Tracking using CONDENSATION: Conditional Density Propagation

Goal

- Model-based visual tracking in dense clutter at near video frame rates

Example of CONDENSATION Algorithm

Approach

- Probabilistic framework for tracking objects such as curves in clutter using an iterative sampling algorithm
- Model motion and shape of target
- Top-down approach
- Simulation instead of analytic solution
Probabilistic Framework

• Object dynamics form a temporal Markov chain
 \[p(x_i \mid X_{i-1}) = p(x_i \mid x_{i-1}) \]
• Observations, \(z_i \), are independent (mutually and w.r.t process)
 \[p(Z_{i-1}, x_i \mid X_{i-1}) = p(x_i \mid X_{i-1}) \prod_{j=1}^{i-1} p(z_j \mid x_j) \]
• Use Bayes’ rule

Tracking as Estimation

• Compute state posterior, \(p(X \mid Z) \), and select next state to be the one that maximizes this (Maximum a Posteriori (MAP) estimate)
• Measurements are complex and noisy, so posterior cannot be evaluated in closed form
• Particle filter (iterative sampling) idea: Stochastically approximate the state posterior with a set of \(N \) weighted particles, \((s, \pi)\), where \(s \) is a sample state and \(\pi \) is its weight
• Use Bayes’ rule to compute \(p(X \mid Z) \)

Notation

\(X \)
State vector, e.g., curve’s position and orientation

\(Z \)
Measurement vector, e.g., image edge locations

\(p(X) \)
Prior probability of state vector; summarizes prior domain knowledge, e.g., by independent measurements

\(p(Z) \)
Probability of measuring \(Z \); fixed for any given image

\(p(Z \mid X) \)
Probability of measuring \(Z \) given that the state is \(X \); compares image to expectation based on state

\(p(X \mid Z) \)
Probability of \(X \) given that measurement \(Z \) has occurred; called state posterior

Factored Sampling

• Generate a set of samples that approximates the posterior \(p(X \mid Z) \)
• Sample set \(s = \{s^{(1)}, \ldots, s^{(N)}\} \) generated from \(p(X) \); each sample has a weight (“probability”)
 \[\pi_i = \frac{p_z(s^{(i)})}{\sum_{j=1}^{N} p_z(s^{(j)})} \]
 \[p_z(x) = p(z \mid x) \]
Factored Sampling

• CONDENSATION for one image

Estimating Target State

State samples
Mean of weighted state samples

Bayes’ Rule

This is what you can evaluate
This is what you may know a priori, or what you can predict

\[
p(X \mid Z) = \frac{p(Z \mid X) p(X)}{p(Z)}
\]

This is what you want. Knowing \(p(X \mid Z) \) will tell us what is the most likely state \(X \).

This is a constant for a given image

CONDENSATION Algorithm

1. **Select**: Randomly select \(N \) particles from \(\{s_{t-1}^{(n)}\} \) based on weights \(\pi_{t-1}^{(n)} \); same particle may be picked multiple times (*factored sampling*)

2. **Predict**: Move particles according to deterministic dynamics (*drift*), then perturb individually (*diffuse*)

3. **Measure**: Get a likelihood for each new sample by comparing it with the image’s local appearance, i.e., based on \(p(z_{t} \mid x_{t}) \); then update weight accordingly to obtain \(\{(s_{t}^{(n)}, \pi_{t}^{(n)})\} \)
Notes on Updating

- Enforcing plausibility: Particles that represent impossible configurations are discarded.
- Diffusion modeled with a Gaussian.
- Likelihood function: Convert “goodness of prediction” score to pseudo-probability.
 - More markings closer to predicted markings → higher likelihood.
Object Motion Model

- For video tracking we need a way to propagate probability densities, so we need a "motion model" such as

$X_{t+1} = AX_t + BW_t$, where W is a noise term and A and B are state transition matrices that can be learned from training sequences.

- The state, X, of an object, e.g., a B-spline curve, can be represented as a point in a 6D state space of possible 2D affine transformations of the object.

Evaluating $p(Z | X)$

$$p(z | x) = qp(z | \text{clutter}) + \sum_{m=1}^{M} p(z | x, \phi_m) p(\phi_m)$$

where $\phi_m = \{\text{true measurement is } z_m\}$, for $m = 1, \ldots, M$, and $q = 1 - \sum_m p(\phi_m)$ is the probability that the target is not visible.

$$\phi_m = \begin{cases} \frac{|x_m - z_m|^2}{2} & \text{if } |x_m - z_m| < \delta \\ \rho & \text{otherwise} \end{cases}$$
Pointing Hand Example

- 6D state space of affine transformations of a spline curve
- Edge detector applied along normals to the spline
- Autoregressive motion model

Glasses Example

3D Model-based Example

- 3D state space: image position + angle
- Polyhedral model of object

Minerva

- Museum tour guide robot that used CONDENSATION to track its position in the museum
Advantages of Particle Filtering

- Nonlinear dynamics, measurement model easily incorporated
- Copes with lots of false positives
- Multi-modal posterior okay (unlike Kalman filter)
- Multiple samples provides multiple hypotheses
- Fast and simple to implement