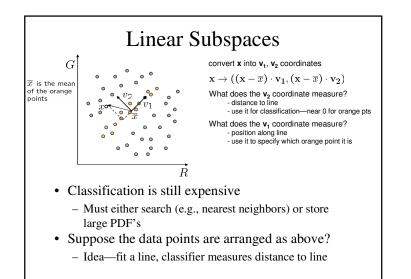
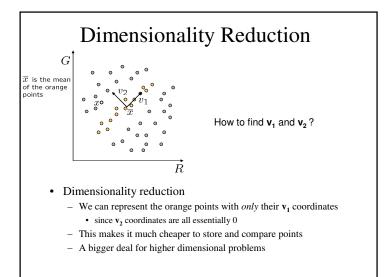
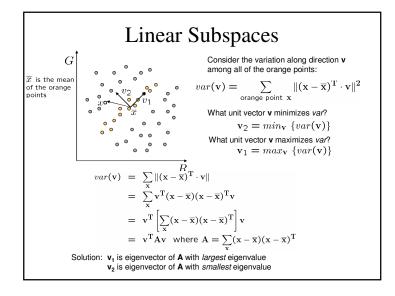
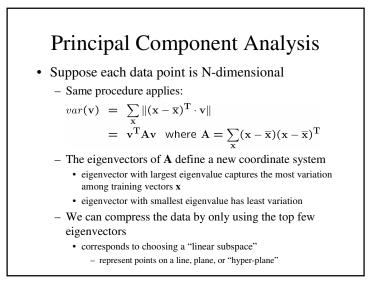


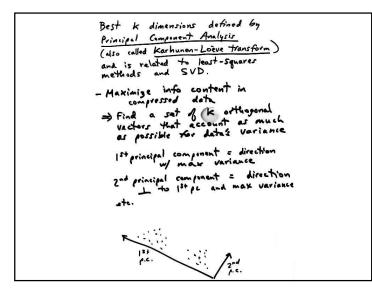
KEY IDEA:
Imager in { \$ is are highly
correlated so compress them
into low-dimensional subspace
That captures key appearance characteristics of the visual DOFS.
=> EIGENSTACE REPRESENTATION
Given M training images, each w/ N pixels
) <u>Preprocess images</u> : $\hat{x}_i \rightarrow x_i$ where $x_i = \begin{bmatrix} x_{1,3} x_{2,3} \dots & x_N \end{bmatrix}^T$
where x; - (m; mz s ··· s m) X to reduce noise, normalize, ate.
cance E.g. brightness normalization =>
2) Project image into low-dimensional sub-space
What sub-space?
"Best" characteristic feature images
defined by last eigenvectors

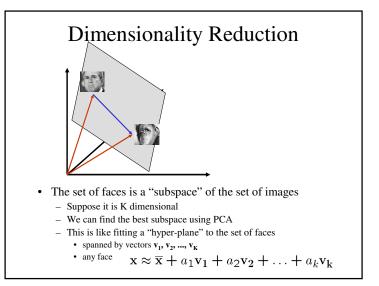


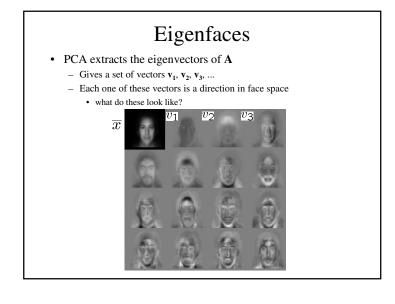


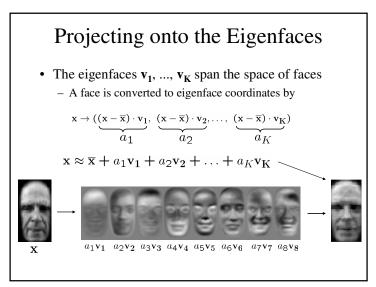












Computing Subspaces
Given:
$$X = \{X_i\} = \begin{bmatrix} x & x \\ y \end{bmatrix} N pinds$$

 $M = RLP imager$
Normalize by Subtracting Mean Image
 $c = \frac{1}{M} \sum_{i=1}^{M} X_i$
 $X = \{X_i - c\}$
 x this ensures that eigenvector $W/$
largest eigenvalue represents
dimension in which variance it
images is maximum in correlation
sense.
Compute Covariance Matrix
 $Q = XX^T$ NXN metrix

Approximate description using
K best eigenvectors

$$x_i \approx \sum_{j=1}^{n} \frac{g_j e_j}{g_j} + c$$

 \Rightarrow Subspace of k dimensions
defined by $e_1 > \cdots > e_k$
Image x_i projected to
point $G_{ij} = [e_1, \cdots, e_k]^{(x_i - c)}$
 $e_2 = [e_1, \cdots, e_k]^{(x_i - c)}$
 $e_3 = (g_{ij}, g_{ij} =)$
 $e_4 = (g_{ij}, g_{ij} =)$

• Compute Eigenvalues and Eigenvectors
Jalue
$$\lambda_i e_i = Qe_i$$

whare $\lambda_1 \equiv \lambda_2 \equiv \dots \equiv \lambda_N$ eigenvalues
 $e_i \equiv N \times 1$ eigenvector (image)
* Eigenvectors ordered "best" to
"worst," e_1, \dots, e_N
 \Rightarrow k best = e_1, \dots, e_k
• Project each Image to Eigenspace
 $g_i = e_i^T(x_i - c)$
 $g_i = e_j^T(x_i - c)$
 $x_i = \sum_{j=1}^N g_j e_j + c$
 \Rightarrow Image x_i reconstructed
 y_i eigenvectors e_1, \dots, e_N

Recognition with Eigenfaces• Algorithm1. Process the image database (set of images with labels)• Run PCA to compute the eigenfaces• Calculate the K coefficients for each image2. Given a new image (to be recognized) x, calculate K coefficients $\mathbf{x} \rightarrow (a_1, a_2, \dots, a_K)$ 3. Detect if x is a face $\|\mathbf{x} - (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_K\mathbf{v}_K)\| >$ threhold4. If it is a face, who is it?• Find closest labeled face in database• nearest-neighbor in K-dimensional space

Key Property of Eigenspace Rep Given 2 images \widehat{X}_1 , \widehat{X}_2 that are used to construct eigenspace, and G_1 is eigenspace projection of \widehat{X}_1 and G_2 is eigenspace projection of \widehat{X}_2 , then $\|\hat{x}_{1} - \hat{x}_{2}\|^{2} \approx \|G_{1} - G_{2}\|^{2}$ That is, distance in eigenspace is approximately equal to the correlation between 2 images.

6. Find distance from "face space":

$$\begin{aligned}
& \text{ Affs } = \| y - y_{f} \|^{2} \\
& \text{ where } y = x_{tot} - c \\
& y_{f} = \sum_{i=1}^{k} g_{evs_{k}} e^{e_{i}} \\
\hline
& \text{ If } dffs < T_{1} \\
& \text{ image class enough to} \\
& \text{ if we space " - not a} \\
& \text{ if } de T_{2} \\
& \text{ then } if d < T_{2} \\
& \text{ then } person k \\
& \text{ abse } uuknown person \\
& \text{ else } not & \text{ more face} \end{aligned}$$

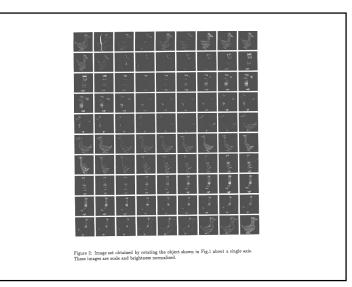
Face Recognition Algorithm
• Consider 2 323 imager:
$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0$
I, I₂ ⇒ I,= [0000,00,000]
I ² = [0 10 0 0 10 0 0 0]
• Say M'=1 and E ₁ = [5 0 5 10 5 10 5 0 5] ^T

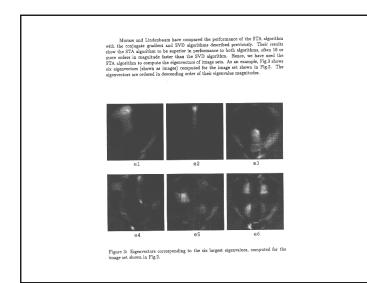
• Project
$$I_2$$
 to $4-D$ face space
 $W_2 = [-100]$
• Determine of I_1 or I_2 is closest
to test image $I_{test} = \begin{bmatrix} 0 & 7 & 3 \\ 0 & 10 & 10 \\ 0 & 10 & 0 \end{bmatrix}$
 \Rightarrow Project I_{test} to face space
 $W_{test} = [w_{t,1}]$
 $w_{ti} = E_1^T \cdot (I_{test} - A)$
 $= [S \circ S 10 S 10 S \circ S] \begin{bmatrix} 0 \\ 3 \\ -S \\ S \\ 0 \\ 0 \end{bmatrix}$
 $\Rightarrow [1S] closer to [0]$ then fixed

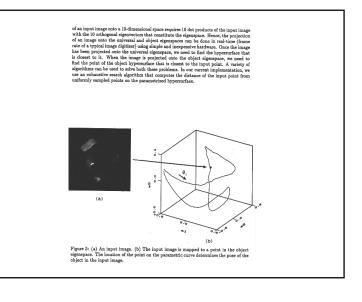
Limits of PCA

- Attempts to fit a *hyperplane* to the data
 - can be interpreted as fitting a Gaussian, where A is the covariance matrix
 - this is not a good model for some data
- If you know the model in advance, don't use PCA
 - regression techniques to fit parameters of a model
- Several alternatives/improvements to PCA have been developed
 - LLE: http://www.cs.toronto.edu/~roweis/lle/
 - isomap: <u>http://isomap.stanford.edu/</u>
 - kernel PCA: http://www.cs.ucsd.edu/classes/fa01/cse291/kernelPCA_article.pdf
 - For a survey of such methods applied to object recognition
 - Moghaddam, B., "Principal Manifolds and Probabilistic Subspaces for Visual Recognition", *IEEE Transactions on Pattern Analysis and Machine Intelligence* (*PAMI*), June 2002 (Vol 24, Issue 6, pps 780-788) http://www.merl.com/papers/112/002-13/

Parametric Eigenspace Key Idea: For a given object, ear we slowly Vary the Visnal Dofr, the appearance also slowly changer. Furthermore, changes in subspace also slowly change. Porrible Exceptions : When crossing "Visual events" where topological change in appearance occurs, or for specular objects ⇒ discrete pts G, , ..., Gm in zigenpace ane samples on a smooth Manifold (surface) in eigenspace ~ ~ ~ , a, a e2 4 Visna Dofa 7 3







USE P+1 EIGENSPACES :	
I. "UNIVERSAL" EIGENSPACE	
- USES AVERAGE IMAGE, C, of ALL IMAGES of ALL OD	SECTS
- USE TO DISCRIMINATE BETWEEN DIFFERENT OBJECT =) IDENTIFY WHICH OBJECT	eTS
- ~ 10- DIMENSIONAL	
2. "OBJECT" EIGENSPACES - USES AVERAGE IMAGE, C" of ALL IMAGES OF OBJECT	r P
- P DIFFERENT OBS. EIGENSPACE	r
- USE TO ESTIMATE POSE of a given object	
- ~ ID-DIMENSIONAL	

