

many objects

l Scale-space approaches

u detect edges at a range of scales [σ1, σ2]

u combine the resulting edge maps

l trace edges detected using large σ down through scale space to obtain 

more accurate spatial localization
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Pyramids

l Very useful for representing images

l Pyramid is built by using multiple copies of image

l Each level in the pyramid is 1/4 the area of previous level, 

i.e., each dimension is 1/2 resolution of previous level

Pyramids
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Gaussian Pyramid
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Gaussian  Pyramid

l Multiresolution, low-pass filter

l Hierarchical convolution

u G0 = input image

u G′k(u, v)  =  ∑∑ w(m, n) Gk-1(u-m, v-n)        ;  smooth

u Gk(u, v)  =  G′k(2u, 2v),   0 < u, v < 2N-k                ;  sub-sample

l w is a small (e.g., 5 x 5) separable generating kernel, e.g., 

1/16 [1  4  6  4  1]

l Cascading w equivalent to applying large kernel

u Effective size of kernel at level k = 2M(2k - 1) + 1, where w has 

width 2M+1

u Example:  Let M=1.  If k=1 then equivalent size = 5; k=2 then 

equivalent size = 13; k=3 then equivalent size = 27
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Gaussian Pyramids
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Reduce (1D)

)2()(ˆ)(
2

2

1 mugmwug
m

ll +=∑
−=

−

)24()2(ˆ)14()1(ˆ)4()0(ˆ

)14()1(ˆ)24()2(ˆ)2(

111

11

++++
+−−+−−=

−−−

−−

lll

lll

gwgwgw

gwgwg

)6()2(ˆ)5()1(ˆ)4()0(ˆ

)3()1(ˆ)2()2(ˆ)2(

111

11

−−−

−−

++
+−+−=

lll

lll

gwgwgw

gwgwg

96

Reduce
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Gaussian Pyramids
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Expand (1D)
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Expand
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Convolution Mask
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Convolution Mask

l Separable

l Symmetric

)(ˆ)(ˆ),( nwmwnmw =

)(ˆ)(ˆ uwuw −=

],,,,[ cbabc
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Convolution Mask

l The sum of mask should be 1:

l All nodes at a given level must contribute the same total 

weight to the nodes at the next higher level:

bca 22 =+

122 =++ cba
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Convolution Mask
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Algorithm

l Apply 1D mask to alternate pixels along each row of 

image

l Apply 1D mask to each pixel along alternate columns of 

resultant image from previous step
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Laplacian Pyramids

l Similar to results of edge detection

l Most pixels are 0

l Can be used for image compression:

][ 322 gEXPANDgL −=

][ 433 gEXPANDgL −=

][ 211 gEXPANDgL −=

106
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Laplacian Pyramid

l Computes a set of bandpass filtered versions of image

l Lk =  Gk - w * Gk

=  Gk - Expand(Gk+1)

l LN =  GN (apex of Laplacian pyr = apex of Gaussian pyr)

l Separates features by their scale (size)

l Enhances features

l Compact representation

l ∑ L k =  (G0 - G1 ) + (G1 - G2 ) + ... + (GN-1 - GN ) + GN

=  G0
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Gaussian and Laplacian Pyramids

110

Coding using the Laplacian Pyramid

•Compute Gaussian pyramid

4321 ,,, gggg

•Compute Laplacian pyramid

44

433

322

211

][

][

][

gL

gEXPANDgL

gEXPANDgL

gEXPANDgL
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•Code Laplacian pyramid
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l Decode Laplacian pyramid

l Compute Gaussian pyramid from Laplacian pyramid:

l g1 is reconstructed image

44 Lg =

343 ][ LgEXPANDg +=

Decoding using Laplacian pyramid

g2 = EXPAND[g3] + L2

g1 = EXPAND[g2] + L1

112

Image Compression

Laplacian Pyramid

Level 0

1

2

3

After Quantization
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Image Compression

Originals Encoded

114

Image  Compositing  by  Pyramid  Blending

l Given:  Two 2n x 2n images

l Goal:  Create an image that contains left half of image A 

and right half of image B

l Algorithm

u Compute Laplacian pyramids, LA and LB, from images A and B

u Compute Laplacian pyramid LS by copying left half of LA and 

right half of LB.  Pyramid nodes down the center line = average of 

corresponding LA and LB nodes  ⇒ blend along center line

u Expand and sum levels of LS to obtain output image S
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Combining Apple & Orange

116

Combining Apple & Orange (using Pyramids)
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Image  Compositing  from  Arbitrary  Regions

l Given:  Two 2n x 2n images and one 2n x 2n binary mask

l Goal:  Output image containing image A where mask=1, 

and image B where mask=0

l Algorithm:

u Construct Laplacian pyramids LA and LB from images A and B

u Construct Gaussian pyramid GR from mask R

u Construct Laplacian pyramid LS:

LSk(u, v)  =  GRk(u, v) LAk(u, v)  +  (1 - GRk(u, v)) LBk(u, v)

u Expand and sum levels of LS to obtain output image S
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Oriented  (“Steerable”) Pyramids

l Laplacian pyramid is orientation-independent

l Apply an oriented filter to determine orientations at each 

layer

u by clever filter design, we can simplify synthesis

u this represents image information at a particular scale and 

orientation



63

125

126

From “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions

on Information Theory, 1992



64

127

Analysis

128

Synthesis
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Edge  Detection  by  Function  Fitting:            

Facet Model

l General approach

u Fit a function to each pixel’s neighborhood of the image

u Use the gradient of the function as the digital gradient of the image 

neighborhood

l Example:  Fit a plane to a 2 x 2 neighborhood

u z = ax + by + c; z is gray level

u Gradient is then (a2 + b2)1/2

u Neighborhood points are I(x,y), I(x+1,y), I(x,y+1) and I(x+1,y+1)

l Need to minimize E(a,b,c) = ΣΣ [a(x+i) + b(y+j) + c - I(x+i,y+j)]2

l Solve this and similar problems by:

u Differentiating with respect to a,b,c, set results to 0, and

u Solve for a,b,c in resulting system of equations

130

Edge  Detection  by  Function  Fitting

l ∂E/∂a = ΣΣ2[a(x+i) + b(y+j) + c - I(x+i,y+j)](x+i)

l ∂E/∂b = ΣΣ2[a(x+i) + b(y+j) + c - I(x+i,y+j)](y+j)

l ∂E/∂c = ΣΣ2[a(x+i) + b(y+j) + c - I(x+i,y+j)]

l It is easy to verify that

a = [I(x+1,y) + I(x+1,y+1) - I(x,y) - I(x,y+1)]/2

b = [I(x,y+1) + I(x+1,y+1) - I(x,y) - I(x+1,y)]/2

l a and b are the partial derivatives with respect to x and y

-1   1
-1   1

a = b = 1   1
-1  -1
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Edge  Detection  by  Function  Fitting

l Could also fit a higher order surface than a plane

u With a second order surface we could find the (linear) combination 

of pixel values that corresponds to the higher order derivatives, 

which can also be used for edge detection

l Would ordinarily use a neighborhood larger than 2 x 2

u Better fit

u For high degree functions need more points for the fit to be reliable
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Edge  Linking  and  Following

l Group edge pixels into chains and chains into large pieces 

of object boundary.

u can use the shapes of long edge chains in recognition

l slopes

l curvature

l corners

l Basic steps

u thin connected components of edges to one pixel thick

u find simply connected paths

u link them at corners into a graph model of image contours

u compute local and global properties of contours and corners
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Finding  Simply  Connected  Chains

l Goal:  create a graph-structured representation            

(chain graph)  of the image contours

u vertex for each junction in the image

u edge connecting vertices corresponding to junctions that are 

connected by an chain;  edge labeled with chain 
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Creating  the  Chain  Graph

l Algorithm: given binary image, E,  of thinned edges

u create a binary image, J,  of junctions and end points

l points in E  that are 1 and have more than two neighbors that are 1 or 

exactly one neighbor that is a 1

u create the image E-J = C(chains)

l this image contains the chains of E, but they are broken at junctions

u perform a connected component analysis of C. For each 

component store in a table T:

l its end points (0 or 2)

l the list of coordinates joining its end points

u For each point in J:

l create a node in the chain graph , G, with a unique label
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Creating  the  Chain  Graph

l For each chain in C

u if that chain is a closed loop (has no end points)

l choose one point from the chain randomly and create a new node in G 

corresponding to that point

l mark that point as a “loop junction” to distinguish it from other 

junctions

l create an edge in G connecting this new node to itself, and mark that 

edge with the name of the chain loop

u if that chain is not a closed loop, then it has two end points

l create an edge in G linking the two points from J adjacent to its end 

points
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Creating  the  Chain  Graph

l Data structure for creating the chain graph

l Biggest problem is determining for each open chain in C 

the points in J that are adjacent to its end points

u sophisticated solution might use a hierarchical data structure, like a 

k-d tree, to represent the points in J

u more direct solution is to create image J in which all 1’s are 

marked with their unique labels

u For each chain in C

l Examine the 3 x 3 neighborhood of each  end point of C in J

l Find the name of the junction or end point adjacent to that end point 

from this 3 x 3 neighborhood



69

137

Finding  Internal  “Corners”  of  Chains

l Chains are only broken at junctions

u But important features of the chain might occur at internal points

u Example: closed loop corresponding to a square - would like to 

find the natural corners of the square and add them as junctions to 

the chain graph (splitting the chains at those natural corners)

l Curve segmentation

u similar to image segmentation, but in a 1D form

l Local methods, like edge detectors

l Global methods, like region analyzers
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Local  Methods  of  Curve  Segmentation

l Natural locations to segment contours are points where the 

slope of the curve is changing quickly

u These correspond, perceptually, to “corners” of the curve

l To measure the change in slope we are measuring the 

curvature of the curve

u Straight line has 0 curvature

u Circular arc has constant curvature corresponding to 1/r

l Can estimate curvature by fitting a simple function 

(circular arc, quadratic function, cubic function) to each 

neighborhood of a chain, and using the parameters of the 

fit to estimate the curvature at the center of the 

neighborhood
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Formulas  for  Curvature

l Consider moving a point, P, along a curve

u Let T be the unit tangent vector as P moves

l T has constant length (1)

l The direction of T, φ, changes from point to point unless the curve is a 

straight line

l Measure this direction as the angle between T and the x-axis

R

P

T = dR / ds, s distance along curve

φ
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Formulas  for  Curvature

l The curvature, κ, is the instantaneous rate of change of φ 
with respect to s, distance along the curve

u κ = dφ / ds

u ds = [dx2 + dy2]1/2

u φ = tan-1dy/dx

R

P

T = dR / ds, s distance along curve

φ
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Formulas  for  Curvature

l Now

and

so

dφ / dx =

d
2

y

dx
2

1 + (
dy

dx
)

2

ds / dx = 1+ (
dy

dx
)2

κ = dφ / ds =
dφ / dx

ds / dx
=

d
2

y

dx
2

[1+ (
dy

dx
)
2

]
3/ 2
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Example - Circle

l For the circle

u s = aθ
u φ = θ + π/2
u so κ = dφ/ds = dθ/adθ = 1/a

a

θ s φ
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Local  Methods  of  Curve  Segmentation

l There are also a wide variety of heuristic methods to 

estimate curvature like local properties

u For each point, p , along the curve

u Find the points k pixels before and after p on the curve (p+k, p-k) 

and then measure 

l the angle between pp+k and pp-k

l the ratio s/t

l Similar problems to edge detection

u what is the appropriate size for k?

u how do we combine the curvature estimates at different scales?

u boundary problems near the ends of open curves - not enough 

pixels to look out k in both directions

k
k

t
s

θ


