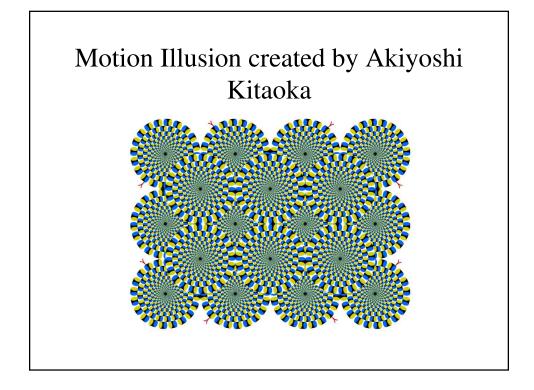
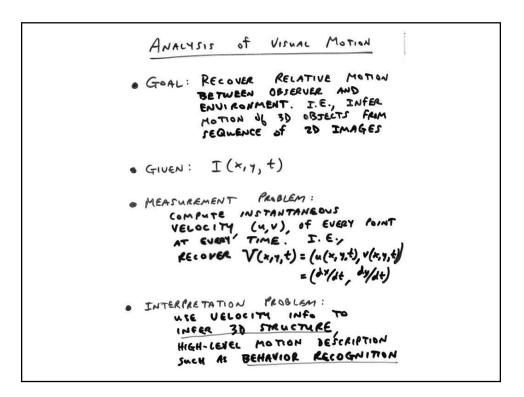
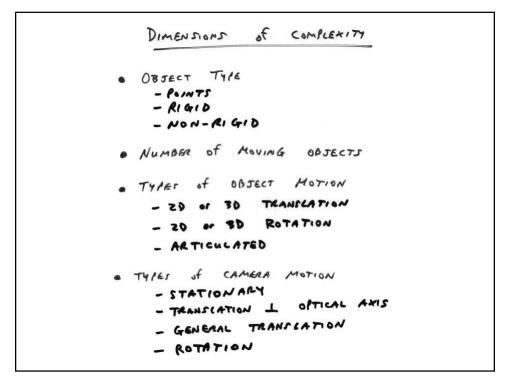
Motion Estimation

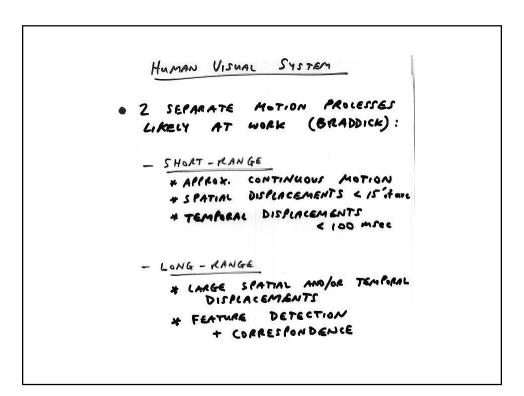
- Lots of uses
 - Track object behavior
 - Correct for camera jitter (stabilization)
 - Align images (mosaics)
 - 3D shape reconstruction
 - Special effects

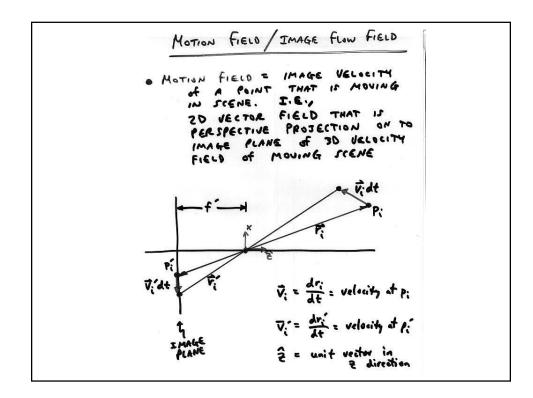
Motion Illusion created by Akiyoshi Kitaoka









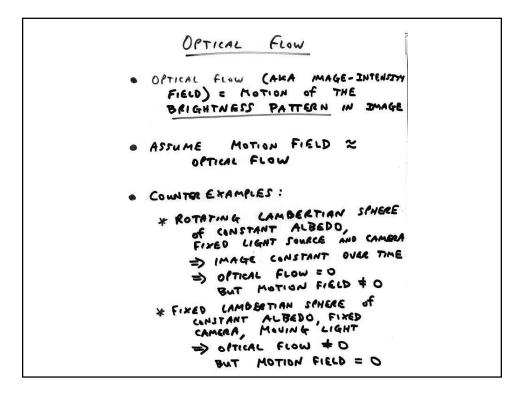


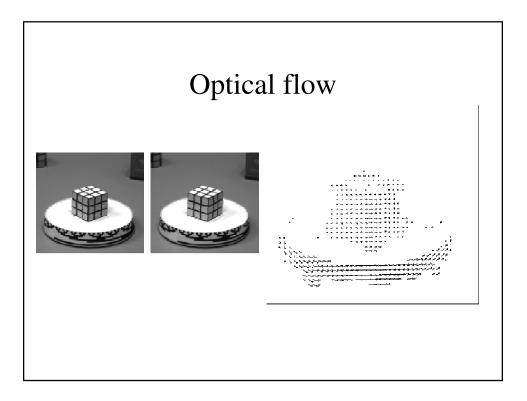
• BY PERFECTIVE PROJ. EQ:

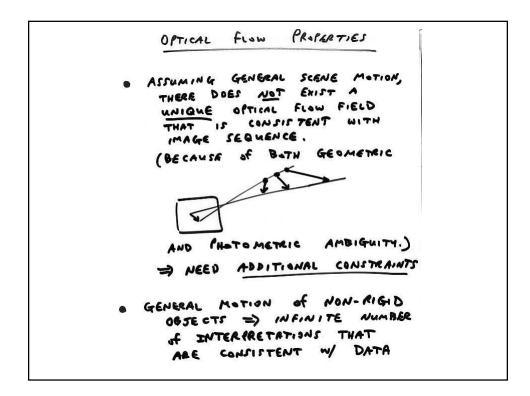
$$\frac{\overline{r_i}'}{\overline{t'}} = -\frac{\overline{r_i}}{\overline{r_i} \cdot 2}$$

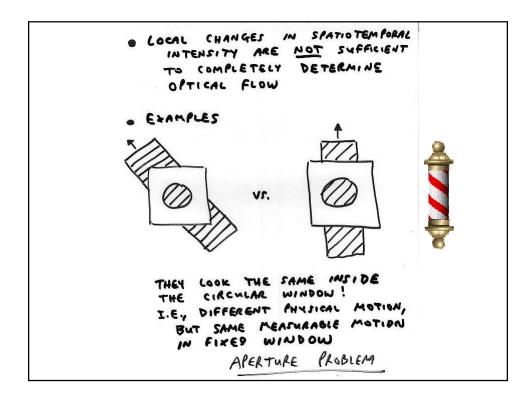
$$\Rightarrow \overline{r_i'} = -\frac{\overline{t'} \overline{r_i}}{\overline{r_i'} \cdot 2}$$
• DIFFERENTIATING & SIMPLIFYING:

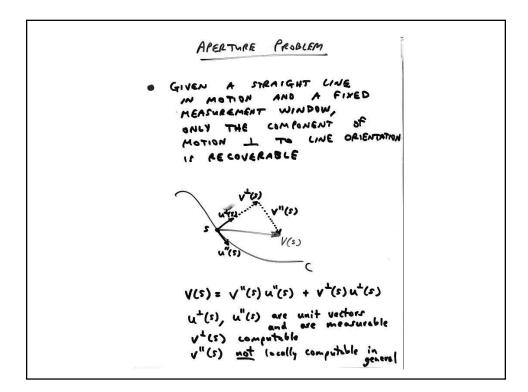
$$\overline{V_i'} = \frac{d\overline{v_i'}}{dt} = -\frac{f'(\overline{r_i} \times \overline{v_i}) \times 2}{(\overline{r_i} \cdot 2)^2}$$
• HOW TO RECOVER $\overline{V'}$?

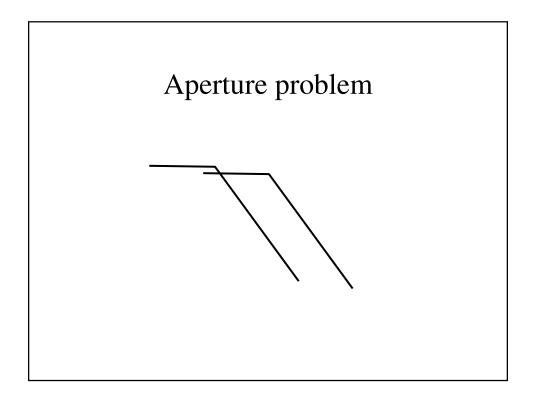


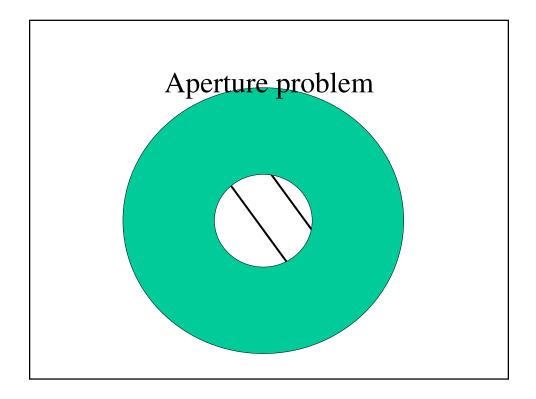












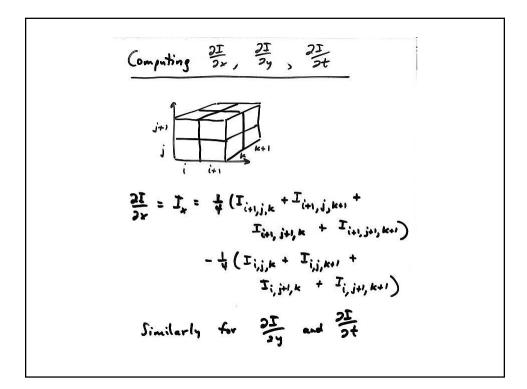
т

- Expand LHS using Taylor series
about pt (x, y, t) and keep only
linear (1¹⁴ order) terms:
$$I(x, y, t) + \delta x \frac{\partial I}{\partial x} + \delta y \frac{\partial I}{\partial y} + \delta t \frac{\partial I}{\partial t} \equiv I(x, y, t)$$

- Divide by δt and take limit $\delta t \rightarrow 0$:
 $\frac{\partial x}{\partial t} \frac{\partial I}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial I}{\partial t} + \frac{\partial I}{\partial t} \equiv 0$
- Lat $u \equiv \frac{\partial x}{\partial t}$, $v \equiv \frac{\partial y}{\partial t}$
 $\Rightarrow \underbrace{\begin{array}{c} \frac{\partial I}{\partial x} & v \equiv \frac{\partial Y}{\partial t} \\ \frac{\partial I}{\partial x} & u \equiv \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial y} & v \equiv \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial y} & \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial x} & u = \frac{\partial I}{\partial y} \\ \frac{\partial I}{\partial t} & \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial y} & \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial t} \\ \frac{\partial I}{\partial t} & \frac{\partial I}{\partial$

Given: 2 inspes,
$$I_{i}(x_{i}) = I(x_{i}y_{i}t_{i})$$

 $I_{i}(x_{i}y_{i}) = I(x_{i}y_{i}t_{i})$
Compute: $\frac{2I}{2x}$, $\frac{2I}{2y}$, $\frac{2I}{2t}$ using
gradient operators
Solve for: 2 unknowns: U, V
Under constrained: $(u_{i}u)$ must lie
on a line in $(u_{i}v)$ space:
 $Velocity$ (Displacement)
Space for a single pt
 $(u_{i}u)$ cannot be found uniquely!



• Farmulate error in image smoothness:

$$e_{s} = \iint_{\substack{i \neq j \\ i \neq j}} \left(\frac{2n}{3n}\right)^{2} + \left(\frac{2n}{3y}\right)^{2} + \left(\frac{2v}{3x}\right)^{2} + \left(\frac{2v}{3y}\right)^{2} dudy$$

$$= \iint_{\substack{i \neq j \\ i \neq j}} \left(\frac{|\nabla u||^{2}}{||\nabla u||^{2}}\right) = \iint_{\substack{i \neq j \neq j \\ i \neq j \neq j}} \left(\frac{|\nabla u||^{2}}{||\nabla u||^{2}}\right)$$

$$= Find (u,v) \text{ at each image pixel}$$

$$= e_{s} + \lambda e_{c}$$

Optical Flow Algorithm (Director)
(ansider image point (i.j)
Departure of smoothness of optical flow at (i,j)

$$s_{ij} = \frac{1}{4} \left((u_{i+v,j} - u_{i,j})^2 + (u_{i,j+1} - u_{i,j})^2 + (u_{i,j+1} - u_{i,j})^2 \right)$$

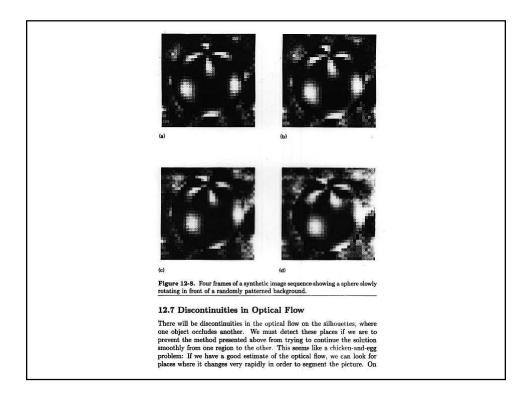
• Error in optical flow constraint equation
 $c_{ij} = (I_x u_{i,j} + I_y v_{i,j} + I_z)^2$
• Goal : Find the set $\{u_{i,j}\}$ and $\{v_{i,j}\}$
Hat minimize
 $e = \sum_i \sum_j (s_{i,j} + \lambda c_{i,j})$

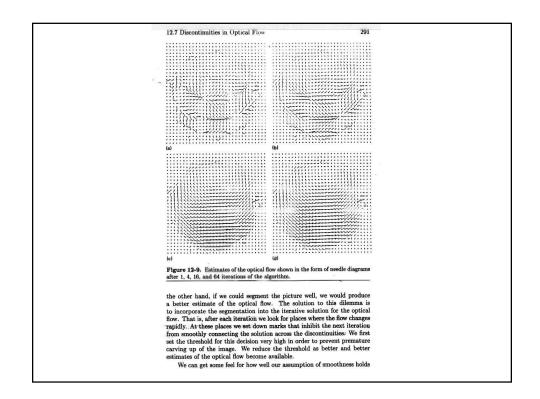
• Differentiating e wit
$$u_{K,k}$$
 and $v_{K,k}$

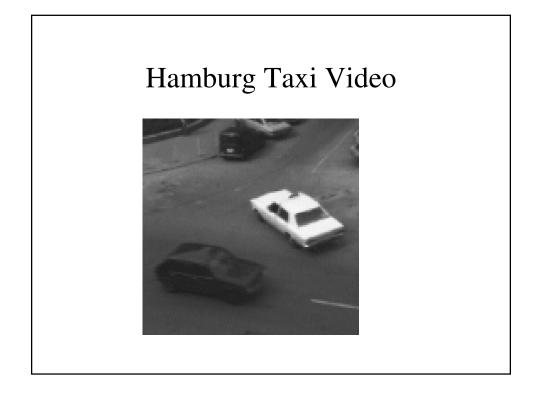
$$\frac{\partial e}{\partial u_{K,k}} = 2(u_{k,k} - \overline{u}_{k,k}) + 2\lambda(I_{x}u_{k,k} + I_{y}v_{k,k} + I_{y})I_{x}$$

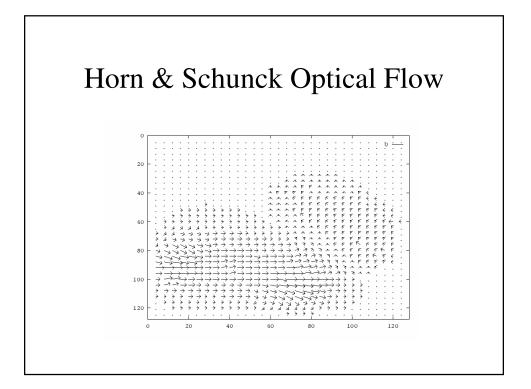
$$\frac{\partial e}{\partial v_{K,k}} = 2(v_{K,k} - \overline{v}_{K,k}) + 2\lambda(I_{x}u_{k,k} + I_{y}v_{k,k} + I_{y})I_{y}$$
where $\overline{u}_{K,k}$ and $\overline{v}_{k,k}$ are avarages
$$q u \text{ and } v \text{ around } (k, \ell)$$
• Setting $\frac{\partial e}{\partial u_{k,\ell}} = 0$ and $\frac{\partial e}{\partial v_{k,k}} = 0$ we get:
$$\frac{u_{k,k}}{1 + \lambda(I_{x}^{-k} + I_{y}^{-k})} I_{x}$$

$$v_{k,\ell}^{n+\ell} = \overline{v}_{k,\ell}^{n} - \frac{I_{x}\overline{u}_{k,\ell}^{n} + I_{y}\overline{v}_{k,\ell}^{n} + I_{\ell}}{1 + \lambda(I_{x}^{-k} + I_{y}^{-k})} I_{y}$$

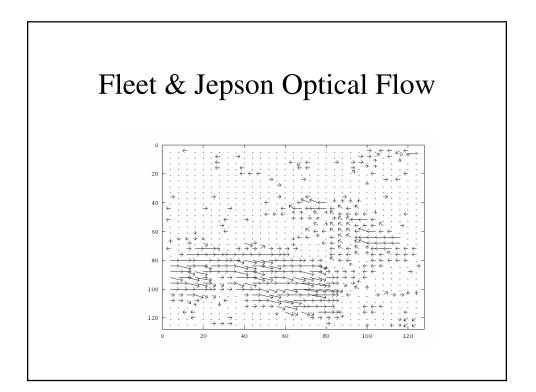


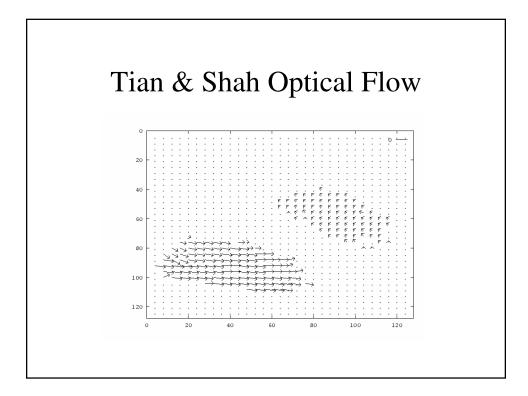


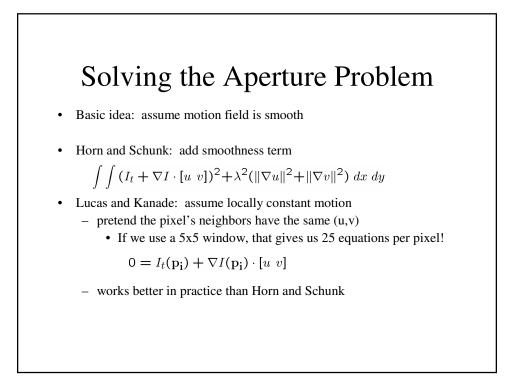


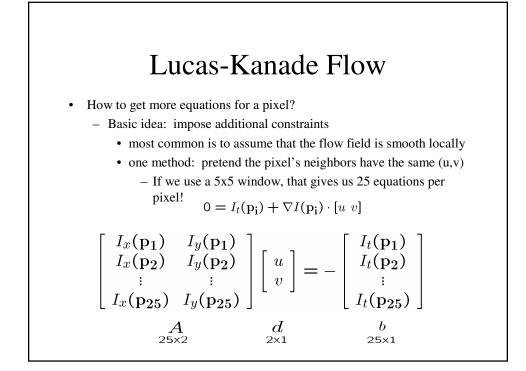


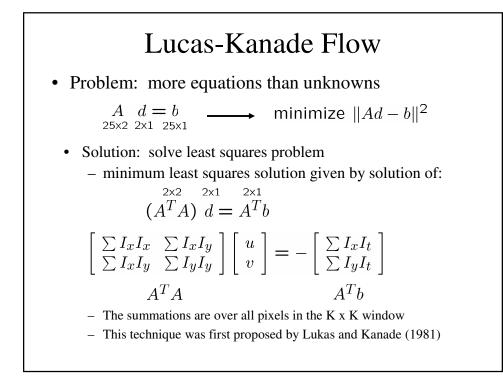
Results * Works well for textured objects
* Does <u>not</u> work well for homogeneous regions
* Does <u>not</u> work well at points where optical flow is <u>discontinuous</u> . E.g. <u>occluding</u> <u>contours</u> =) Mark these points and <u>exclude</u> them from the relatation algorithm

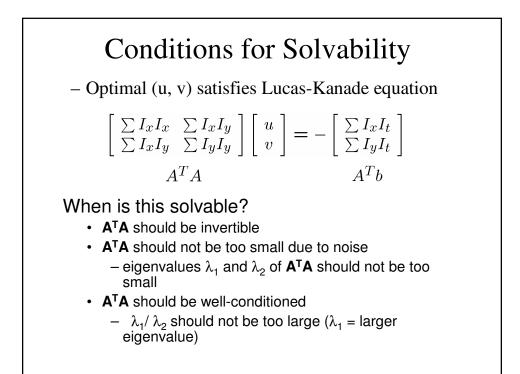


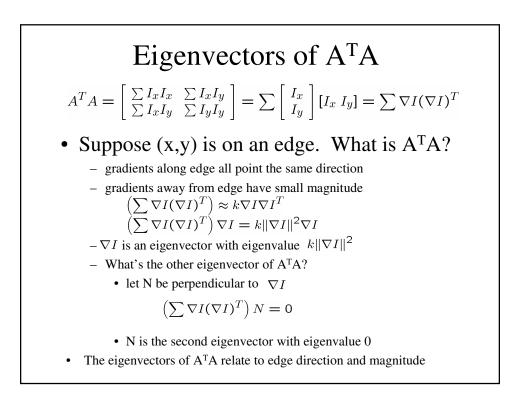


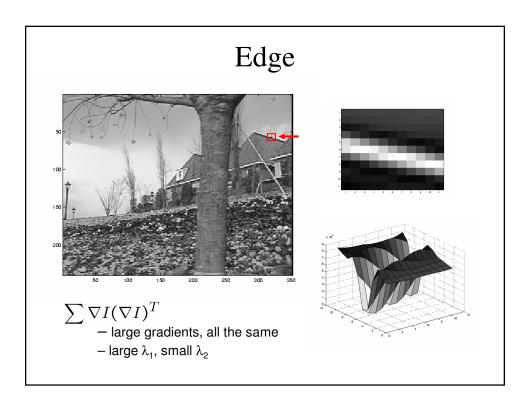


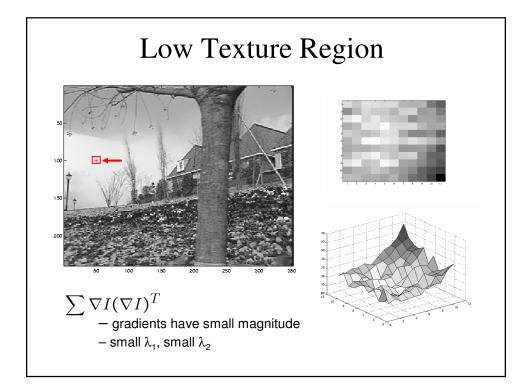


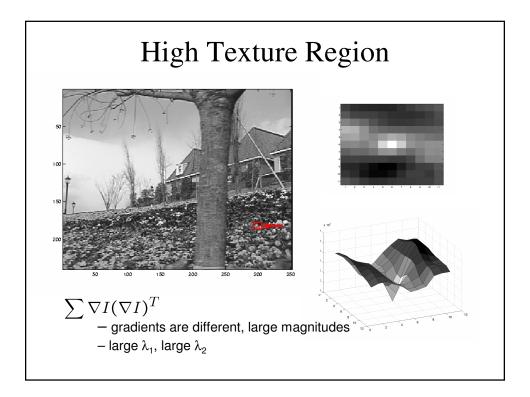


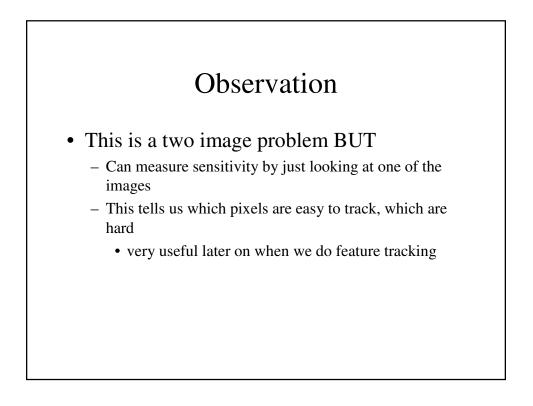












Errors in Lucas-Kanade

- What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible
 - Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is not satisfied
 - The motion is **not** small
 - A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving Accuracy

• Recall our small motion assumption

0 = I(x + u, y + v) - H(x, y)

 $\approx I(x,y) + I_x u + I_y v - H(x,y)$

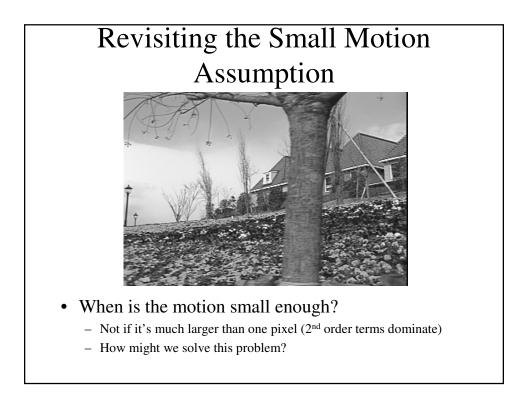
- This is not exact
 - To do better, we need to add higher order terms back

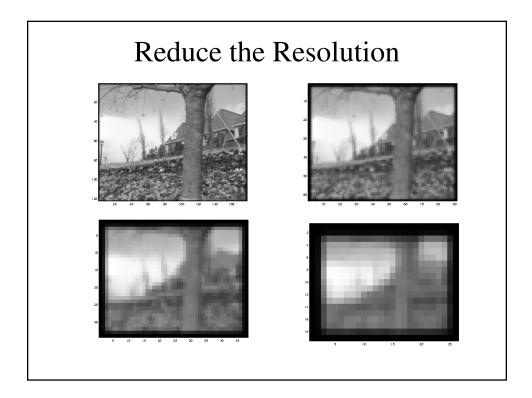
in: $= I(x,y) + I_x u + I_y v +$ higher order terms -H(x,y)

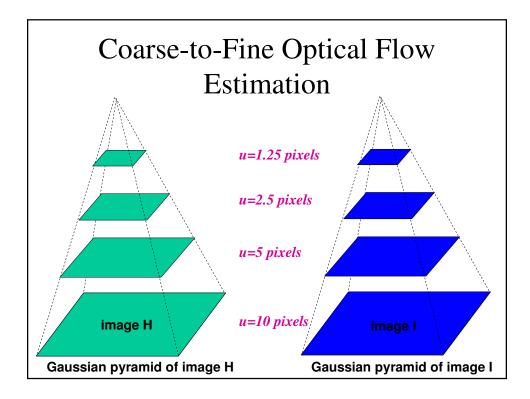
- This is a polynomial root finding problem
 - Can solve using Newton's method
 - Also known as Newton-Raphson method
 - Lucas-Kanade method does one iteration of Newton's method
 - Better results are obtained with more iterations

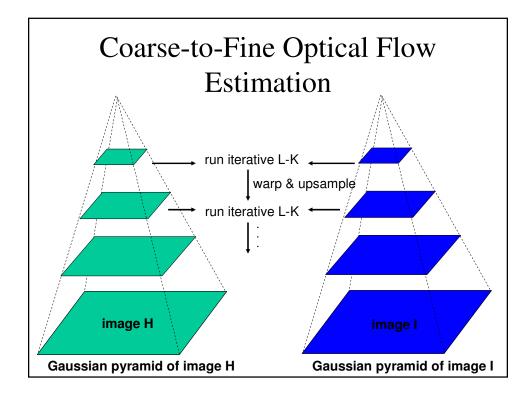
Iterative Refinement

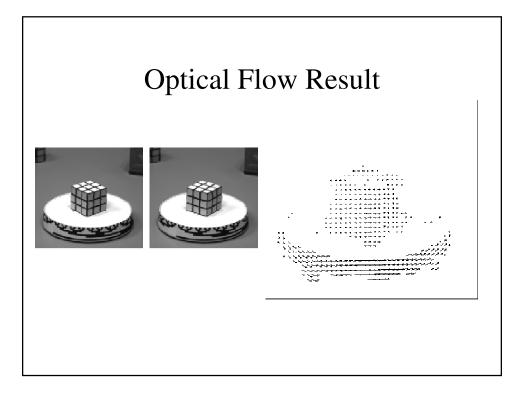
- Iterative Lucas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field
 - use image warping techniques
 - 3. Repeat until convergence

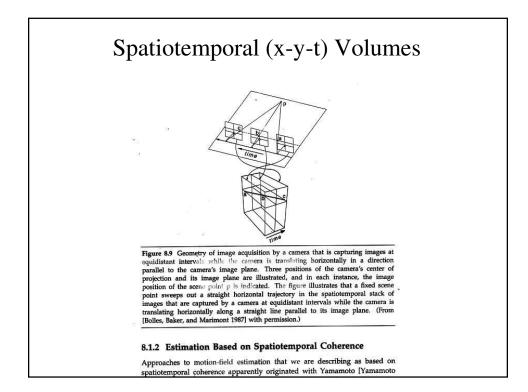


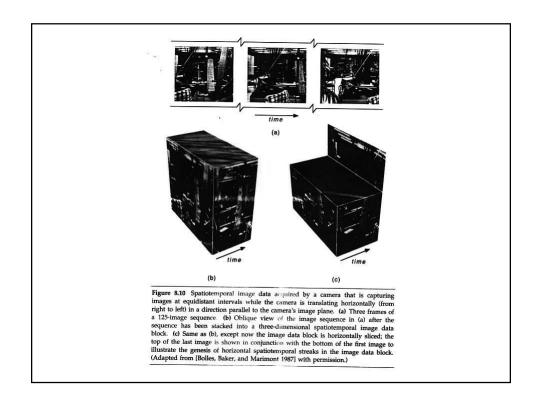


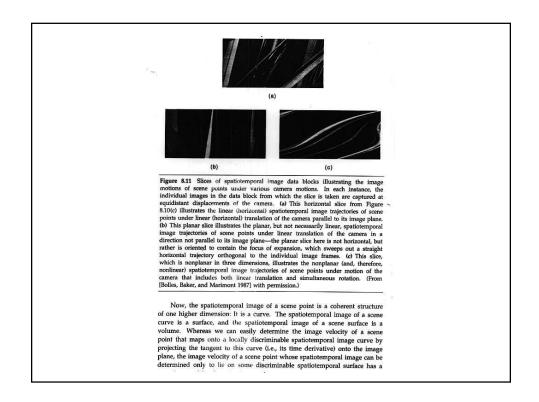




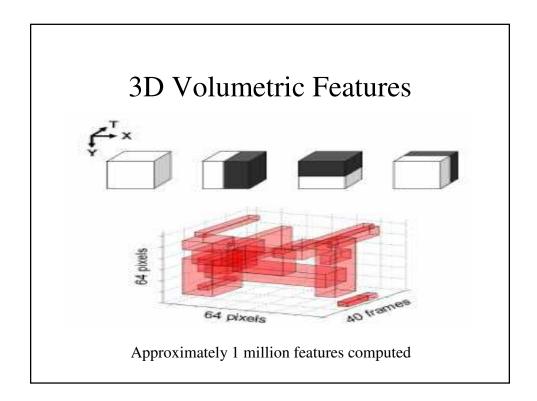


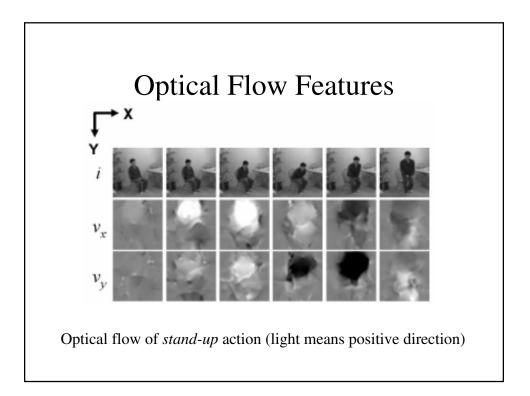






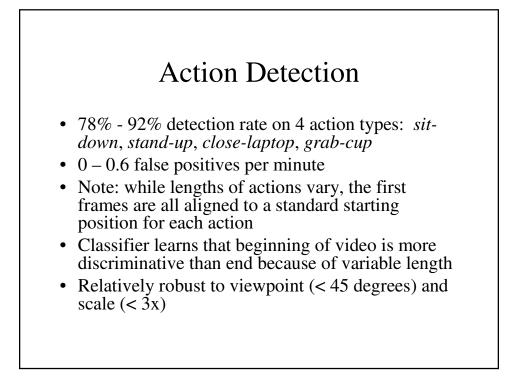
Visual Event Detection using Volumetric Features Y. Ke, R. Sukthankar, and M. Hebert, CMU, CVPR 2005 Goal: Detect motion events and classify actions such as *stand-up*, *sit-down*, *close-laptop*, and *grab-cup*Use *x-y-t* features of optical flow Sum of *u* values in a cube Difference of sum of *v* values in one cube and *v* values in an adjacent cube

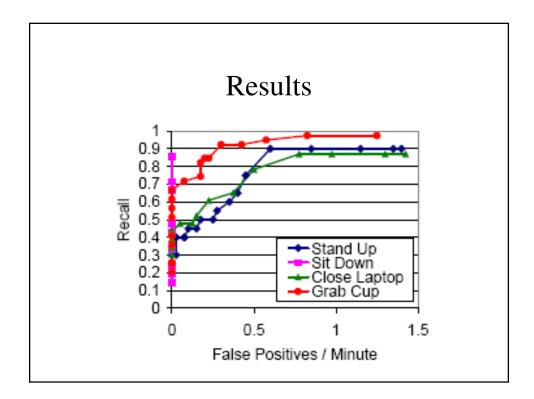


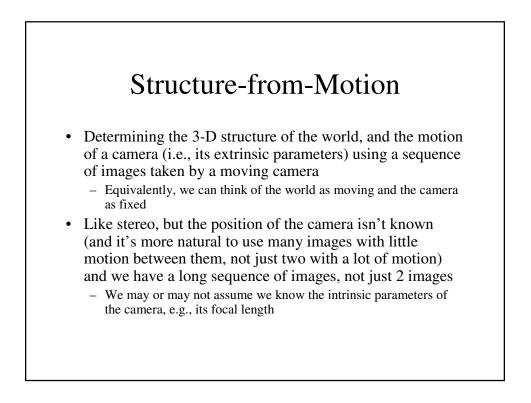


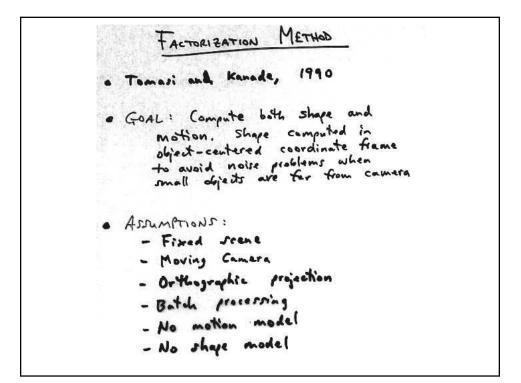
Classifier

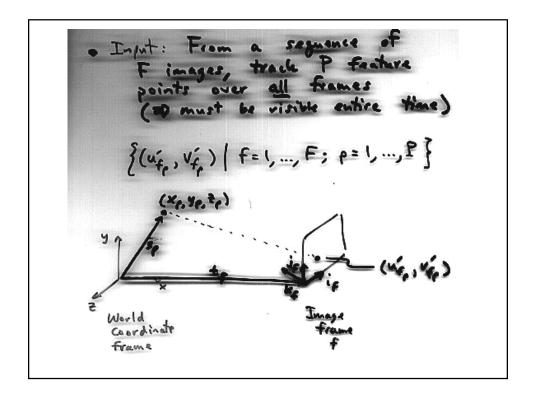
- Cascade of binary classifiers that vote on the classification of the volume
- Given a set of positive and negative examples at a node, each feature and its optimal threshold is computed. Iteratively add filters at each node until a target detection rate (e.g., 100%) or false positive rate (e.g., 20%) is achieved
- Output of the node is the majority vote of the individual filters











• Scone
$$pt$$
 $S_p = (S_p, Y_p, \overline{e}_p)^T$
 $ar Haggraphically projects to
 $(u_{\overline{e}_p}^r, v_{\overline{e}_p}^r)$ where
 $u_{\overline{e}_p}^r = i_{\overline{e}_p}^T (S_p - t_p)$
 $V_{\overline{e}_p}^r = j_{\overline{e}_p}^T (S_p - t_p)$
where $i_{\overline{e}_p}^T = unit$ vactor in camera frame
 $j_{\overline{e}_p}^T = unit$ vactor in camera frame
 $j_{\overline{e}_p}^T = unit$ vactor in camera frame
 $y_{-direction}$
 $t_{\overline{e}_p} = (a_{\overline{e}_p}, b_{\overline{e}_p}, c_p)^T$ translation
 v_{extor} from world coord
arigin to camera origin
• Let world coord, arigin be at
cantroid of scene ptr.
 $\Rightarrow \prod_{\overline{e}_p} \sum_{\overline{e}_p} F_p = 0$$

• Define image coords relative to
centroid of image pts:

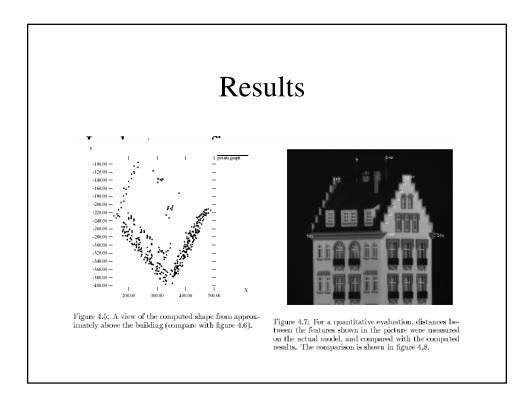
$$\begin{aligned} & \int u_{\xi_{p}} = u_{\xi_{p}} - \bar{u}_{\xi} \\ & V_{\xi_{p}} = v_{\xi_{p}} - \bar{v}_{\xi} \\ & whare \ \bar{u}_{\xi} = \frac{1}{P} \sum_{p=1}^{P} u_{\xi_{p}} &, \ \bar{v}_{\xi} = \frac{1}{P} \sum_{p=1}^{P} v_{\xi_{p}} \\ & \text{Hence,} \\ & u_{\xi_{p}} = u_{\xi_{p}} - \bar{u}_{\xi} \\ & = i_{\xi} (s_{p} - t_{\xi}) - \frac{1}{P} \sum_{i} i_{\xi}^{T} (s_{p} - t_{\xi}) \\ & = i_{\xi}^{T} ((s_{p} - t_{\xi}) - \frac{1}{P} \sum_{i} (s_{p} - t_{\xi})) \\ & = i_{\xi}^{T} ((s_{p} - t_{\xi}) - \frac{1}{P} \sum_{i} (s_{p} - t_{\xi})) \\ & = i_{\xi}^{T} (s_{p} - \frac{1}{P} \sum_{i} s_{p}) \\ & = i_{\xi}^{T} s_{p} \end{aligned}$$
Uses the fact that the centroid is projection.
Every projections to projections to the projection of the projection

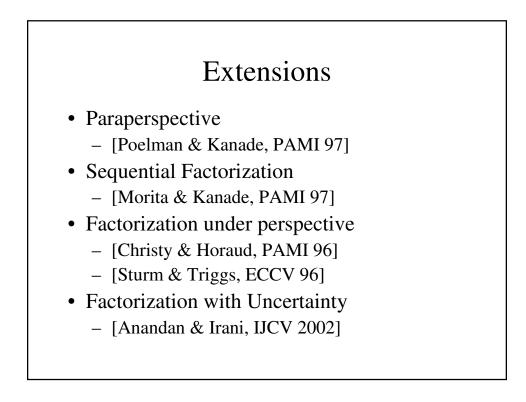
• Let
$$W = \begin{bmatrix} u_{11} & \cdots & u_{1p} \\ \vdots & \ddots & \vdots \\ u_{F} & \cdots & u_{Fp} \end{bmatrix}$$
 and frame F pts
Topt 1 tracked over F frames
Similarly define V.
• Define "Measurement Matrix"
 $W = \begin{bmatrix} u \\ T \end{bmatrix}$ $2F \times P$ matrix
 $vregistered$ "
image pts
• Let $M = \begin{bmatrix} u \\ T \end{bmatrix}$ $2F \times S$ matrix
 $vregistered$ "
image pts
• Let $M = \begin{bmatrix} u \\ T \end{bmatrix}$ $2F \times S$ matrix
 $vregistered$ "
image pts
 $S = \begin{bmatrix} s_1 \cdots s_p \end{bmatrix}$ $3 \times P$
"stepse" matrix

• Noise corrupts
$$W$$
, so rank $(W) \neq 3$
By SVD decompose W :
 $W = L \leq R$
 $\begin{bmatrix} P \\ P \end{bmatrix} \begin{bmatrix} P \\ P_2 \end{bmatrix} \begin{bmatrix} P \\ P \end{bmatrix} \begin{bmatrix} P$

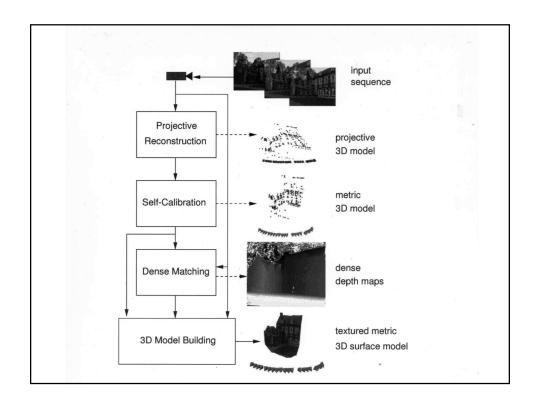
By rank theorem, ideal matrix W⁴
has rank \$3 =>
$$G_y = \dots = G_p = 0$$
 for W⁴
 $W = noisy version of W4 $\Rightarrow L'' E''R'' due to noise onlyand L'E'R' represents bostapproximation of W4$$

Factorization Algorithm
1. Compute W
2. Compute SVD (W) = LZR
3.
$$\hat{M} = L' \Xi'^{\pm}$$
 after partitioning
 $\hat{S} = \Xi'^{\pm} R'$ (Hence rat to 0
all but 3 layer
signific vdr)
Now $\hat{M}\hat{S}$ of right size
but $W^{\pm} = \hat{M}\hat{S}$ not unique
4. Find 3 ×1 matrix \hat{A} such that
 $M = \hat{M}\hat{A}^{-1}$ Nonlinear
and $S = \hat{A}\hat{S}$ (Volume
(add metric constraints to solve
for \hat{A} . E.g., rows in \hat{M}
are unit vectors)
5. Solve for \hat{M} and \hat{S}
 $M = \hat{M}\hat{A}^{-1}$ (S = $\hat{A}\hat{S}$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S}$ (S = $\hat{A}\hat{S}$ (S = $\hat{A}\hat{S}$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S}$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S}$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S}$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S})$ (S = $\hat{A}\hat{S})$ (S =





Stratified Approach to Structure from Motion Given: Sequence of images from an uncalibrated camera moving arbitrarily around a static 3D scene Goal: 3D model of scene Approach : 1. Compute Projective reconstruction 2. Compute Affine reconstruction 3. Compute Métric reconstruction



Projective Reconstruction
Great: Compute for each image its

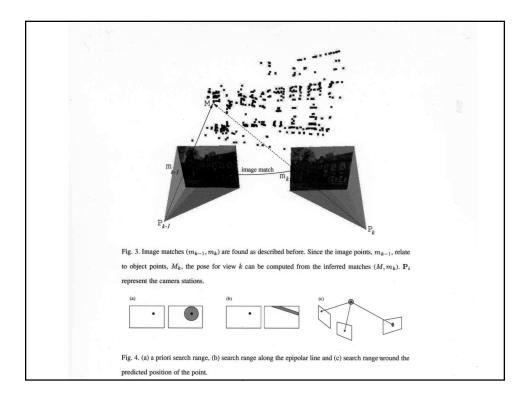
$$3 \times 4$$
 projection matrix P that
maps
 $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} Pu & Piz & Pix Pix P \\ Pix & Pix Pix P \\ Pix & Pix P \\ Pix P \\$

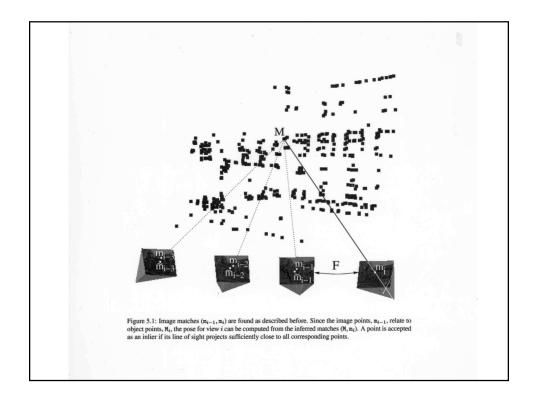
Step 3: Using the projection matrices,
P and P', reconstruct the
initial structure by triangulation
Step 4: Incrementally, add images
3,..., n by detecting corner
points, estimate epipalar geom.
using RANSAC w/ previous
image, using already reconstructed
points to compute projection
matrix for its view

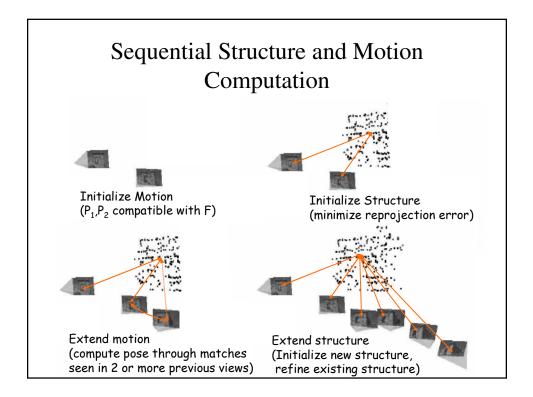
At end of this step we have

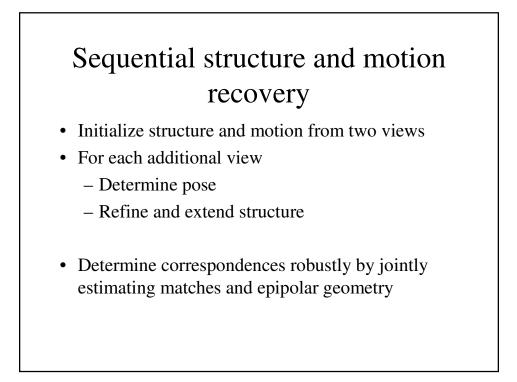
$$P_i = [I | o]$$

 $P_i = [H_{i} | e_{i}]$, $i=2,...,n$









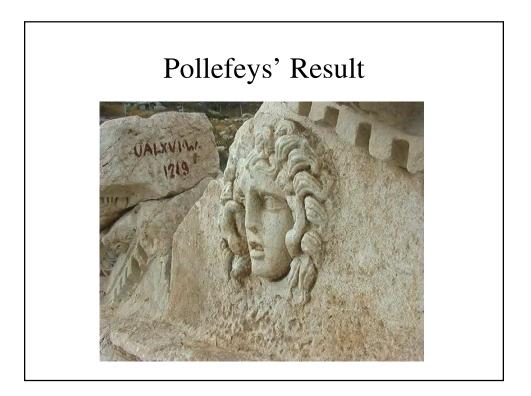
Metric Reconstruction	
Gaal: Enclidean reconstruction up to a scale factor (called Metric reconstruction)	
Step 5: Self-Calibration -> Compute the intrinsic camera parameters	
E.g. add constraints on intrinsic parameteurs such as i) no "skew" 2) square pixels	
Note: these constraints do <u>not</u> require that other intrinsic parameters not vary over time e.g. zoom can change	

Result is a new set of
projection matrices of form:

$$P_i = K_i \begin{bmatrix} R_i & | -R_i t_i \end{bmatrix}$$

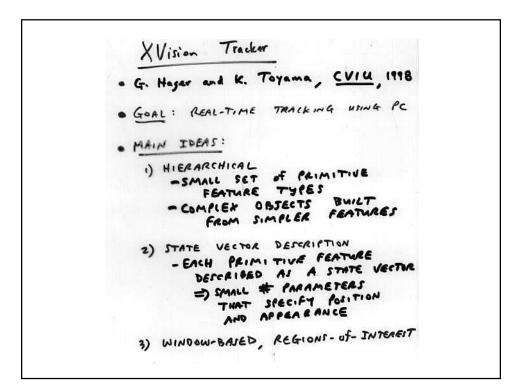
where $K_i = \begin{bmatrix} \partial R_k & s & u_0 \\ 0 & \partial K_i & V_0 \\ 0 & 0 & 1 \end{bmatrix}$
 $d'_{u} = f K_u$
 $d'_{u} = f K_u$
 $d'_{u} = a spect$
 $d'_{u} = f K_u$
 $(u_0, V_0) = principal point$
 $s = image skaw$
One common method for self-calib:
Compute the "absolute conic",
a virtual conic corresponding to
the unique degenerate guadric
of planes that is invariant
under all rigid transformations

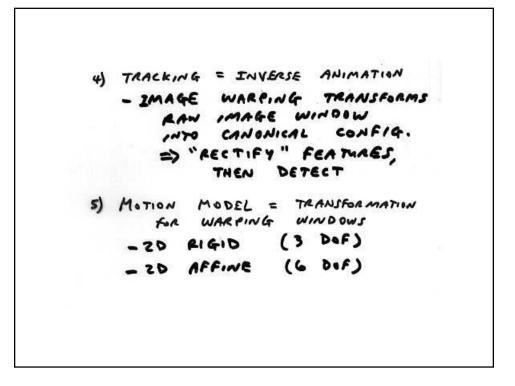
Step 6: Compute dense correspondence First, rectify images Then detect correspondences using pepipolar constraint 2) uniqueness constraint 3) ordering constraint (monotonicity) Step 7: Depth map fusion and uncertainty reduction ⇒ Find chains of correspondences across subsequences of images -> Intersect depth estimates



Object Tracking

- 2D or 3D motion of known object(s)
- Recent survey: "Monocular model-based 3D tracking of rigid objects: A survey" available at http://www.nowpublishers.com/

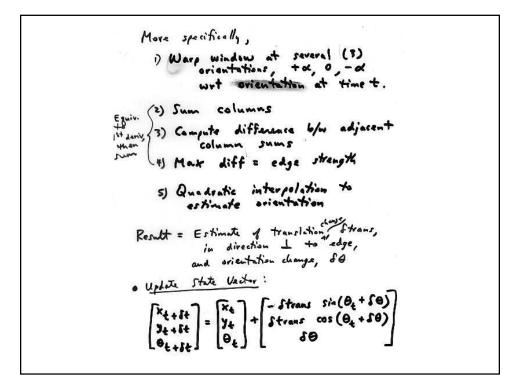


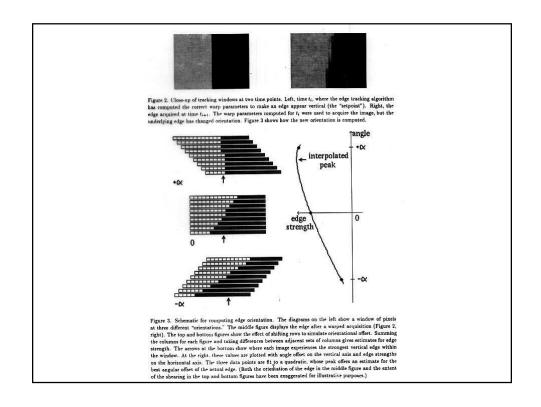


PRIMITIVE FEATURE : EDGE
(LINE SEGMENT)
• STATE VECTUR AT TIME t:

$$L_t = (x_t, y_t, \Theta_t, r_t)^T$$

• "appearance"
i.e., ideal filter
response
• STATE VECTUR UPDATE :
 $L_{t+St} = L_t + Edge(War, (I(t+St); x_t, y_t, \Theta_t); L_t))$
 $\Rightarrow i) Estimate evicatotion at t+St
 $g_t); L_t$
 $\Rightarrow i) Estimate evicatotion at t+St
 $g_t); L_t$
 $\Rightarrow i) Estimate evicatotion at t+St
 $g_t); L_t$$$$





• To estimate best affine transformation,
solve optimization problem:
min
$$\sum_{\overline{x} \in W} (I(A\overline{x} + \overline{a}, t) - I(\overline{x}, t_0))^2 W(\overline{x})$$

where
 $\overline{x} = (x, y)^T = \frac{pixel in}{schere - w} window W$
 $\overline{a} = (u, v)^T = translation vector$
 $A = \begin{bmatrix} Sx & \overline{x} \\ 0 & Sy \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ ration,
w(\overline{x}) possitive weighting function

