
1

1

Feature Detection and Matching

Goal: Develop matching procedures that can detect
possibly partially-occluded objects or features specified as
patterns of intensity values, and are invariant to position,
orientation, scale, and intensity change

Template matching
gray level correlation

edge correlation

Hough Transform

Chamfer Matching

2

Applications

Feature detectors
Line detectors

Corner detectors

Spot detectors

Known shapes
Character fonts

Faces

Applications
Image alignment, e.g., Stereo

3D scene reconstruction

Motion tracking

Object recognition

Image indexing and content-based retrieval

- + -
+

-

3

Example: Build a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 4

How do we build panorama?

We need to match (align) images

2

5

Matching with Features

• Detect feature points in both images

6

Matching with Features

• Detect feature points in both images

• Find corresponding pairs

7

Matching with Features

• Detect feature points in both images

• Find corresponding pairs

• Use these pairs to align images

8

Matching with Features

Problem 1:

Detect the same point independently in both images

no chance to match!

We need a repeatable detector

3

9

Matching with Features

Problem 2:

For each point correctly recognize the corresponding
one

?

We need a reliable and distinctive descriptor

10

Harris Corner Detector

C. Harris, M. Stephens, “A Combined Corner and Edge Detector,” 1988

11

The Basic Idea

We should easily recognize the point by looking through
a small window
Shifting a window in any direction should give a large
change in response

12

Harris Detector: Basic Idea

“flat” region:
no change in
all directions

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions

4

16

Harris Detector: Mathematics

[]2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + −∑

Change of intensity for the shift [u,v]:

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside
17

Harris Detector: Mathematics

[](,) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

Expanding E(u,v) in a 2nd order Taylor series, we have, for small
shifts, [u,v], a bilinear approximation:

2

2
,

(,) x x y

x y x y y

I I I
M w x y

I I I

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑

where M is a 2 × 2 matrix computed from image derivatives:

18

Harris Detector: Mathematics

[](,) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the
slowest change

direction of the
fastest change

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const

19

Selecting Good Features

λ1 and λ2 are large

5

20

Selecting Good Features

large λ1, small λ2 21

Selecting Good Features

small λ1, small λ2

22

Harris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 both large,

λ1 ~ λ2;

E increases in all
directions

λ1 and λ2 are small;

E is almost constant
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of
image points using
eigenvalues of M:

23

Harris Detector: Mathematics

Measure of corner response:

()2
det traceR M k M= −

1 2

1 2

det

trace

M

M

λ λ
λ λ

=
= +

k is an empirically-determined constant; e.g., k = 0.05

6

24

Harris Detector: Mathematics

λ1

λ2 “Corner”

“Edge”

“Edge”

“Flat”

• R depends only on
eigenvalues of M

• R is large for a corner

• R is negative with large
magnitude for an edge

• |R| is small for a flat
region

R > 0

R < 0

R < 0|R| small

25

Harris Detector

The Algorithm:

Find points with large corner response function R

(R > threshold)

Take the points of local maxima of R (for localization)

26

Harris Detector: Example

27

Harris Detector: Example
Compute corner response R

7

28

Harris Detector: Example
Find points with large corner response: R > threshold

29

Harris Detector: Example
Take only the points of local maxima of R

30

Harris Detector: Example

31

Harris Detector: Example

Interest points extracted with Harris (~ 500 points)

8

32

Harris Detector: Summary

Average intensity change in direction [u,v] can be
expressed as a bilinear form:

Describe a point in terms of eigenvalues of M:
measure of corner response:

A good (corner) point should have a large intensity change
in all directions, i.e., R should be a large positive value

[](,) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

()2

1 2 1 2R kλ λ λ λ= − +

33

Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e., eigenvalues)
remains the same

Corner response R is invariant to image rotation

34

Harris Detector Properties: Rotation Invariance

[Comparing and Evaluating Interest Points, Schmid, Mohr & Bauckhage, ICCV 98]
35

Harris Detector Properties: Rotation Invariance

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000

9

36

Harris Detector Properties: Intensity Changes

Partial invariance to affine intensity change

 Only derivatives are used ⇒ invariance to intensity
shift I → I + b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate) 37

Harris Detector Properties: Perspective Changes

[Comparing and Evaluating Interest Points, Schmid, Mohr & Bauckhage, ICCV 98]

38

Harris Detector Properties: Scale Changes

But not invariant to image scale

Fine scale: All points will
be classified as edges

Coarse scale: Corner

39

Harris Detector: Some Properties

Quality of Harris detector for different scale changes

Repeatability rate:
correspondences

possible correspondences

C. Schmid et al., “Evaluation of Interest Point Detectors,” IJCV 2000

10

40

Tomasi and Kanade’s Corner Detector

Idea: Intensity surface has 2 directions with significant
intensity discontinuities

Image gradient [Ix, Iy]T gives information about direction
and magnitude of one direction, but not two

Compute 2 x 2 matrix

where Q is a 2n+1 x 2n+1 neighborhood of a given point p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∑∑
∑∑

Q
y

Q
yx

Q
yx

Q
x

III

III

M 2

2

41

Corner Detection (cont.)

Diagonalize M converting it to the form

Eigenvalues λ1 and λ2 , λ1 ≥ λ2, give measure of the edge strength (i.e.,
magnitude) of the two strongest, perpendicular edge directions (specified
by the eigenvectors of M)

If λ1 ≈ λ2 ≈ 0, then p’s neighborhood is approximately constant intensity

If λ1 > 0 and λ2 ≈ 0, then single step edge in neighborhood of p

If λ2 > threshold and no other point within p’s neighborhood has greater
value of λ2, then mark p as a corner point

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0

0

λ
λ

M

42

Tomasi and Kanade Corner Algorithm

Compute the image gradient over entire image

For each image point p:
form the matrix M over (2N+1) x (2N+1) neighborhood Q of p

compute the smallest eigenvalue of M

if eigenvalue is above some threshold, save the coordinates of p in a list L

Sort L in decreasing order of eigenvalues

Scanning the sorted list top to bottom: For each current
point, p, delete all other points on the list that belong to the
neighborhood of p

43

Results

11

44

Results

45

Results

46

Moravec’s Interest Operator

Compute four directional variances in horizontal, vertical,
diagonal and anti-diagonal directions for each 4 x 4
window

If the minimum of four directional variances is a local
maximum in a 12 x 12 overlapping neighborhood, then
that window (point) is “interesting”

47

∑∑

∑∑

∑∑

∑∑

= =

= =

= =

= =

++−+−++=

++++−++=

+++−++=

+++−++=

2

0

3

1

2

2

0

2

0

2

2

0

3

0

2

3

0

2

0

2

))1,1(),((

))1,1(),((

))1,(),((

)),1(),((

j i
a

j i
d

j i
v

j i
h

jyixPjyixPV

jyixPjyixPV

jyixPjyixPV

jyixPjyixPV

12

48

⎩
⎨
⎧

=

=

otherwise,0

max local a is),(if,1
),(

)),(),,(),,(),,(min(),(

yxV
yxI

yxVyxVyxVyxVyxV advh

49

50

Invariant Local Features

Goal: Detect the same interest points regardless of
image changes due to translation, rotation, scale, etc.

51

Geometry
Rotation

Similarity (rotation + uniform scale)

Affine (scale dependent on direction)
valid for: orthographic camera, locally planar
object

Photometry
Affine intensity change (I → a I + b)

Models of Image Change

13

52

Scale Invariant Detection

Consider regions (e.g., circles) of different sizes around a
point

Regions of corresponding sizes will look the same in both
images

53

Scale Invariant Detection

Problem: How do we choose corresponding circles
independently in each image?

54

Scale Invariant Detection

Solution:

Design a function on the region (circle) that is “scale
invariant,” i.e., the same for corresponding regions, even if
they are at different scales

Example: Average intensity. For corresponding
regions (even of different sizes) it will be the same

scale = 1/2

– For a point in one image, we can consider it as a function of

region size (circle radius)

f

region size

Image 1 f

region size

Image 2

55

Scale Invariant Detection

Common approach:

scale = 1/2

f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: Region size, for which the maximum is
achieved, should be invariant to image scale

s1 s2

Important: This scale invariant region size
is found in each image independently!

14

56

Scale Invariant Detection

A “good” function for scale detection has one stable
sharp peak

For many images: a good function would be a one
which responds to contrast (sharp local intensity
change

f

region size

bad

f

region size

bad

f

region size

Good !

57

Scale Invariance

Requires a method to repeatably select points in location
and scale:

The only reasonable scale-space kernel is a Gaussian
(Koenderink, 1984; Lindeberg, 1994)

An efficient choice is to detect peaks in the Laplacian
(DoG) Pyramid (Burt & Adelson, 1983; Crowley & Parker,
1984 – but examining more scales)

Difference-of-Gaussian with constant ratio of scales is a
close approximation to Lindeberg’s scale-normalized
Laplacian (can be shown from the heat diffusion equation)

Blur

Subtract

Blur

Subtract

58

Scale Invariant Detection

Functions for determining scale

2 2

21 2
2

(, ,)
x y

G x y e σ
πσ

σ
+−

=

()2 (, ,) (, ,)xx yyL G x y G x yσ σ σ= +

(, ,) (, ,)DoG G x y k G x yσ σ= −

Kernel Imagef = ∗
Kernels:

where Gaussian

Note: both kernels are invariant to
scale and rotation

(Laplacian)

(Difference of Gaussians)

59

Scale Invariant Detection

Compare to human vision:
eye’s response

Shimon Ullman, Introduction to Computer and Human Vision Course, Fall 2003

15

60

Scale Invariant Detectors

Harris-Laplacian1

Find local maximum of:
Harris corner detector in space
(image coordinates)
Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points,” ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV 2004

scale

x

y

← Harris →

←
L

ap
la

ci
an

 →

• SIFT keypoints2

Find local extrema of:
– Difference of Gaussians in

space and scale

scale

x

y

← DoG →

←
D

oG
→

61

SIFT Operator: Scale Space Processed One Octave
(i.e., Doubling σ) at a Time

Gσ ⊗ I

Gσ ⊗ Gσ = G√2σ

G2σ ⊗ I

(Gσ)4 = G4σ

(Gσ)3 = G2σ

(Gσ)4 = G2√2σ

62

SIFT: Key Point Localization

Detect maxima and minima of
difference-of-Gaussian in scale space

Fit a quadratic to surrounding values
for sub-pixel and sub-scale
interpolation (Brown & Lowe, 2002)

Blur

Subtract

63

Scale Invariant Detectors

Harris-Laplacian1

Find local maximum of:
Harris corner detector in space
(image coordinates)
Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points,” ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV 2004

scale

x

y

← Harris →

←
L

ap
la

ci
an

 →

• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in

space and scale

scale

x

y

← DoG →

←
D

oG
→

16

64

Example of SIFT Keypoint Detection

Threshold on value at DOG peak and on ratio of principle
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures

65

Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points,” ICCV 2001

Experimental evaluation of detectors
w.r.t. scale change

Repeatability rate:

correspondences
possible correspondences

67

Scale Invariant Detection: Summary

Given: Two images of the same scene with a large scale
difference between them
Goal: Find the same interest points independently in each
image
Solution: Search for maxima of suitable functions in scale
and in space (over the image)

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: Maximize Laplacian over
scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: Maximize Difference-of-Gaussians over scale and space

68

Affine Invariant Detection

Previously we considered:
Similarity transform (rotation + uniform scale)

• Now we go on to:
Affine transform (rotation + non-uniform scale)

17

69

Affine Invariant Detection

Take a local intensity extremum as initial point

Go along every ray starting from this point and stop when extremum of

function f is reached

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local,
Affinely Invariant Regions,” BMVC 2000

0

1
0

()
()

()
t

o

t

I t I
f t

I t I dt

−
=

−∫

f

points along the ray

• We will obtain approximately
corresponding regions

Remark: we search for scale
in every direction

70

Affine Invariant Detection

The regions found may not exactly correspond, so we approximate
them with ellipses

• Geometric Moments:

2

(,)p q
pqm x y f x y dxdy= ∫ Fact: moments mpq uniquely

determine the function f

Taking f to be the characteristic function of a region
(1 inside, 0 outside), moments of orders up to 2 allow
to approximate the region by an ellipse

This ellipse will have the same moments of
orders up to 2 as the original region

71

Affine Invariant Detection

q Ap=

2 1
TA AΣ = Σ

1
2 1Tq q−Σ =

2 region 2

TqqΣ =

• Covariance matrix of region points defines an ellipse:

1
1 1Tp p−Σ =

1 region 1

TppΣ =

(p = [x, y]T is relative

to the center of mass)

Ellipses, computed for corresponding
regions, also correspond! 72

Affine Invariant Detection

Algorithm Summary (detection of affine invariant regions):
Start from a local intensity extremum point
Go in every direction until the point of extremum of some
function f
Curve connecting the points is the region boundary
Compute geometric moments of orders up to 2 for this region
Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local,
Affinely Invariant Regions,” BMVC 2000

18

73

Affine Invariant Detection

Maximally Stable Extremal Regions
Threshold image intensities: I > I0

Extract connected components
(“Extremal Regions”)
Find a threshold when an extremal
region is “Maximally Stable,”
i.e., a local minimum of the
relative growth of its square
Approximate region with
an ellipse

J.Matas et al. “Distinguished Regions for Wide-baseline Stereo,” 2001
74

Feature Stability to Affine Change

Match features after random change in image scale and
orientation, with 2% image noise, and affine distortion

Find nearest neighbor in database of 30,000 features

75

Distinctiveness of Features

Vary size of database of features, with 30 degree affine change,
2% image noise

Measure % correct for single nearest-neighbor match

76

Affine Invariant Detection : Summary

Under affine transformation, we do not know in advance
shapes of the corresponding regions

Ellipse given by geometric covariance matrix of a region
robustly approximates this region

For corresponding regions ellipses also correspond

Methods:

1. Search for extremum along rays [Tuytelaars, Van Gool]

2. Maximally Stable Extremal Regions [Matas et al.]

19

77

Feature Point Descriptors

We know how to detect points
Next question: How to match them?

?

Point descriptor should be:
1. Invariant
2. Distinctive 78

Descriptors Invariant to Rotation

Harris corner response measure:
depends only on the eigenvalues of the matrix M

2

2
,

(,) x x y

x y x y y

I I I
M w x y

I I I

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

79

Descriptors Invariant to Rotation

Find local orientation

Dominant direction of gradient

• Compute description relative to this orientation

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004

80

SIFT: Select Canonical Orientation

Create histogram of local
gradient directions computed at
selected scale of Gaussian
pyramid in neighborhood of a
keypoint

Assign canonical orientation at
peak of smoothed histogram

Each key specifies stable 2D
coordinates (x, y, scale,
orientation)

0 2π

20

81

SIFT Keypoint Feature Representation

Descriptor overview:
Compute gradient orientation histograms on 4 x 4 neighborhoods, relative
to the keypoint orientation using thresholded image gradients from
Gaussian pyramid level at keypoint’s scale

Quantize orientations to 8 values

2 x 2 array of histograms

SIFT feature vector of length 4 x 4 x 8 = 128 values for each keypoint

Normalize the descriptor to make it invariant to intensity change

D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV 2004
83

Describing Local Appearance

Advantage: robustness to a wide range of deformationscovariant detection invariant description

Extract affine regions Normalize regions
Compute appearance

descriptors

SIFT: Lowe 2004

84

SIFT – Scale Invariant Feature Transform1

Empirically found2 to show very good performance, invariant to image
rotation, scale, intensity change, and to moderate affine
transformations

1 D.Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” IJCV 2004
2 K.Mikolajczyk, C.Schmid, “A Performance Evaluation of Local Descriptors,” CVPR 2003

Scale = 2.5
Rotation = 450

85

Evaluation of scale invariant detectors
repeatability – scale changes

21

86

Invariance to Scale Change (factor 2.5)

Harris-Laplacian DoG

87

Quantitative Evaluation of Descriptors

Evaluation of different local features
SIFT, steerable filters, differential invariants, moment invariants, cross-
correlation

Measure : distinctiveness
receiver operating characteristics of
detection rate with respect to false positives

detection rate = correct matches / possible matches
false positives = false matches / (database points * query points)

[A performance evaluation of local descriptors, Mikolajczyk & Schmid,
CVPR’03]

88

Feature Detection and Description Summary

Stable (repeatable) feature points can be
detected regardless of image changes

Scale: search for correct scale as maximum of
appropriate function

Affine: approximate regions with ellipses (this
operation is affine invariant)

Invariant and distinctive descriptors can be
computed

Invariant moments

Normalizing with respect to scale and affine
transformation 89

…

Training set

Feature
extraction

“bag of features”

…

class 1

class n

Lazebnik, Schmid & Ponce, CVPR 2003 and PAMI 2005

Local models for texture recognition

22

90
Lazebnik, Schmid & Ponce, CVPR 2003 and PAMI 2005

Local models for texture recognition
…

Feature
extraction

“bag of features”Training set

…

Quantization

signature

…

class 1

class n

Support Vector
Machine
Classifier

Kernel computation
and learning

91

“bag of features”Training set

Lazebnik, Schmid & Ponce, CVPR 2003 and PAMI 2005

Local models for texture recognition

…

Feature
extraction Quantization

Support
Vector

Machine
Classifier

signature Kernel computation
and learning

Test image

… …class 1

class
n

class ???

Decision
(class
label)

Testing

92

Image Correlation

Given:
n x n image, M, of an object of interest, called a template

n x n image, N, that possibly contains that object (usually a window of a
larger image)

Goal: Develop functions that compare images M and N
and measure their similarity

Sum-of-Squared-Difference (SSD):

(Normalized) Cross-Correlation (CC):

∑∑ ∑∑

∑ ∑

= = = =

= =

−−
=

n

i

n

j

n

i

n

j

n

i

n

j

jiNjiM

jiNljkiM

lkCC

1 1 1 1

2/122

1 1

]),(),([

),(),(

),(

SSD(k,l) = ∑∑ [M(I-k, j-l) - N(i, j)]2

93

Sum-of-Squared-Difference (SSD)

Perfect match: SSD = 0

If N = M + c, SSD = c2n2, so sensitive to constant

illumination change in image N. Fix by grayscale

normalization of N before SSD

23

94

Cross-Correlation (CC)

CC measure takes on values in the range [0, 1]
(or [0, √ ∑∑M2] if first term in denominator removed)

it is 1 if and only if N = cM for some constant c

so N can be uniformly brighter or darker than the template, M, and the
correlation will still be high

SSD is sensitive to these differences in overall brightness

The first term in the denominator, ΣΣM2, depends only on the template,
and can be ignored because it is constant

The second term in the denominator, ΣΣN2, can be eliminated if we first
normalize the gray levels of N so that their total value is the same as that
of M - just scale each pixel in N by ΣΣM/ΣΣN

practically, this step is sometimes ignored, or M is scaled to have
average gray level of the big image from which the unknown images,
N, are drawn

95

Cross-Correlation

Suppose that N(i,j) = cM(i,j)

1

]),(),([

),(

]),(),([

),(),(

]),(),([

),(),(

1 1 1 1

2/122

1 1

2

1 1 1 1

2/1222

1 1

1 1 1 1

2/122

1 1

=

=

=

=

∑∑ ∑∑

∑∑

∑∑ ∑∑

∑∑

∑∑ ∑∑

∑∑

= = = =

= =

= = = =

= =

= = = =

= =

n

i

n

j

n

i

n

j

n

i

n

j

n

i

n

j

n

i

n

j

n

i

n

j

n

i

n

j

n

i

n

j

n

i

n

j

jiNjiNc

jiNc

jiNjiNc

jiNjicN

jiNjiM

jiNjiM

CC

96

Cross-Correlation

Alternatively, we can rescale both M and N to have unit
total intensity

N′(i, j) = N(i, j)//ΣΣN

M′(i, j) = M(i, j)/ΣΣM

Now, we can view these new images, M′ and N′ as unit
vectors of length n2

The correlation measure ΣΣM′(i,j)N′(i,j) is the familiar dot
product between the two n2 vectors M′ and N′. Recall that
the dot product is the cosine of the angle between the two
vectors

it is equal to 1 when the vectors are the same vector, or the normalized
images are identical

These are BIG vectors 97

Cross-Correlation Example 1

Template M = 0 0 0 Image N = 0

1 1 1 0 1 1 1 0

0 0 0 0

∑∑NM = 0 ∑∑N2 = 0

0 1 2 3 2 1 0 0

0 0 1 2 3 2 1 0

0

0

∑∑NM / √∑∑N2 = 0 1 √2 √3 √2 1 0

NOTE: Many near misses

24

98

Cross-Correlation Example 2

Template M = 0 0 0 Image N = 0

1 1 1 4 4 4

0 0 0 0

∑∑NM = 0 ∑∑N2 = 0

4 8 12 8 4 16 32 48 32 16

0 0

∑∑NM / √∑∑N2 = 1 √2 √3 √2 1

99

Cross-Correlation Example 3

Template M = 0 0 0 Image N = 1 1 1

1 1 1 0 1 1 1 0

0 0 0 1 1 1

∑∑NM = 1 2 3 2 1 ∑∑N2 = 1 2 3 2 1

1 2 3 2 1 2 4 6 4 2

1 2 3 2 1 3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

100

Example 3 (cont.)

∑∑NM / √∑∑N2 = 0

1 √6/2 1

0 0 1 0 0

1 √6/2 1

0

Lots of near misses!

101

Reducing the Computational Cost of
Correlation Matching

A number of factors lead to large costs in correlation
matching:

the image N is much larger than the template M, so we have to perform
correlation matching of M against every n x n window of N

we might have many templates, Mi, that we have to compare against a
given image N

face recognition - have a face template for every known face; this
might easily be tens of thousands

character recognition - template for each character

we might not know the orientation of the template in the image

template might be rotated in the image N - example: someone tilts
their head for a photograph

would then have to perform correlation of rotated versions of M
against N

25

102

Reducing the Computational Cost of
Correlation Matching

A number of factors lead to large costs in correlation
matching:

we might not know the scale, or size, of the template in the unknown
image

the distance of the camera from the object might only be known
approximately

would then have to perform correlation of scaled versions of M against N

Most generally, the image N contains some mathematical
transformation of the template image M

if M is the image of a planar pattern, like a printed page or
(approximately) a face viewed from a great distance, then the
transformation is an affine transformation, which has six degrees of
freedom

103

The Classical Face Detection Process

Smallest
Scale

Larger
Scale

50,000 Locations/Scales
Slide courtesy of Paul Viola

104

Faces as Rare Events

Scanning over
all positions
and scales for
faces requires

2.6 million
window
evaluations…

…for 3 faces

105

Viola-Jones Face Detector

Three key ideas:
Cascade architecture
Over-complete simple
features (box sums)
Learning algorithm
based on AdaBoost

Form nodes
containing a
weighted ensemble
of features

∑
∈

>
ij Hh

ijj

i

xh

xH

θα)(

 :)(Test

H1

H2

Hn

Non-face

Non-face

Non-face Face

Paul Viola and Michael J. Jones, “Robust Real-Time Face Detection”
Intl. J. Computer Vision, 57(2): 137-154, 2004

26

107

Weak Classifiers

Weak classifiers formed from simple “box sum” features
applied to input

Classifier is trained by setting a threshold, which depends on the
training data

Efficient computation

kkk bxxh θ>⋅:)(

 depends upon the weightskθ

x

kb

kbx ⋅

108

Definition of Simple Features

3 rectangular features types:

• two-rectangle feature type
(horizontal/vertical)

• three-rectangle feature type

• four-rectangle feature type

Using a 24 x 24 pixel detection window, with all the possible combinations
of horizontal and vertical locations and scales of these feature types, the full
set of features has 49,396 features

The motivation behind using rectangular features, as opposed to more
expressive steerable filters is due to their computational efficiency

109

Integral Image

Def: The integral image at location (x,y), is the sum
of the pixel values above and to the left of (x,y),
inclusive.

Using the following two recurrences, where i(x,y)
is the pixel value of original image at the given
location and s(x,y) is the cumulative column sum,
we can calculate the integral image representation

of the image in a single pass.

(x,y)

s(x,y) = s(x,y-1) + i(x,y)

ii(x,y) = ii(x-1,y) + s(x,y)

(0,0)

x

y
110

Rapid Evaluation of Rectangular Features

Using the integral image
representation one can compute
the value of any rectangular sum
in constant time.

For example the integral sum
inside rectangle D we can
compute as:

ii(4) + ii(1) – ii(2) – ii(3)

As a result two-, three-, and four-rectangular features can be
computed with 6, 8 and 9 array references, respectively

27

116

Experiments (Dataset for Training)

4,916 positive training
example were hand picked
aligned, normalized, and
scaled to a base resolution
of 24 x 24

10,000 negative examples
were selected by randomly
picking sub-windows
from 9,500 images which
did not contain faces

117

Experiments
(Structure of the Detector Cascade)

• The final detector had 32 layers and 4297 features total

Layer number 1 2 3 to 5 6 and 7 8 to 12 13 to 32
Number of feautures 2 5 20 50 100 200
Detection rate 100% 100% - - - -
Rejection rate 60% 80% - - - -

• Speed of the detector ~ total number of features evaluated
• On the MIT-CMU test set the average number of features evaluated is
8 (out of 4297)
• The processing time of a 384 by 288 pixel image on a conventional PC
is about .067 seconds
• Processing time should linearly scale with image size, hence
processing of 3.1 megapixel images should take about 2 seconds

118

Correlation Matching

Let T(p1, p2, ..., pr) be the class of mathematical
transformations of interest

For rotation, we have T(θ)

For scaling, we have T(s)

General goal is to find the values of p1, p2, ..., pr

for which
C(T(p1, p2, ..., pr)M, N) is “best”

highest for normalized cross-correlation

smallest for SSD

119

Reducing the Computational Cost of
Correlation Matching

Two basic techniques for reducing the number of
operations associated with correlation

reduce the number of pixels in M and N

Multi-resolution image representations

principal component or “feature selection” reductions

match a subset of M (i.e., sub-template) against a subset of N

random subsets

boundary subsets

28

120

Multi-Resolution Correlation

Multi-resolution template matching
reduce resolution of both template and image by creating a Gaussian
pyramid

match small template against small image

identify locations of strong matches

expand the image and template, and match higher resolution template
selectively to higher resolution image

iterate on higher and higher resolution images

Issue:
how to choose detection thresholds at each level?

too low will lead to too much cost

too high will miss match

121

Coarse-to-Fine Hierarchical Search

Selectively process only relevant regions of interest
(foveation) and scales

Iterative refinement

Variable resolution analysis

Based on fine-to-coarse operators for computing complex
features over large neighborhoods in terms of simpler
features in small neighborhoods (e.g., Gaussian pyramid,
Laplacian pyramid, texture pyramid, motion pyramid)

122

Efficiency of Multi-Resolution Processing

For an n x n image and an m x m template, correlation
requires O(m2n2) arithmetic operations

To detect at a finer scale, either
Increase scale of template by s, resulting in O(s2m2n2) operations

Decrease scale of image by s, resulting in O(m2n2/s2) operations

These two approaches differ in cost by s4

123

Pyramid Processing Example

Goal: Detect moving objects from a stationary video
camera

For each pair of consecutive image frames do:
Compute difference image D = I1 - I2 ; compute “energy-
change” features

Compute Laplacian pyramid, L, from D ; decompose D into
bandpass components

Square values in L ; enhance features

Compute Gaussian pyramid, G, from level k in L ; local integration
of feature values which “pools” energy-change within neighborhoods of
increasing size -- measures “local energy”

Threshold values in G to determine positions and sizes of detected moving
objects

29

124

Subset (Sub-Template) Matching Techniques

Sub-template/template matching
choose a subset of the template

match it against the image

compare the remainder of the template at positions of high match

can add pieces of the template iteratively in a multi-stage approach

Key issues:
what piece(s) to choose?

want pieces that are rare in the images against which we will perform
correlation matching so that non-match locations are identified
quickly

choose pieces that define the geometry of the object

how to choose detection thresholds at each stage?

125

Subset Matching Methods - Edge Correlation

Reduce both M and N to edge maps
binary images containing “1” where edges are present and “0” elsewhere

associated with each “1” in the edge map we can associate

location (implicitly)

orientation from the edge detection process

color on the “inside” of the edge for the model, M, and on both sides of
the edge for the image, N

Image N

Template M

126

Edge Template Matching

Simple case
N and M are binary images, with 1 at edge points and 0 elsewhere

The match of M at position (i, j) of N is obtained by

placing M(0, 0) at position N(i, j)

counting the number of pixels in M that are 1 and are coincident with
1’s in N - binary correlation

C(i, j) = M
s=1

n

∑
r =1

n

∑ (r,s) × N (r + i, s + j)

127

Observations

Complexity of matching M against N is O(n2m2) for an
n x n template and m x m image

to allow rotations of M, must match rotated versions of M against N

to allow for scale changes in M, must match scaled versions of M against N

Small distortions in the image can give rise to very bad
matches

can be overcome by “binary smoothing” (expanding) either the template or
the image

but this also reduces the “specificity” of the match

30

128

Hough Transform for Line Detection

Consider the following simple problem:
Given: a binary image

Find

(a) the largest collinear subset of 1’s in that binary image

(b) all collinear subsets of size greater than a threshold t

(c) a set of disjoint collinear subsets of size greater than a threshold t

Representation of lines
y = mx + b

m is the slope

b is the y-intercept

problems

m is unbounded

cannot represent vertical lines
129

Parametric Representation of Lines (ρ, θ)

ρ = x cosθ + y sinθ
ρ is an unbounded
parameter in the
representation, but is
bounded for any finite
image

θ, the slope parameter, is
bounded in the interval
[0,2π]

x

y

θ

ρ

130

Parametric Representation of Lines (x, y, x’, y’)

Encode a line by the
coordinates of its 2
intersections with the
boundary of the image

all parameters are bounded
by the image size

but now we have 4 rather
than 2 parameters (0,0)

(xmax, ymax)

(x1, y1)

(x2, y2)

131

Brute-Force Solution to Line Detection

Brute-force algorithm enumerates L, the set of “all” lines
passing through B, the binary input image

for each line in L it generates the image pixels that lie on that line

it counts the number of those pixels in B that are 1’s

for problem (a) it remembers the maximal count (and associated line
parameters) greater than the required threshold

for problem (b) it remembers all that satisfy the threshold
requirement.

So, how do we
enumerate L

given an element, λ, of L, enumerate the pixels in B that lie on λ

31

132

Brute-Force Solution

Enumeration of L
(x, y, x’, y’) - easy: each (x, y) lies on

one side of the image border, or

a corner

(x’, y’) can be a point on any
border not containing (x, y)

(ρ, θ) - much harder

Δρ = sin θ
Δθ ≅ 1/n
practically, would use a constant
quantization of ρ

x

y

θ

ρ 1

Δρ

Δρ

1

Δθ

n

133

Generating the Pixels on a Line

Standard problem in computer graphics

Compute the intersections of the line with the image
boundaries

let the intersection be (x1, y1), (x2, y2)

Compute the “standard” slope of the line

special cases for near vertical line

if the slope is < 1, then the y coordinate changes more slowly than x, and
the algorithm steps through x coordinates, computing y coordinates -
depending on slope, might obtain a run of constant y but changing x
coordinates

if the slope ≥ 1, then x changes more slowly than y and the algorithm will
step through y coordinates, computing x coordinates

134

Drawbacks of the Brute-Force Algorithm

The complexity of the algorithm is the sum of the lengths
of all of the lines in L

consider the [(x1, y1), (x2, y2)] algorithm

there are about 3n possible locations for (x1, y1) and there are 2n possible
locations for (x2, y2) once (x1, y1) is chosen (this avoids generating lines
twice). This is 6n2 lines

It is hard to compute the average length of a line, but it is O(n)

So, the brute-force algorithm is O(n3)

Many of these lines pass through all or almost all 0’s
practically, the 1’s in our binary image were generated by an edge or
feature detector

for typical images, about 3-5% of the pixels lie on edges

so most of the work in generating lines is a waste of time
135

Hough Transform

Original application was detecting lines in time lapse
photographs of bubble chamber experiments

elementary particles move along straight lines, collide, and create more
particles that move along new straight trajectories

Hough was the name of the physicist who invented the method

Turn the algorithm around and loop on image coordinates
rather than line parameters

Brute-force algorithm:
For each possible line, generate the line and count the 1’s

Hough transform
For each possible “1” pixel at coordinates (x, y) in B, generate the set of
all lines passing through (x, y)

32

136

Hough Transform

Algorithm uses an array of accumulators, or counters, H, to
tally the number of 1’s on any line

size of this array is determined by the quantization of the parameters in the
chosen line representation

we will use the (ρ,θ) representation, so a specific element of H will be
referenced by H(ρ,θ)

when the algorithm is completed, H(ρ,θ) will contain the number of points
from B that satisfy the equation (i.e, lie on the line) ρ = x cosθ + y sinθ

Algorithm scans B. Whenever it encounters a “1” at a pixel
coordinates (x, y) it performs the following loop:

for θ := 0 to 2π step Δθ
ρ := x cosθ + y sinθ

Η[ρ norm(ρ), θ norm(θ)] := Η[ρ norm(ρ), θ norm(θ)] + 1
norm turns the floats into valid array indices 137

Hough Transform Algorithm

Quantize parameter space (ρ, θ)

Create Accumulator Array, H(ρ, θ)

Initialize H to 0

Apply voting procedure for each “1” in B

Find local maxima in H

138

Hough Transform Example

Let input image B have “1”s at coordinates (7,1), (6,2),
and (4,4)

Using slope-intercept parameterization, we have
b = -x0m + y0

b

m

(-1,8)

b = -7m + 1

b = -4m + 4

b = -2m + 6

139

Hough Transform Properties

Hough space (aka parameter space) has dimensionality
equal to the number of degrees of freedom of the
parameterized object

A point in input image maps to a line in (m, b) parameter
space, and to a sinusoidal curve in (ρ, θ) parameter space

A point in H corresponds to a line in image B

H(x0, y0) = z0 ⇒ z0 points are collinear along line in B

Works when image points are disconnected

Relatively insensitive to occlusion

Effective for simple shapes

33

140

Hough Transform

What is the computational
complexity of the Hough
transform?

Scanning the image is O(n2) and if we
encounter a fixed percentage of 1’s, we
still need to nontrivially process O(n2)
pixels

At each pixel, we have to generate O(n)
lines that pass through the pixel

So it is also O(n3) in the worst case

But practically, the Hough transform
only does work for those pixels in B that
are 1’s

This makes it much faster than the brute-
force algorithm

• At every pixel on the bold line
the Hough transform algorithm
will cast a “vote” for that line
• When the algorithm terminates,
that bin will have a score equal to
the number of pixels on the line

141

Solving the Original Problems

Problem (a) - Find the line having maximal score
Compute the Hough transform

Scan array H for the maximal value; resolve ties arbitrarily

Problem: scanning H can be time consuming

Alternatively, can keep track of the location in H having maximal
tally as the algorithm procedes

Problem (b) - Find all lines having score > t
Compute the Hough array

Scan the array for all values > t

Problem: also requires scanning the array

Can maintain a data structure of above threshold elements of H and
add elements to this data structure whenever the algorithm first sends
an entry of H over t

k-d tree or a point quadtree

142

Solving the Original Problems

Problem (c) - find a set of disjoint lines all of which have
size greater than a threshold t

Compute the Hough transform, H

Scan H for the highest value; if it is < t, halt. If it is ≥ t, add it to the set (*)

Remove the “votes” cast by the points on that line

use our line generation algorithm to enumerate the image points on that
line

subtract the votes cast for all elements of H by the 1’s on that line

this ensures that a point in the image will contribute to the score for one
and only one line as the lines are extracted

go back to (*)

It is difficult to see how to avoid the scanning of H after
iteration 1

143

Other Practical Problems

Algorithm is biased towards long lines
The number of pixels on the intersection of a line and the image
varies with ρ and θ
When we generalize this algorithm to detect other types of
shapes, the bias will be introduced by the border of the image
clipping the shapes for certain placements of the shapes in the
image

A Solution
Can precompute, for each (ρ, θ), the number of pixels on the
line ρ = x cosθ + y sinθ and place these in a normalization
array, η, which is exactly the same size as H

After the accumulator array is completed, we can divide each
entry by the corresponding entry in η to obtain the percentage
of pixels on the line that are 1 in B

Similar tricks can be developed to avoid scanning H

34

144

Asymptotic Complexity

In the worst case, the Hough transform algorithm is an
O(n3) algorithm, just like the brute-force algorithm

Consider the following alternative approach
Generate all pairs of pixels in B that have value 1

these define the set of all line segments that will have counts > 1 after
running the conventional Hough transform algorithm

For each pair, compute the parameters of the line joining that pair of
points

not necessary to quantize the parameters for this version of the
algorithm

Generate the set of pixels on this line and count the number of 1’s in B in
this set. This is the number of 1’s in B that fall on this line

Generate a data structure of all such lines, sorted by count or normalized
count. Can be easily used to solve problems (a) and (b) 145

Asymptotic Complexity

What is the complexity of this algorithm?
Again, if there are O(n) 1’s in B, then we generate n2 lines

Each of these has O(n) points on it that have to be examined from B

So the algorithm is still O(n3)

Suppose that we sample the 1’s in B and compute the lines
joining only pairs from this sample

If our sample is small - say only the square root of the number of 1’s in B,
then we will be generating only O(n) lines - one for each pair of points
from a set of size O(n1/2)

Incredibly, it can be shown that with very high probability any such
random sample of size n1/2 will contain at least two of the points from any
“long” line

This method reduces the asymptotic complexity to O(n2)

146

Using More Image Information

Practically, the 1’s in B were computed by applying an
edge detector to some grayscale image

This means that we could also associate with each 1 in B the gradient
direction measured at that edge point

this direction can be used to limit the range of θ considered at each 1
in B - for example, we might only generate lines for θ in the range
[φ + π/4, φ + 3π/4], where φ is the gradient direction at a pixel

this will further reduce the computational cost of the algorithm

Each edge also has a gradient magnitude

could use this magnitude to differentially weight votes in the Hough
transform algorithm

complicates peak finding

generally not a good idea - isolated high contrast edges can lead
to unwanted peaks

147

Circle Detection

Circle parameterized by

(x i - a)2 +(yi - b)2 = r2

If r known, 2D Hough space, H(a, b), and an image point

at coordinates (x1, y1) votes for a circle of points of radius

r centered at (x1, y1) in H

If r unknown, 3D Hough space, H(a, b, r), and an image

point at coordinates (x1, y1) votes for a right circular cone

of points in H

35

148

Generalized Hough Transform (GHT)

Most of the comparisons performed during edge template
matching match 0’s in the image N against points in M

This is similar to the situation in the brute-force line finder, which
generates lines containing mostly 0’s in B

The Generalized Hough transform avoids comparing the
0’s in the image against the edge template

Similar to the Hough transform, the outermost loop of the algorithm will
perform computations only when encountering a 1 in N

Let H(i, j) be an array of counters
Whenever we encounter a 1 in N we will efficiently determine all
placements of M in N that would cause 1 in M to be aligned with this
point of N. These placement will generate indices in H to be incremented

149

Template Representation for the
Generalized Hough Transform

Rather than represent M as a binary array, we will
represent it as a list of coordinates, M′

(0,0)

(3,4)

M′
(0, -1)
(-1,-1)
(-2,-1)
(-3,-1)
(-3,-2)
(-3,-3)
(-2,-3)
(-1,-3)
(0, -3)

a
b
c

a
b
c

• If we place pixel a over
location (i, j) in N, then the
(0, 0) location of the template
will be at position (i, j-1)

• If we place pixel c over
location (i, j) in N, then the
(0, 0) location of the template
will be at position (i-2, j-1)

M

150

GHT - Basic Algorithm

Scan N until a 1 is encountered at position (x, y)
Iterate through each element (i, j) in M′

The placement of M over N that would have brought M(i, j) over
N(x, y) is the one for which the origin of M is placed at position
(x+i, y+j)

Therefore, we increment H(x+i, y+j) by 1

And move on to the next element of M′

And move on to the next 1 in N

When the algorithm completes, H(i, j) counts the number
of template points that would overlay a “1” in N if the
template were placed at position (i, j) in N

151

GHT - Generalizations

Suppose we want to detect instances of M that vary in
orientation in the image

need to increase the dimensionality of H by adding a dimension, θ, for
orientation

Now, each time we encounter a “1” during the scan of N we must consider
all possible rotations of M with respect to N - will result in incrementing
one counter in each θ plane of H for each point in M

For each (i, j) from M

For each quantized θ
Determine the placement (r, s) of the rotated template in N that
would bring (i, j) onto (x, y) and increment H(r, s, θ)

For scale we would have to add one more dimension to H
and another loop that considers possible scales of M

36

152

Other Generalizations

Match patterns of linear and curvilinear features against
images from which such features have been detected

Impose a hierarchical structure on M, and match pieces
and compositions of pieces

At lowest level one finds possible matches to small pieces of M

A second GHT algorithm can now find combinations of pieces that satisfy
other spatial constraints

Example: Square detection

153

Hough Transform for Line Matching

Let L = {L1, ..., Ln} be the set of line segments which
define M

Let L′ = {L′1, ..., L′m} be the set of observed line segments
from N

Define Li - Lj as follows:
If Lj is a subsegment of Li, then Li - Lj = l j , where l j is the length of Lj

Otherwise, Li - Lj = 0

Let F be a set of transformations that maps lines to lines

Given F, L and L′, find f in F that maximizes

()[]∑∑
∈ ′∈

−=
LL LL

ji

i j

LfLfv)(

154

Example - Translation Only

Which translations get incremented?
α-a: (0,6), (1,6), (2,6), (3,6) incremented by 2

α-b: none

α-c: (2,0), (2,1) incremented by 2

L

(0,6) (5,6)

(2,5)

(2,1)

(2,0) (5,0)

L’
(0,0) (2,0)a

b

c

α

155

Representing High-Dimensional Hough Arrays

Problems with high-dimensional arrays
Storage

Initialization and searching for high values after algorithm

Possible solutions
Hierarchical representations

first match using a coarse-resolution Hough array

then selectively expand parts of the array having high matches

Projections

Instead of having one high-dimensional array, store a few 2D
projections with common coordinates (e.g., store (x, y), (y, θ), (θ, s)
and (s, x))

Find consistent peaks in these lower dimensional arrays

37

156

GHT Generate-and-Test

Peaks in Hough array do not reflect spatial distribution of
points underlying match

typical to “test” the quality of peak by explicitly matching template
against image at the peak

hierarchical GHT’s also provide control over parts of template that match
the image

Controlling the generate-and-test framework
construct the complete Hough array, find peaks, and test them

test as soon as a point in the Hough space passes a threshold

if the match succeeds, points in I that matched can be eliminated from
further testing

test as soon as a point in the Hough space is incremented even once

157

Chamfer Matching

Given
Binary image, B, of edge and local feature locations

Binary “template” image, T, of shape we want to match

Let D be an image in registration with B such that D(i, j) is
the distance to the nearest “1” in B

D is the distance transform of B

Goal: Find placement of T in D that minimizes the sum,
M, of the distance transform multiplied by the pixel values
in T

If T is an exact match to B at location (i, j) then M(i, j) = 0

But if the edges in B are slightly displaced from their ideal locations in T,
we still get a good match using the distance transform technique

158

Computing the Distance Transform

Brute force, exact algorithm, is to scan B and find, for each
“0”, its closest “1” using the Euclidean distance

expensive in time

Various approximations to Euclidean distance can be made
that are efficient to compute

Goal: find a simple method to assign distance values to
pixels that approximates ratios of Euclidean distances

horizontal and vertical neighbors in an image separated by distance 1

but diagonal neighbors separated by distance √ 2

This is “almost” a ratio of 3:4

159

Computing the Distance Transform

Parallel algorithm
Initially, set D(i, j) = 0 where B(i, j) = 1, else set D(i, j) = ∞
Iterate the following until there are no further changes

Dk(i, j) = min(Dk − 1(i −1, j −1) + 4, Dk − 1(i −1, j) + 4,

Dk − 1(i +1, j −1) + 4, Dk − 1(i −1, j +1) + 4, Dk − 1(i, j −1) + 3,

Dk − 1(i, j + 1) + 3, Dk − 1(i −1, j) + 3, Dk − 1(i + 1, j) + 3, Dk − 1(i,))

4 3 4

3 0 3

4 3 4

38

160

Computing the Distance Transform

Two-pass sequential algorithm

Same initial conditions

Forward pass
D(i,j) = min[D(i-1,j-1) + 4, D(i-1,j) + 3, D(i-1, j+1) + 4, D(i,j-1) + 3, D(i,j)]

Backward pass
D(i,j) = min[D(i,j+1) + 3, D(i+1,j-1) + 4, D(i+1, j) +3, D(i+1,j+1) + 4, D(i,j)]

161

Hausdorff Distance Matching

Let t be a transformation of the template T into the image

H(B, t(T)) = max(h(B, t(T)), h(t(T), B)), where

|| || is a norm like the Euclidean norm

h(A, B) is called the directed Hausdorff distance
ranks each point in A based on distance to nearest point in B

most mis-matched point of A is measure of match, i.e., measures distance of
the point of A that is farthest from any point of B

if h(A,B) = d, then all points in A must be within distance d of B

generally, h(A,B) ° h(B,A)

easy to compute Hausdorff distances from Distance Transform

h(A,B) = max
a∈A

min
b∈B

a − b

162

Computing the Hausdorff Distance

where

and

For translation only, H(A, B+t) = maximum of translated
copies of d(x) and d’(x)

O(pq(p+q) log pq) time, where |A|=p, |B|=q

))('max),(maxmax(

)minmax,minmaxmax(

)),(),,(max(),(

bdad

baba

ABhBAhBAH

BbAa

AaBbBbAa

∈∈

∈∈∈∈

=

−−=

=

)(ansformDistanceTrmin)(Bbxxd
Bb

=−=
∈

ansform(A)DistanceTrmin)(' =−=
∈

xaxd
Aa

163

Fast Template Matching

Simulated Annealing approach
Let T θ,s be a rotated and scaled version of T

For a random θ and s, and a random (i, j) match T θ,s at position (i, j) of I

Now, randomly perturb θ, s, i and j by perturbations whose magnitudes
will be reduced in subsequent iterations of the algorithm to obtain θ’, s’,
i’, j’

Match T θ’,s’ at position (i’, j’). If the match is better, “move” to that
position in the search space. If the match is worse, move with some
probability to that position anyway!

Iterate using smaller perturbations, and smaller probabilities of moving to
worse locations

the rate at which the probability of taking “bad” moves decreases is
called the “cooling schedule” of the process

This has also been demonstrated with deformation parameters that mimic
projection effects for planar patterns

