
1

Motion Estimation
• Lots of uses

– Track object behavior

– Correct for camera jitter (stabilization)

– Align images (mosaics)

– 3D shape reconstruction

– Special effects

Motion Illusion created by Akiyoshi

Kitaoka
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Motion Illusion created by Akiyoshi

Kitaoka



3



4



5

Optical flow
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Aperture problem
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Aperture problem
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Hamburg Taxi Video
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Hamburg Taxi Video

Horn & Schunck Optical Flow
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Fleet & Jepson Optical Flow
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Tian & Shah Optical Flow

Solving the Aperture Problem

• Basic idea:  assume motion field is smooth

• Horn and Schunk:  add smoothness term

• Lucas and Kanade:  assume locally constant motion

– pretend the pixel’s neighbors have the same (u,v)

• If we use a 5x5 window, that gives us 25 equations per pixel!

– works better in practice than Horn and Schunk
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Lucas-Kanade Flow

• How to get more equations for a pixel?

– Basic idea:  impose additional constraints

• most common is to assume that the flow field is smooth locally

• one method:  pretend the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per 

pixel!

– minimum least squares solution given by solution of:

Lucas-Kanade Flow

• Problem:  more equations than unknowns

– The summations are over all pixels in the K x K window

– This technique was first proposed by Lukas and Kanade (1981)

• Solution:  solve least squares problem



18

Conditions for Solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is this solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too 
small

• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger 
eigenvalue)

Eigenvectors of ATA

• Suppose (x,y) is on an edge.  What is ATA?
– gradients along edge all point the same direction

– gradients away from edge have small magnitude

– is an eigenvector with eigenvalue

– What’s the other eigenvector of ATA?

• let N be perpendicular to 

• N is the second eigenvector with eigenvalue 0

• The eigenvectors of ATA relate to edge direction and magnitude 
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Edge

– large gradients, all the same

– large λ1, small λ2

Low Texture Region

– gradients have small magnitude

– small λ1, small λ2
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High Texture Region

– gradients are different, large magnitudes

– large λ1, large λ2

Observation

• This is a two image problem BUT

– Can measure sensitivity by just looking at one of the 

images

– This tells us which pixels are easy to track, which are 

hard

• very useful later on when we do feature tracking
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Errors in Lucas-Kanade

• What are the potential causes of errors in this 

procedure?

– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

• When our assumptions are violated

– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

• window size is too large

• what is the ideal window size?

– Can solve using Newton’s method

• Also known as Newton-Raphson method

– Lucas-Kanade method does one iteration of Newton’s method

• Better results are obtained with more iterations

Improving Accuracy
• Recall our small motion assumption

• This is not exact

– To do better, we need to add higher order terms back 

in:

• This is a polynomial root finding problem



22

Iterative Refinement

• Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving 

Lucas-Kanade equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence

Revisiting the Small Motion 

Assumption

• When is the motion small enough?
– Not if it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?
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Reduce the Resolution

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-Fine Optical Flow 

Estimation
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-Fine Optical Flow 

Estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Optical Flow Result
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Spatiotemporal (x-y-t) Volumes
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Visual Event Detection using 

Volumetric Features

• Y. Ke, R. Sukthankar, and M. Hebert, CMU, 

CVPR 2005

• Goal:  Detect motion events and classify actions 

such as stand-up, sit-down, close-laptop, and 

grab-cup

• Use x-y-t features of optical flow

– Sum of u values in a cube

– Difference of sum of v values in one cube and v values 

in an adjacent cube
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3D Volumetric Features

Approximately 1 million features computed

Optical Flow Features

Optical flow of stand-up action (light means positive direction)
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Classifier

• Cascade of binary classifiers that vote on the 

classification of the volume

• Given a set of positive and negative examples at a 

node, each feature and its optimal threshold is 

computed.  Iteratively add filters at each node 

until a target detection rate (e.g., 100%) or false 

positive rate (e.g., 20%) is achieved

• Output of the node is the majority vote of the 

individual filters

Action Detection

• 78% - 92% detection rate on 4 action types:  sit-
down, stand-up, close-laptop, grab-cup

• 0 – 0.6 false positives per minute

• Note: while lengths of actions vary, the first 
frames are all aligned to a standard starting 
position for each action

• Classifier learns that beginning of video is more 
discriminative than end because of variable length

• Relatively robust to viewpoint (< 45 degrees) and 
scale (< 3x)
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Results

Structure-from-Motion

• Determining the 3-D structure of the world, and the motion 
of a camera (i.e., its extrinsic parameters) using a sequence 
of images taken by a moving camera
– Equivalently, we can think of the world as moving and the camera

as fixed

• Like stereo, but the position of the camera isn’t known 
(and it’s more natural to use many images with little 
motion between them, not just two with a lot of motion) 
and we have a long sequence of images, not just 2 images
– We may or may not assume we know the intrinsic parameters of 

the camera, e.g., its focal length
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Results

• Look at paper figures…

Extensions

• Paraperspective

– [Poelman & Kanade, PAMI 97]

• Sequential Factorization

– [Morita & Kanade, PAMI 97]

• Factorization under perspective

– [Christy & Horaud, PAMI 96]

– [Sturm & Triggs, ECCV 96]

• Factorization with Uncertainty

– [Anandan & Irani, IJCV 2002]
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= [[e´]xF | e´]
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Initialize Motion 
(P1,P2 compatible with F)

Sequential Structure and Motion 

Computation

Initialize Structure 
(minimize reprojection error)

Extend motion
(compute pose through matches 
seen in 2 or more previous views)

Extend structure
(Initialize new structure,
refine existing structure)

Sequential structure and motion 

recovery

• Initialize structure and motion from two views

• For each additional view

– Determine pose

– Refine and extend structure

• Determine correspondences robustly by jointly 

estimating matches and epipolar geometry 
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Pollefeys’ Result
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Object Tracking

• 2D or 3D motion of known object(s)

• Recent survey:  “Monocular model-based 

3D tracking of rigid objects: A survey” 

available at http://www.nowpublishers.com/
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