Recognizing and Learning
Object Categories

Based on work and slides by R. Fergus, P.
Perona, A. Zisserman, A. Efros, J. Ponce,
S. Lazebnik, C. Schmid, F. DiMaio, and
others

Traditional Problem: Single Object Recognition




Most Objects Exhibit Considerable
Intra-Class Variability

Task: Recognition of object categories

Motorbikes Airplanes Faces Cars (Side) Cars (Rear) Spotied Cats ~ Background
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Some object
categories

Learn from just examples
Difficulties:

Size variation
Background clutter
Occlusion

Intra-class variation
Viewpoint variation
Illumination variation
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Related by function, not form

Approach 1: Discriminative Methods

Object detection and recognition is formulated as a classification problem
The image is partitioned into a set of overlapping windows
... and a decision is taken at each window about if it contains a target object or not

Decision
Background boundary

Where are the screens?

Bag of image patches Computer screen

In some feature space




HRCT Lung Image

Dilated bronchus

Training Examples

Bronchiectasis Non-Bronchiectasis

(positive examples) (negative examples)

|

24 X 24 images




Formulation

S Formulation: binary classification

X, Xg - Xy

Features x= X XN+t XNe2 - XNaM
Labels y= -1  +1 -1 -1 ? ? ?

Training data: each image patch is labeled Test data
as containing the object or not

» Classification function

g = F(az) Where F(w) belongs to some family of functions

« Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)

Discriminative Methods

Nearest Neighbor

L
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i BN

108 examples

Shakhnarovich, Viola, Darrell 2003 LeCun, Bottou, Bengio, Haffner 1998
Berg, Berg, Malik 2005 Rowley, Baluja, Kanade 1998

Support Vector Machines and Kernels Conditional Random Fields
Guyon, Vapnik McCallum, Freitag, Pereira 2000

Heisele, Serre, Poggio, 2001 Kumar, Hebert 2003




Object categorization:
the statistical viewpoint

p(zebralimage)

VS.

p(no zebralimage)
S Bayes’s rule:

p(zebralimage) _  p(imagel zebra) 0 p(zebra)

p(no zebralimage) B p(imagelno zebra) p(no zebra)
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posterior ratio likelihood ratio prior ratio

Object categorization:
the statistical viewpoint

p(zebralimage) p(imagel zebra) E p(zebra)

p(no zebralimage) - p(imagelno zebra) p(no zebra)
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posterior ratio likelihood ratio prior ratio

S Discriminative methods model the posterior

S Generative methods model the likelihood and prior




Discriminative

§ Direct modeling of p(zebralimage)

p(no zebralimage)

Decision

Generative
§ Model p(imagel zebra) and p(imagelno zebra)

R '. i
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p(image| zebra) p(imagelno zebra)
Low Middle

High Middle Low




Three main issues

§ Representation

§ How to represent an object category

S Learning

S How to form the classifier, given training data

S Recognition

§ How the classifier is to be used on novel data

Constructing models of image content

Basic components: local features and spatial relations
Textures Objects Scenes




Constructing models of image content

Basic components: local features and spatial relations

Local model

Constructing models of image content

Basic components: local features and spatial relations

Local model




Constructing models of image content

Basic components: local features and spatial relations

Local model

Constructing models of image content

Basic components: local features and spatial relations

Local model
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Constructing models of image content

Basic components: local features and spatial relations

Local model

Approach 2: Generative Methods
using Bag of Words Models

S$ An image is represented by a collection of “visual words”
and their corresponding counts given a universal dictionary

§ Object categories are modeled by the distributions of these
visual words

§ Although “bag of words” models can use both generative
and discriminative approaches, here we will focus on
generative models
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Bag of ‘words’

Analogy to documents

I etinal, cerebral corte
||| eye, cell, optical

nerve, image
Hubel, Wiesel 4

China is forecasting a trade surplus of $90bn
(£51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surok e created by a

dollar by 2.1%in g
within a narrow band, but the US w4
yuan to be allowed to trade freely. H
Beijing has made it clear that it will takd
time and tread carefully before allowing
yuan to rise further in value.
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1. Feature Detection and Representation

Feature Detection

§ Sliding window
S Leung et al., 1999
§ Viola et al., 1999
S Renninger et al. 2002
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Feature Detection

§ Sliding window

§ Leung et al., 1999

§ Viola et al., 1999

§ Renninger et al., 2002
S Regular grid

§ Vogel et al., 2003

§ Fei-Fei et al., 2005

EIE"T NG
HIE | 1HFS

Feature Detection

§ Sliding window
§ Leung et al., 1999
§ Viola et al., 1999
§ Renninger et al., 2002
S Regular grid
§ Vogel et al., 2003
§ Fei-Fei et al., 2005
S Interest point detector
§ Csurka et al., 2004
§ Fei-Fei et al., 2005
§ Sivic et al., 2005




Feature Detection

§ Sliding window
§ Leung et al., 1999
§ Viola et al., 1999
§ Renninger et al., 2002
S Regular grid
§ Vogel et al., 2003
§ Fei-Fei et al., 2005
S Interest point detector
§ Csurka et al., 2004
§ Fei-Fei et al., 2005
§ Sivic et al., 2005
§ Other methods
§ Random sampling (Ullman et al., 2002)
§ Segmentation based patches (Barnard et al., 2003

Feature Representation

Visual words, aka textons, aka keypoints:

K-means clustered pieces of the image

S Various representations:
S Filter bank responses
S Image Patches
§ SIFT descriptors

All encode more-or-less the same thing ...
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Interest Point Features

Compute
SIFT Normalize
descriptor patch
[Lowe’99]

Detect patches
[Mikojaczyk and Schmid '02]
[Matas et al. '02]
[Sivic et al. 03]

Slide credit: Josef Sivic

Interest Point Features

el
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Clustering (usually k-Means)
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Slide credit: Josef Sivic

Clustered Image Patches
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Image Patch Examples of Codewords

IIIEH
QIYOWY IEEHE

&@

Sivic et al. 2005

Image Representation

frequency

L.
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codewords
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1. Local models for texture recognition

Training set
Feature @ o=
extraction = ',.‘ = w
|:> '..v. .- - :“I Il
el e,
LML
PN R JS ] "
ERETT 4 5 M B
ym““l |:> B “‘— .MN ] =
7] lai_:; o
FREF T mE wE
class n

Bags of features

Lazebnik, Schmid & Ponce, CVPR 2003 and PAMI 2005

1. Local models for texture recognition

Training set bag of features”
e0000 Feature L
extraction = ',: '_. w Quantlzatlon \
=) e Il
.'. . -k
L - L A
ee =
L - Kernel computation
|| . . . and learning
Support Vector
> |:> Machine
Classifier
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class n

Lazebnik, Schmid & Ponce, CVPR 2003 and PAMI 2005
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1. Local models for texture recognition

Training set “bag of features”
Feat . =
exterzcl:irsn = . :" n'. Al Quantization \
-~ - 4
= et om |
DAL eum ,
L) . ‘. Kernel computation
2 e and learning
Support Vector
> ‘ Machine
Classifier
lﬁ@ﬁﬂﬁ:ﬁl ‘ ‘
class n
:: GN‘ g H Testing
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B v D) il =) Decir
UN vﬁ il ®] (class label)
o NN ‘U e CEXN
EC C

class ???
Lazebnik, Schmid & Ponce, CVPR 2003 and PAMI 2005

Local Models for Object Recognition

S Serious limitations:
§ No spatial relations
§ No distinction between foreground and background

§ No localization capability

bag of features




Local Models for Object Recognition

§ Serious limitations:
§ No spatial relations
§ No distinction between foreground and background
§ No localization capability

S And yet they work! Caltech6 dataset results

Object vs. background classification, ROC equal error rate

ours other results

class Zhang et al, (2005) | Willamowski et al. (2004) | Fergus et al. (2003)
airplanes 98.8 97.1 90.2
cars (rear) 98.3 98.6 90.3
cars (side) 95.0 87.3 88.5
faces 100 99.3 96.4
motorbikes 98.5 98.0 92.5
spotted cats 97.0 — 90.0

bag of features bag of features constellation model

Local Models for Object Recognition
PASCAL 2005 challenge

http://ww:. pascal - net wor k. or g/ chal | enges/ VOC

class test set 1
Zhang et al. (2005) Larlus et al. (2006)
bikes 90.3 93.0
cars 93.0 96.1
motorbikes 96.2 97.7
people 91.6 91.7
Sies test sct 2
Zhang ct al. (2005) | Desclacrs ct al. (2005)
bikes 68.1 66.7
B = cars 74.1 71.6
' : motorbikes 79.7 76.9
sl = | : people 75.3 66.9
Training: 684 images Test set 1: 689 images Test set 2: 956 images Object vs. background classification, ROC equal error rate

§ More comparisons: Xerox7, Graz, Caltech101, ...

§ The simplicity and effectiveness of the bag-of-features method
make it a good baseline for evaluating novel approaches and
datasets
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Object Recognition using Texture

Object Categorization by Learned Universal Visual Dictionary

J. Winn, A. Criminisi and T. Minka

Microsoft Research, Cambridge, UK —http://research . microsoft.com/vision/cambridge/recognition/

Learn Texture Model

sy
* Representation: ‘
— Textons (rotation-varian - : |
¢ Clustering T el 4
- K=2000 W ky
— Then clever merging O
ky

— Then fitting histogram Byl SR
with Gaussian == = = T
+ Training = i Bl
| ; = null

— Labeled class data b, : bidg
d " bike

null
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Results Movie

Simple Works Well
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'|—Gaussian-learned dict.
- - Nearest neighbor-initial dict.
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Size of initial dictionary K
Figure 5: Comparing classification performance for Gaussian class
models vs nearest neighbours classification.
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Problem with Bag of Words

S All have equal probability for bag-of-words methods

S Location information is important

Approach 3: Generative Methods using
Part-Based Models

§ An object in an image is represented by a collection of parts,
characterized by both their visual appearances and locations

§ Object categories are modeled by the appearance and spatial
distributions of these characteristic parts

§ Issues for such models include efficient methods for finding
correspondences between the object and the scene
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Model: Constellation of Parts

MOUTH

Fischler & Elschlager, 1973

Yuille, 1991

Brunelli & Poggio, 1993

Lades, v.d. Malsburg et al. 1993
Cootes, Lanitis, Taylor et al. 1995
Amit & Geman, 1995, 1999

Perona et al. 1995, 1996, 1998, 2000 ‘ - —
Felzenszwalb & Huttenlocher, 2000 .

Soans ALY

Representation

§ Object as set of parts

S Generative representation

S Model:

§ Relative locations between parts

§ Appearance of part

S Issues:

§ How to model location

§ How to represent appearance
§ Sparse or dense (pixels or regions)

§ How to handle occlusion/clutter
Figure from [Fischler73]
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Model Structure

S Model shape using Gaussian
distribution on image location _
between parts and scale of each

part

S Model appearance as patches of :;}
pixel intensities /=

S Represent object class as graph of
P image patches with parameters
0

Sparse Representation

+ Computationally tractable (105 pixels 10! -- 102 parts)
+ Generative representation of class

+ Avoid modeling global variability

W W W

+ Success in specific object recognition

§ - Throws away most image information

§ - Parts need to be distinctive to separate from other classes

28



Regions or Pixels?

S # Regions << # Pixels

§ Regions increase tractability but
lose information

S Generally use regions:

§ Local maxima of interest operators

§ Can give scale/orientation invariance i S

MultiScale Harris

Difference-of-Gaussian Saliency
Figures from [Kadir04]

Interest Operator

Kadir and Brady's interest operator
Finds maxima in entropy over scale and location

B 8 & 8

3

8 8 8 5 8

&
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Representation of Appearance

Composite of features

Cutput of feature detector

50 100 150 200 250
cl
Projection onto c,
11x11 patch H Normalize E PCA basis
> 0 >
c

Hierarchical Representations

S Pixels  Pixel groupings  Parts  Object

§ Multi-scale approach
increases number of low-
level features

§ [Amit98]
§ [Bouchard05]

B B BB Ay N
BN By by by W

[
,

Images from [Amit98,Bouchard05]
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The Correspondence Problem

* Model with P parts
* Image with N possible locations for each part

II- 14\ ;

* NP combinations!

Different Graph Structures

Fully connected Star structure Tree structure

O(NS) O(N?) O(N?)

- Sparser graphs cannot capture all interactions between parts

31



Some Class-Specific Graphs

§ Articulated motion

S People

§ Animals

§ Special parameterizations

.
S
\

§ Limb angles

Images from [Kumar05, Felzenszwalb05]

Linear-Time Matching Algorithm

S A Dynamic Programming implementation runs in
quadratic time

S Requires tree configuration of parts
§ Felzenszwalb & Huttenlocher (2000) developed
linear-time matching algorithm

§ Additional constraint on part-to-part cost function d;;

S Basic “Trick”: Parallelize minimization computation over
entire image using a Generalized Distance Transform
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Distance Transforms Model

§ Distance transforms
§ O(N?P)  O(NP) for tree structured models

S How it works
S Assume location model is Gaussian (i.e. e4*)
§ Consider a two part model with u=0, 0=1 on a 1-D image

1 w t—+—— Image pixel
¢ Appearance log probability at x; for part 2 = A,(x;)

—f(d) = -d2

Log probability

Distance Transforms 2

§ For each position of landmark part, find best position for part 2
§ Finding most probable x; is equivalent finding maximum over set of offset parabolas

§ Upper envelope computed in O(N) rather than obvious O(N?) via distance transform
[Feltzenswalb and Huttenlocher *05]

S Add A (x) to upper envelope (offset by u) to get overall probability map

t—+——+—+—+—> Image pixel

Log probability
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Figure from “Efficient Matching of Pictorial Structures,” P.
Felzenszwalb and D. Huttenlocher, Proc. Computer Vision and Pattern
Recognition Conf., 2000

Using Pictorial Structures to Identify
Proteins in X-ray Crystallographic
Electron Density Maps

Frank DiMaio
Jude Shavlik
George N. Phillips, Jr.
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Task Ov

DN 5

AU

erview

N

» Electron density for a + Atomic positions of
region in a protein individual atoms in the
» Protein’s topology density map

Pictorial Structures for Map Interpretation

Basic Idea: Build pictorial structure that is able to
model all configurations of a molecule

§ Each part in “collection of parts” corresponds to an atom

S Model has low-cost conformation
for low-energy states of the molecule
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Results

s PREDICTED vs.

e “‘?l,,fy —

) 2
LYSINE

Representation of Appearance
§ Invariance needs to match that of shape model

§ Insensitive to small shifts in translation/scale

§ Compensate for jitter of features
Se.g. SIFT

§ Illumination invariance

§ Normalize out

§ Condition on illumination of
landmark part
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Representation of Occlusion

S Explicit

§ Additional match of each part to missing state

S Implicit
§ Truncated minimum probability of appearance

Hpart Appearance space

Log probability

Representation of Background Clutter

S Explicit model

§ Generative model for clutter as well as foreground object

§ Use a sub-window

§ At correct position,
no clutter is present
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Object Categorization:
The Statistical Viewpoint

p(zebralimage)

VS.

p(no zebralimage)

S Bayes’s rule:

p(zebralimage) _  p(imagel zebra) 0 p(zebra)
p(no zebralimage) p(imagelno zebra) p(no zebra)
~ ~ —

posterior ratio likelihood ratio prior ratio

Generative Probabilistic Model
Object model

Gaussian shape pdf Gaussian part appearance pdf Gaussian
[ relative scale pdf

VAN

T >

Log(scale)

Prob. of detection

& S | &
0.8 [0.75| 0.9

Background clutter model

Uniform
Uniform shape pdf Gaussian appearance pdf

relative scale pdf
— >
‘ n Log(scale)
. Poisson pdf on # detections
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Model Structure

e Assume prior ratio is known or learned

* Find values for parameters 6 that maximizes the
likelihood ratio

p(X,S,A10)=) p(X,S,A,h16)
hUH

* H is the set of all valid correspondences of image

features to model parts, so [HI = O(NF) in general

* Factor the likelihood to simplify computation (using
Chain Rule)

Learning

39



Learning Situations

S Varying levels of supervision Contains a motorbike
R~

§ Unsupervised

§ Image labels

§ Object centroid/bounding box
S Segmented object

§ Manual correspondence
(typically sub-optimal)

S Generative models naturally incorporate labelling information (or
lack of it)

§ Discriminative schemes require labels for all data points

Learning using EM

» Task: Estimation of model parameters
* Chicken and Egg type problem, since we initially know neither:
- Model parameters

- Assignment of regions to parts

* Let the assignments be a hidden variable and use EM algorithm to
learn them and the model parameters
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Learning procedure

* Find regions & their location & appearance
* Initialize model parameters

» Use EM algorithm and iterate to convergence:

E-step: Compute assignments for which regions belong to which part (red, green
and blue dots)

M-step: Update model parameters

* Try to maximize likelihood — consistency in shape & appearance

Recognition

S For each of P parts, run template over all
locations in image

S Detect local maxima, giving possible locations of
each part

§ Given learned model, find maximum likelihood
ratio of p(X,S,Al0)/p(X,S,Al6,,) for all possible
correspondences — O(N?*P) where N = number of
locations of each part in image

§ If greater than a threshold, signify object detected
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Experimental Procedure

Two series of experiments:

P =6-7
1. Scale variant (using pre-scaled images) N =20-30
> Sealeinvariant 20-30 parameters/part
Datasets: 10-15 PCA features

s Motorbikes, Faces, Spotted cats, Airplanes, Cars from behind and side
5200 - 800 images

Training Testing
§50% images §50% images
§ No identifcation of object within image s Simple object present/absent test

§ROC equal error rate computed, using
background set of images

Motorbikes: Input Images
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Motorbikes: Features Detected
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Equal error rate: 7.5%

Part { — Det:5e—18

ﬁiﬁlnﬂiﬁﬂﬁ
ZaBUKRARE
EOCBBEOEEE

Background — Det:5e—13

nﬁ;"‘@ﬂﬁ

Motorbikes

Shape Model
oy NS
— + 0.75

IncoRREST

Background |mages
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Equal error rate: 4.6%
— Det5e-21
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§ggjﬁ¢o_-og1variant Spotted-cats

Equal €tr
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Face dataset

Robustness of algorithm

Motorbike dataset

% correct
o
o

% correct

80 / /

100

a5

[0

85

20

40 a0

100

% training images containing object

&

2 4 5
Number of parts

ROC equal error rates

Pre-scaled data (identical settings):

Model
Total size ~ Object width
Dataset of dataset (pixels) Motorbikes Faces Airplanes Spotted Cats
Motorbikes 800 200 923 50 51 36
Faces 435 300 33 964 32 32
Airplancs 800 300 64 63 902 53
Spotted Cats 200 80 8 [ 51 900
Scale-invariant learning and recognition:
Total size Object size Pre-scaled Unscaled
Dataset of dataset | range (pixels) | performance | performance
Motorbikes 800 200-480 95.0 93.3
Airplanes 800 200-500 94.0 93.0
Cars (Rear) 800 100-550 84.8 90.3
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Motorbie imags sizss
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Adding Viewpoint Invariance

S Locally approximated by an affine transformation

detected scale invariant region projected region
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Affine-Invariant Patches

Lindeberg & Garding (1997); Mikolajczyk & Schmid (2002);
Tell & Carlsson (2000); Tuytelaars & Van Gool (2002)

Idea:

3D objects are never planar
in the large, but they are
always planar in the small

Representation: Local
invariants and their
spatial layout

Intensity-based Method for Detecting
Affine-Invariant Interest Points

Tuytelaars et al., 2000

Search for intensity extrema
Observe intensity profile along rays
Search for maximum of invariant
function f(t) along each ray
Connect local maxima

Fit ellipse

Double ellipse size

W~

ook
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Affine Invariant Harris Interest Points

§ Localization & scale influence affine
neighhorbood

§ => affine invariant Harris points (Mikolajczyk &
Schmid’02)

S Iterative estimation of these parameters

S localization — local maximum of the Harris measure
S scale — automatic scale selection with the Laplacian

§ affine neighborhood — normalization with second
moment matrix

S Repeat estimation until convergence

S Initialization with multi-scale interest points

Affine invariant Harris points

§ Tterative estimation of localization, scale,
neighborhood

Initial points
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Affine invariant Harris points

§ Iterative estimation of localization, scale,
neighborhood

lteration #1

Affine invariant Harris points

§ Iterative estimation of localization, scale,
neighborhood

lteration #2
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Affine invariant Harris points

S Initialization with multi-scale interest points

Affine Invariant Interest Point Detection
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Application: Image Retrieval

change in viewing angle

Matches

22 correct matches
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Application: Image Retrieval

i > 5000
images

change in viewing angle
+ scale change

Matches

33 correct matches
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Figure 2: Model gallery: sample input images and renderings of the
corresponding models.
Jean Ponce!, Svetlana Lazebnik', Fredrick Rothganger', Cordelia Schmid?

R

Figure 3: Object recognition experiments. The three rows of this figure show (respectively) input images, model patches matched to these images, and
recognized models rendered in their estimated pose. Note that the teddy bear in the leftmost column is in a pose quite different from those used to acquire
its model. Alse note the significant amount of clutter and occlusion in cach image.

Jean Ponce!, Svetlana Lazebnik', Fredrick Rothganger', Cordelia Schmid?
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Application: Photo Tourism

§S http://phototour.cs.washington.edu/

S Detect and match local patch features across
images of a scene taken by many different people
and found via shared image databases such as
Flickr

Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006
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Probabilistic Parts and Structure Models
Summary

§ Correspondence problem

§ Efficient methods for large # parts and # positions in
image

§ Challenge to get representation with desired invariance

S$ Minimal supervision

S Future directions:
S Multiple views
§ Approaches to learning

§ Multiple category training

Combining Segmentation and Recognition

S Example: Given an image and object category, segment the object

Object
Category
Model

Cow Image Segmented Cow

Segmentation should (ideally) be

* shaped like the object, e.g., cow-like

* obtained efficiently in an unsupervised manner
+ able to handle self-occlusion
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