Normalized Cut Method
for Image Segmentation

-J. Shi and J. Malik, IEEE Trans. Pattern Analysis and
Machine Intelligence 22(8), 1997

* Divisive (aka splitting, partitioning) method

» Graph-theoretic criterion for measuring goodness of
an image partition

* Hierarchical partitioning
» dendrogram type representation of all regions

« Criterion for measuring a candidate partitioning:
Affinity measure between elements within each region
is high, and the affinity between elements across
regions is low

o Affinity: element x element - 0" Examples of
components of an affinity function: spatial position,
intensity, color, texture, motion. Defines the similarity
of a pair of data elements.




Affinity (Similarity) Measures

 Intensity

aff (x,y) = e ' 0wl 2ot

» Distance
_lx=vl2 /242
aff(x,y) = e 2

e Color 1
« Texture
* Motion | SN

Problem Formulation

* Given an undirected graph G = (V, E), where V is a set
of nodes, one for each data element (e.g., pixel), and E
is a set of edges with weights representing the affinity
between connected nodes

* Find the image partition that maximizes the
“association” within each region and minimizes the
“disassociation” between regions

* Finding the optimal partition is NP-complete




e Let A, B partition G. Therefore, AOB=V,andAnB=0

* The affinity or similarity between A and B is defined as

CUt(A,B) = ZVVIJ
iDA,jOB
= total weight of edges removed

* The optimal bi-partition of G is the one that minimizes cut

* Cut is biased towards small regions

» So, instead define the normalized similarity, called the

normalized-cut(A,B), as
ncut(A, B) = cut(A B) N cut(B, A)
assoc(AV) assoc(B,V)

where assoc(A,V) = Z W,
|
i0A KDV
= total connection weight from nodes in A
to all nodes in G
* Ncut measures the disimilarity between regions
(“disassociation” measure)

« Ncut removes the bias based on region size (usually)




Similarly, define the “normalized association:”
assoc(A A N assoc(B, B)
assoc(A,V) assoc(B,V)

nassoc(A, B) =

Nassoc measures how similar, on average, nodes within the
groups are to each other

New goal: Find the bi-partition that minimizes ncut(A,B) and
maximizes nassoc(A,B)

But, it can be proved that ncut(A,B) = 2 — nassoc(A,B), so we
can just minimize ncut: y = arg min ncut

Lety be a P = |V| dimensional vector where 1, if nodei A

yi ={ .
' " =1, otherwise
Let d(|) = ZWIJ
j
define the affinity of node i with all other nodes
Let D = P x P diagonal matrix:
d, O 0]
0 d, .. O
D= “degree matrix”




e Let A =P x P symmetric matrix:

Wi, W, .o W,

Wy, Wy, ..o W,
“affinity matrix” A=l % 22 Hp
* It can be shown that Wo, Wo, oo Wop

y = arg min, ncut(x)
T
. D-A .
y

* Relaxing the constraint on y so as to allow it to have real
values means that we can approximate the solution by
solving an equation of the form: (D—-A)y =Dy

» The solution, y, is an eigenvector of (D — A)

* An eigenvector is a characteristic vector of a matrix
and specifies a segmentation based on the values of
its components; similar points will hopefully have
similar eigenvector components.

» Theorem: If M is any real, symmetric matrix and x is
orthogonal to the j-1 smallest eigenvectors X, ..., X4,
then xTMx / xTx is minimized by the next smallest
eigenvector x; and its minimum value is the
eigenvalue A




Smallest eigenvector is always 0

because A=V, B={} means ncut(A,B)=0
Second smallest eigenvector is the real-valued y that
minimizes ncut

Third smallest eigenvector is the real-valued y that
optimally sub-partitions the first two regions

Etc.

Note: Converting from the real-valued y to a binary-
valued y introduces errors that will propagate to each
sub-partition

NCUT Segmentation Algorithm

. Set up problem as G = (V,E) and define affinity matrix
A and degree matrix D

. Solve (D — A)x = ADx for the eigenvectors with the
smallest eigenvalues

. Let x, = eigenvector with the 2"¥ smallest

eigenvalue A,

. Threshold x, to obtain the binary-valued vector x”,
such that ncut(x",) = ncut(xt, ) for all possible
thresholds t

. For each of the two new regions, if ncut < threshold T,
then recurse on the region




Comments on the Algorithm

* Recursively bi-partitions the graph instead of using the
31, 4t etc. eigenvectors for robustness reasons (due
to errors caused by the binarization of the real-valued
eigenvectors)

» Solving standard eigenvalue problems takes O(P3)
time

» Can speed up algorithm by exploiting the “locality” of
affinity measures, which implies that A is sparse (non-
zero values only near the diagonal) and (D — A) is
sparse. This leads to a O(PVP) time algorithm

Example: 2D Point Set
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Eigenvalues and Eigenvectors
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Figure f: Subplol (L} plola the amallesl 10 dpenwlne of the paneralized cipaalue aystan
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Figure 6: Partition of the point sel using Lhe dgen veclor wilh Lhe sccond sroallest dipgen value.
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Fipre 7. Subarlitionine of ihe panl sols ueine Lhe o dom wilh Lha Lhind and fourih




Figure & A pray lovel i of a baseball garne.

Jusl asin Lhe poinl sel gronping cass, we have the bllowing steps for magesqmentalion:
L Conslmcl a weighled graph, G = (¥, E), by taking wch pixel as a node, and con-
necling each pair of pixels by an odgs. The waght oo Lhad, edge should refloct the likelihood
af the Lwo pixels belomg Lo one objeel. Using just Lhe brighines vale of the pixals and Lhdr
apatial lomlion, we cn define Lhe graph cdge weighl, connocling two node § and j as:
X H:;-XMI’

URE bt Mol i | o

i i) - XNl =r

Li] olherwing

Fignre 9 shows the weighl mnatric Woassocalod wilh ihis weishlod praph.

1 Fiapg
wy = U E

(L)

(b)

n=nt* nc

(d)

Fignre % The simnilarily mesure bolwoon cach pair of pixels o (a) can be mmmacized na
X e weighl malsix W, shown in (b}, where n is the numnber of pixelsin the imagy. Insicad
of displaying W ilsell, which in very large, two parlionlar rows, i3 and i of W are shown in
(e} and (d). Each of Lhe rows, is Lhe conneclion wepghls fom a pixel o all other pixelsin
ihe image. The iwo rows g1 and 3 are rsbaped nlo the st of the inage, and displayed.
The brightnms value in (6] and [d) raflocts the conneclion waghls. Nole thal W conlans

larpe number of zeras or near moros, due Lo Lhe spalial prosimeily fclor.




Eigenvalues and Eigenvectors

Putling ovar ything logelber , cach of L walsi s voctor canpulations et €(n) oporat
with a mumall coustant factor, Thenwnber r depends oo many lactors[LL]. Lu our experiments

ou imagg sqgmentation , wo obsarved Lhal v is Lypically Lo than (fni)
Fignre 12 shows Lhe smallad dgenveciors compuled for L gocralized dyensysban with
Lhe weight matric dellued above.
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Figure 12: Subplol (1) plots Lhe snallel denvedions of Lo gaalizd dgavabae syslan
fLL). Subplol (2) - (9) shows the dgemvectors carresponding Lhe 2ud smallal Lo the 9ih
ammallent digmvalue of lhe aystom. The dgmvocions arg rebaped Lo be tha siss of the

Discretizing an Eigenvector

(a) (b)

Figure 13 The dgauvostor i (a) i a doss approximation Lo a dissele partitioning indicta
voclor. s hiskograrn, shown in (b), indicales Lhal Lhe values in Lhe eigemvector dusler around
iwor exirerne values. () and (d) shows Lhe parlitioning roslls with di front splilting ponts
indicaled by the amows in (b). The partilion wilh the bal narmalized ol valoe is chasen.
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Partitioning stops when histogram is not bimodal

(e}

| %

Figure 14: (a) shows Lhe oripinal image of sze 80 % 100 Linsge intensily is normalized Lo
Lewilbin 0 and L. Subplol (b) - (b} shows the companents of the parlition wilh Menl wlne
lem than 0.04. Paramneler selling: op = 0.1, oy = 100, r = 10

b c
Figure 16: A synilhelic image showing a nasy “slep” image. llonsily varics Fom 0 o

L, and Ganmian nas: with o = 0.2 15 added. Subplol (b} shows Lhe dpenveclor wilh the
accond moallest dgen valne, and mbplot (€} showa Lhe rasuliing parlition.
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Figure LT (a) A synihelic imnage showing thres image palches forming a junclion. lmage
mlmaty vanem rom 0 lo | and Gansian noise with o = 0.1 s addod. (b)-{d} shows the
Lop three componanls of Lhc parlilion.
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Figore 21 (a) shows an fwmge of & nebra. The rormining myge show Lhe maja can-

Some Example Results

#grps: 19
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