Normalized Cut Method
for Image Segmentation

-J. Shi and J. Malik, IEEE Trans. Pattern Analysis and
Machine Intelligence 22(8), 1997

« Divisive (aka splitting, partitioning) method

« Graph-theoretic criterion for measuring goodness of
an image partition

« Hierarchical partitioning
« dendrogram type representation of all regions

- Criterion for measuring a candidate partitioning:
Affinity measure between elements within each region
is high, and the affinity between elements across
regions is low

» Affinity: element x element — O* Examples of
components of an affinity function: spatial position,
intensity, color, texture, motion. Defines the similarity
of a pair of data elements.

.

Affinity (Similarity) Measures

Intensity
aff (x,y) = g7l 01 r2ef
Distance
aff(x,y) = e 127

Color .
Texture
Motion

Problem Formulation

» Given an undirected graph G = (V, E), where V is a set
of nodes, one for each data element (e.g., pixel), and E
is a set of edges with weights representing the affinity
between connected nodes

 Find the image partition that maximizes the
“association” within each region and minimizes the
“disassociation” between regions

* Finding the optimal partition is NP-complete




Let A, B partition G. Therefore, AOB=V,andAn B=0

The affinity or similarity between A and B is defined as

CUt(A,B) = Z:WIJ
iDA, jOB
= total weight of edges removed

The optimal bi-partition of G is the one that minimizes cut

Cut is biased towards small regions

¢ So, instead define the normalized similarity, called the

normalized-cut(A,B), as

nCUt(A B) = Cut(AB) . cut(B,A)
assoc(AV) assoc(B,V)
where assoc(A,V) = Z\Nk

|

iOAKDV
= total connection weight from nodes in A
to all nodes in G

« Ncut measures the disimilarity between regions

(“disassociation” measure)

« Ncut removes the bias based on region size (usually)

Similarly, define the “normalized association:”
assoc(A, A) + assoc(B, B)

nassoc(A B) = assoc(AV) assoc(B,V)

Nassoc measures how similar, on average, nodes within the
groups are to each other

New goal: Find the bi-partition that minimizes ncut(A,B) and
maximizes nassoc(A,B)

But, it can be proved that ncut(A,B) = 2 — nassoc(A,B), so we
can just minimize ncut: y = arg min ncut

¢ Lety be aP = |V|dimensional vector where l, if nodei O A

Yi

-1, otherwise
« Let d (|) = z w;
i
define the affinity of node i with all other nodes

¢ Let D =P x P diagonal matrix:

d o0 0

0 d, .. 0

D= “degree matrix”




Let A = P x P symmetric matrix:
y Wll W12 W]_P
W,, W, W,
“affinity matrix” A= # 2 2P
It can be shown that Wop Wop oo Wep
y = arg min, ncut(x)
T
y (D-A)y

= argmin, - subject toy'D1=0
Dy

Relaxing the constraint ony so as to allow it to have real

values means that we can approximate the solution by

solving an equation of the form: (D - A)y = ADy

» The solution, y, is an eigenvector of (D — A)

» An eigenvector is a characteristic vector of a matrix

and specifies a segmentation based on the values of
its components; similar points will hopefully have
similar eigenvector components.

Theorem: If M is any real, symmetric matrix and X is
orthogonal to the j-1 smallest eigenvectors Xy, ..., Xj.1,
then xTMx / xTx is minimized by the next smallest
eigenvector x; and its minimum value is the
eigenvalue A,

Smallest eigenvector is always 0

because A=V, B={} means ncut(A,B)=0
Second smallest eigenvector is the real-valued y that
minimizes ncut
Third smallest eigenvector is the real-valued y that
optimally sub-partitions the first two regions
Etc.
Note: Converting from the real-valued y to a binary-
valued y introduces errors that will propagate to each
sub-partition

NCUT Segmentation Algorithm

. Set up problem as G = (V,E) and define affinity matrix

A and degree matrix D

. Solve (D — A)x = ADx for the eigenvectors with the

smallest eigenvalues

Let x, = eigenvector with the 2" smallest
eigenvalue A,

. Threshold x, to obtain the binary-valued vector x”,

such that ncut(x”,) = ncut(x', ) for all possible
thresholds t

For each of the two new regions, if ncut < threshold T,
then recurse on the region




Comments on the Algorithm

» Recursively bi-partitions the graph instead of using the
31, 4t etc. eigenvectors for robustness reasons (due
to errors caused by the binarization of the real-valued

eigenvectors)

 Solving standard eigenvalue problems takes O(P3)

time

» Can speed up algorithm by exploiting the “locality” of
affinity measures, which implies that A is sparse (non-
zero values only near the diagonal) and (D — A) is

sparse. This leads to a O(PVP) time algorithm

Example: 2D Point Set
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Example 2: A Grayscale Imag

Figure 8 A gray lovel imnage of a baschall garne
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Figure 9 The sinilarily mesure bolwosn wach pair of pixels i (a} can b mummarived in a
st waight watzix W, shown i (b), whor mia the munber of pixdaintheimag. kstoad
of displayizg W ilacll, which is vory bargs, two parlicular rows, iy aud iz of W arc shown in
(c) aud [d), Bach of the sows, i the conuorlion weighla fom a pixel toall olher pises in
L izmagge, The Lwe rowa i1 and iz are rebapod il the sis of he fmags, aud displayed.
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Eigenvalues and Eigenvectors
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Discretizing an Eigenvector
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Partitioning stops when histogram is not bimodal
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Figure 16: A synthetic inage showing & ndsy “slap” image. bilasily varics Fom 0 to
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Figuro 1T (a) A syntholic imags showing lhireo image patchas formming a junclion. Lnags
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Some Example Results

#grps: 24 #grps: 19
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