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Normalized Cut Method
for Image Segmentation

• J. Shi and J. Malik, IEEE Trans. Pattern Analysis and 
Machine Intelligence 22(8), 1997

• Divisive (aka splitting, partitioning) method

• Graph-theoretic criterion for measuring goodness of   
an image partition

• Hierarchical partitioning
• dendrogram type representation of all regions

• Criterion for measuring a candidate partitioning:  
Affinity measure between elements within each region 
is high, and the affinity between elements across 
regions is low

• Affinity:  element × element → ℜ+ Examples of 
components of an affinity function:  spatial position, 
intensity, color, texture, motion.  Defines the similarity 
of a pair of data elements.
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Affinity (Similarity) Measures

• Intensity

• Distance

• Color
• Texture
• Motion
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Problem Formulation

• Given an undirected graph G = (V, E), where V is a set 
of nodes, one for each data element (e.g., pixel), and E 
is a set of edges with weights representing the affinity 
between connected nodes

• Find the image partition that maximizes the 
“association” within each region and minimizes the 
“disassociation” between regions

• Finding the optimal partition is NP-complete
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• Let A, B partition G.  Therefore, A ∪ B = V, and A ∩ B = ∅

• The affinity or similarity between A and B is defined as

cut(A,B)  =

= total weight of edges removed

• The optimal bi-partition of G is the one that minimizes cut

• Cut is biased towards small regions
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• So, instead define the normalized similarity, called the 
normalized-cut(A,B), as

where assoc(A,V) =

= total connection weight from nodes in A 
to all nodes in G

• Ncut measures the disimilarity between regions 
(“disassociation” measure)

• Ncut removes the bias based on region size (usually)
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• Similarly, define the “normalized association:”

• Nassoc measures how similar, on average, nodes within the 
groups are to each other

• New goal:  Find the bi-partition that minimizes ncut(A,B) and
maximizes nassoc(A,B)

• But, it can be proved that ncut(A,B) = 2 – nassoc(A,B), so we 
can just minimize ncut:   y = arg min ncut
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• Let y be a P = |V| dimensional vector where

• Let 

define the affinity of node i with all other nodes
• Let D = P x P diagonal matrix:
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• Let A = P x P symmetric matrix:

• It can be shown that
y = arg minx ncut(x)

=

• Relaxing the constraint on y so as to allow it to have real 
values means that we can approximate the solution by 
solving an equation of the form:       (D – A)y = λDy
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• The solution, y, is an eigenvector of (D – A)

• An eigenvector is a characteristic vector of a matrix 
and specifies a segmentation based on the values of 
its components; similar points will hopefully have 
similar eigenvector components.  

• Theorem:  If M is any real, symmetric matrix and x is 
orthogonal to the j-1 smallest eigenvectors x1, …, x j-1, 
then xTMx / xTx is minimized by the next smallest 
eigenvector x j and its minimum value is the    
eigenvalue λj
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• Smallest eigenvector is always 0
because A=V, B={} means ncut(A,B)=0

• Second smallest eigenvector is the real-valued y that 
minimizes ncut

• Third smallest eigenvector is the real-valued y that 
optimally sub-partitions the first two regions

• Etc.
• Note:  Converting from the real-valued y to a binary-

valued y introduces errors that will propagate to each 
sub-partition

NCUT Segmentation Algorithm

1. Set up problem as G = (V,E) and define affinity matrix 
A and degree matrix D

2. Solve (D – A)x = λDx for the eigenvectors with the 
smallest eigenvalues

3. Let x2 = eigenvector with the 2nd smallest    
eigenvalue λ2

4. Threshold x2 to obtain the binary-valued vector x´2
such that ncut(x´2) ≥ ncut(xt

2 ) for all possible 
thresholds t

5. For each of the two new regions, if ncut < threshold T, 
then recurse on the region
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Comments on the Algorithm

• Recursively bi-partitions the graph instead of using the 
3rd, 4th, etc. eigenvectors for robustness reasons (due 
to errors caused by the binarization of the real-valued 
eigenvectors)

• Solving standard eigenvalue problems takes O(P3) 
time

• Can speed up algorithm by exploiting the “locality” of 
affinity measures, which implies that A is sparse (non-
zero values only near the diagonal) and (D – A) is 
sparse.  This leads to a O(P√P) time algorithm

Example:  2D Point Set
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Eigenvalues and Eigenvectors
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Example 2:  A Grayscale Image
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Eigenvalues and Eigenvectors

Discretizing an Eigenvector
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Partitioning stops when histogram is not bimodal
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Some Example Results


