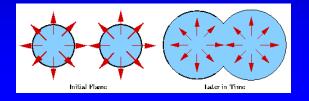
Level Set Methods

- Contour evolution method due to J. Sethian and S. Osher, 1988
- www.math.berkeley.edu/~sethian/level_set.html
- Difficulties with snake-type methods
 - Hard to keep track of contour if it self-intersects during its evolution
 - Hard to deal with changes in topology

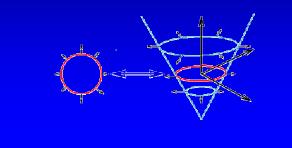


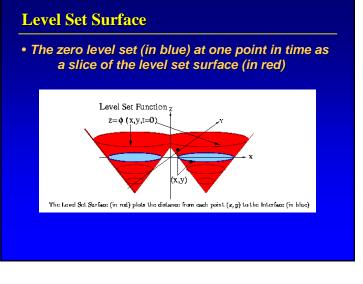
- The level set approach:
 - Define problem in 1 higher dimension
 - Define level set function z = φ(x,y,t = 0) where the (x,y) plane contains the contour, and z = signed Euclidean distance transform value (negative means inside closed contour, positive means outside contour)

How to Move the Contour?

- Move the level set function, φ(x,y,t), so that it rises, falls, expands, etc.
- Contour = cross section at *z* = 0, i.e.,

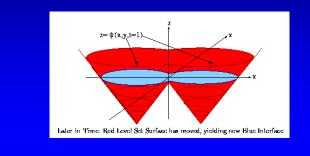
$\{(x,y) \mid \phi(x,y,t) = 0\}$

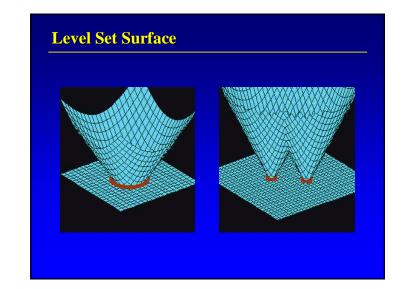




Level Set Surface

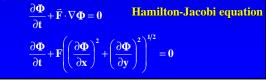
• Later in time the level set surface (red) has moved and the new zero level set (blue) defines the new contour





How to Move the Level Set Surface?

- 1. Define a velocity field, *F*, that specifies how contour points move in time
 - Based on application-specific physics such as time, position, normal, curvature, image gradient magnitude
- Build an initial value for the level set function, *φ*(x,y,t=0), based on the initial contour position
- **3.** Adjust ϕ over time; contour at time t defined by $\phi(x(t), y(t), t) = 0$



Level Set Formulation

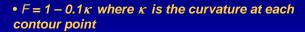
- By the chain rule $\phi_l + \nabla \phi(\mathbf{x}(t), t) \cdot \mathbf{x}'(t) = 0$
- Since F supplies the speed in the outward normal direction $\chi'(t) \cdot n = F$, where $n = \nabla \phi / |\nabla \phi|$
- Hence evolution equation for ϕ is

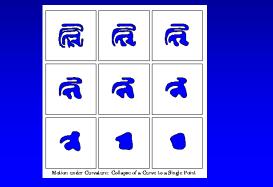
 $\phi_t + F|\nabla \phi| = 0$

Speed Function

$$F(k) = F_0 + F_1(k) = (1 - \varepsilon k)$$
$$F(k) = k_1(x, y) * (1 - \varepsilon k)$$
$$\mathbf{k_1} = \frac{1}{1 + |\nabla \mathbf{G}_{\sigma} * \mathbf{I}(\mathbf{x}, \mathbf{y})|}$$
$$\mathbf{k_1} = \mathbf{e}^{\cdot |\nabla \mathbf{G}_{\sigma} * \mathbf{I}(\mathbf{x}, \mathbf{y})|}$$

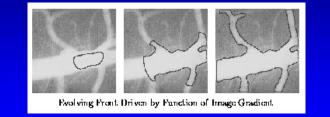
Example: Shape Simplification



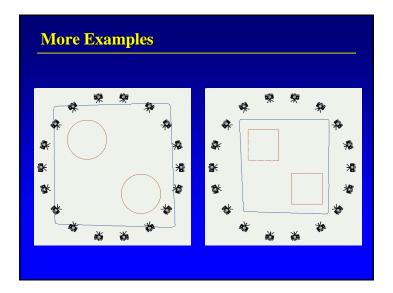


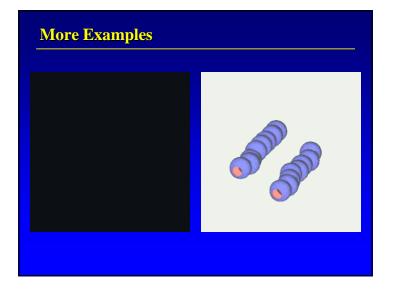
Example: Segmentation

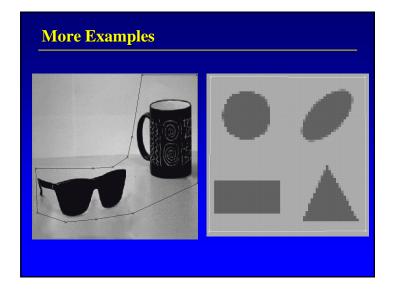
- Digital Subtraction Angiogram
- F based on image gradient and contour curvature



Example (cont.) • Initial contour specified manually





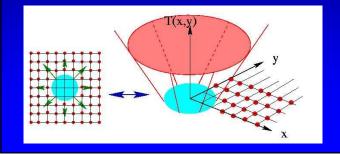


Fast Marching Method

- J. Sethian, 1996
- Special case that assumes the velocity field, F, never changes sign. That is, contour is either always expanding (F>0) or always shrinking (F<0)
- Convert problem to a stationary formulation on a discrete grid where the contour is guaranteed to cross each grid point at most once

Fast Marching Method

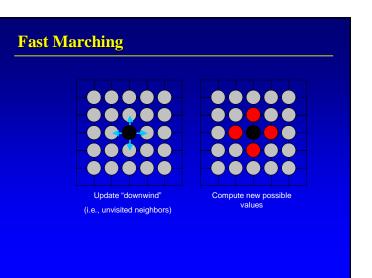
- Compute T(x,y) = time at which the contour crosses grid point (x,y)
- At any height, t, the surface gives the set of points reached at time t

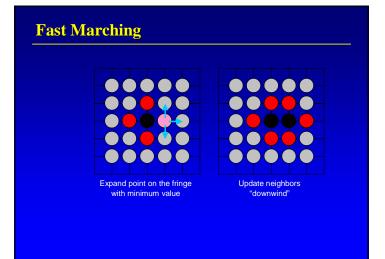


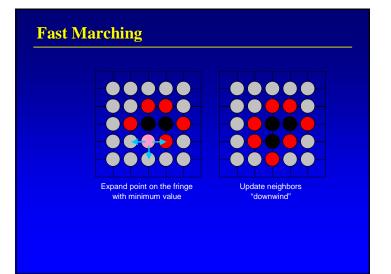
Fast Marching Algorithm • Compute T using the fact that • Distance = rate × time • $\ln 1D$: $1 = F \times dT/dx$ • $\ln 2D$: $1 = F \times |\nabla T|$ • Contour at time $t = \{(x,y) \mid T(x,y) = t\}$

Fast Marching Algorithm

- Construct the arrival time surface T(x,y) incrementally:
 - 1. Build the initial contour
 - 2. Incrementally add on to the existing surface the part that corresponds to the contour moving with speed *F* (in other words, repeatedly pick a point on the fringe with minimum *T* value)
 - **3.** Iterate until *F* goes to **0**
- Builds level set surface by "scaffolding" the surface patches farther and farther away from the initial contour







Fast Marching + Level Set for Shape Recovery

1. First use the Fast Marching algorithm to obtain "rough" contour

$$\nabla \mathbf{T} | \mathbf{F} = 1$$
, $\mathbf{F} = \mathbf{e}^{-\alpha | \nabla \mathbf{G}_{\sigma} * \mathbf{I}(\mathbf{x}, \mathbf{y}) |}$

2. Then use the Level Set algorithm to fine tune, using a few iterations, the results from Fast Marching

$$\frac{\partial \mathbf{\Phi}}{\partial \mathbf{t}} + \mathbf{k}_{\mathbf{I}} (1 - \varepsilon \mathbf{K}) |\nabla \mathbf{\Phi}| - \beta \nabla \mathbf{P} \cdot \nabla \Phi = \mathbf{0}$$
$$k_{I} = \frac{I}{I + |\nabla G_{\sigma} * I(x, y)|}$$
$$P(x, y) = -|\nabla G_{\sigma} * I(x, y)|$$

