Recognizing and Learning Object Categories

Based on work and slides by R. Fergus, P. Perona, A. Zisserman, A. Efros, J. Ponce, S. Lazebnik, C. Schmid, F. DiMaio, and others

Traditional Problem: Single Object Recognition

Most Objects Exhibit Considerable Intra-Class Variability

Task: Recognition of object categories

Some object categories

Learn from just examples

Difficulties:

- **f** Size variation
- f Background clutter
- f Occlusion
- f Intra-class variation
- f Viewpoint variation
- f Illumination variation

Formulation

§ Formulation: binary classification

+1

Features x =

Labels y =

-1 -1 X_{N+1} X_{N+2} ... X_{N+M}

Training data: each image patch is labeled as containing the object or not

Test data

Classification function

 $\widehat{y} = F(x)$ Where F(x) belongs to some family of functions

Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)

Discriminative Methods

Nearest Neighbor

Shakhnarovich, Viola, Darrell 2003 Berg, Berg, Malik 2005

Neural Networks

LeCun, Bottou, Bengio, Haffner 1998 Rowley, Baluja, Kanade 1998

Support Vector Machines and Kernels

Guyon, Vapnik Heisele, Serre, Poggio, 2001

Conditional Random Fields

McCallum, Freitag, Pereira 2000 Kumar, Hebert 2003

Object categorization: the statistical viewpoint

p(zebra | image)
vs.

 $p(no\ zebra|image)$

S Bayes's rule:

$$\frac{p(\textit{zebra} \mid \textit{image})}{p(\textit{no zebra} \mid \textit{image})} = \frac{p(\textit{image} \mid \textit{zebra})}{p(\textit{image} \mid \textit{no zebra})} \cdot \frac{p(\textit{zebra})}{p(\textit{no zebra})}$$
posterior ratio likelihood ratio prior ratio

Object categorization: the statistical viewpoint

$$\frac{p(zebra \mid image)}{p(no \ zebra \mid image)} = \frac{p(image \mid zebra)}{p(image \mid no \ zebra)} \cdot \frac{p(zebra)}{p(no \ zebra)}$$
posterior ratio
likelihood ratio
prior ratio

- S Discriminative methods model the *posterior*
- § Generative methods model the likelihood and prior

Three main issues

- **S** Representation
 - § How to represent an object category
- **S** Learning
 - § How to form the classifier, given training data
- **S** Recognition
 - § How the classifier is to be used on novel data

Constructing models of image content

Basic components: *local features* and *spatial relations*Textures Objects Scenes

Constructing models of image content

Basic components: local features and spatial relations

Local model

Constructing models of image content

Basic components: local features and spatial relations

Local model

Constructing models of image content

Basic components: local features and spatial relations

Constructing models of image content

Basic components: local features and spatial relations

Local model

Semi-local model

Approach 2: Generative Methods using Bag of Words Models

- S An image is represented by a collection of "visual words" and their corresponding counts given a universal dictionary
- S Object categories are modeled by the distributions of these visual words
- § Although "bag of words" models can use both generative and discriminative approaches, here we will focus on generative models

Feature Detection

- **S** Sliding window
 - § Leung et al., 1999
 - S Viola et al., 1999
 - S Renninger et al. 2002

Feature Detection

- **S** Sliding window
 - § Leung et al., 1999
 - § Viola et al., 1999
 - S Renninger et al., 2002
- S Regular grid
 - § Vogel et al., 2003
 - § Fei-Fei et al., 2005

Feature Detection

- Sliding window
 - § Leung et al., 1999
 - § Viola et al., 1999
 - S Renninger et al., 2002
- § Regular grid
 - § Vogel et al., 2003
 - § Fei-Fei et al., 2005
- § Interest point detector
 - § Csurka et al., 2004
 - § Fei-Fei et al., 2005
 - § Sivic et al., 2005

Feature Detection

- **S** Sliding window
 - § Leung et al., 1999
 - § Viola et al., 1999
 - S Renninger et al., 2002
- S Regular grid
 - § Vogel et al., 2003
 - § Fei-Fei et al., 2005
- § Interest point detector
 - S Csurka et al., 2004
 - § Fei-Fei et al., 2005
 - § Sivic et al., 2005
- **S** Other methods
 - S Random sampling (Ullman et al., 2002)
 - Segmentation based patches (Barnard et al., 2003

Feature Representation

Visual words, aka textons, aka keypoints:

K-means clustered pieces of the image

- S Various representations:
 - § Filter bank responses
 - **§** Image Patches
 - **SIFT** descriptors

All encode more-or-less the same thing ...

Local Models for Object Recognition

- **Serious limitations:**
 - § No spatial relations
 - § No distinction between foreground and background
 - § No localization capability
- S And yet they work!

Caltech6 dataset results

Object vs. background classification, ROC equal error rate

class	ours	other results	
	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0	_	90.0
	bag of features	bag of features	constellation model

Local Models for Object Recognition

PASCAL 2005 challenge

http://www.pascal-network.org/challenges/VOC

- § More comparisons: Xerox7, Graz, Caltech101, ...
- S The simplicity and effectiveness of the bag-of-features method make it a good baseline for evaluating novel approaches and datasets

Object Recognition using Texture

Object Categorization by Learned Universal Visual Dictionary

J. Winn, A. Criminisi and T. Minka

Microsoft Research, Cambridge, UK - http://research.microsoft.com/vision/cambridge/recognition/

Learn Texture Model

- Representation:
 - Textons (rotation-varian
- Clustering
 - K=2000
 - Then clever merging
 - Then fitting histogram with Gaussian
- Training
 - Labeled class data

Problem with Bag of Words

- § All have equal probability for bag-of-words methods
- **S** Location information is important

Approach 3: Generative Methods using Part-Based Models

- § An object in an image is represented by a collection of parts, characterized by both their visual appearances and locations
- § Object categories are modeled by the appearance and spatial distributions of these characteristic parts
- § Issues for such models include efficient methods for finding correspondences between the object and the scene

Fischler & Elschlager, 1973

Yuille, 1991 Brunelli & Poggio, 1993 Lades, v.d. Malsburg et al. 1993 Cootes, Lanitis, Taylor et al. 1995 Amit & Geman, 1995, 1999 Perona et al. 1995, 1996, 1998, 2000 Felzenszwalb & Huttenlocher, 2000

Representation

- S Object as set of parts
 - § Generative representation
- § Model:
 - § Relative locations between parts
 - § Appearance of part
- S Issues:
 - § How to model location
 - § How to represent appearance
 - Sparse or dense (pixels or regions)
 - § How to handle occlusion/clutter

Figure from [Fischler73]

Model Structure

Model shape using Gaussian distribution on image location between parts and scale of each part

Model appearance as patches of pixel intensities

Represent object class as graph of *P* image patches with parameters *θ*

- S + Computationally tractable (10⁵ pixels 10¹ -- 10² parts)
- \$ + Generative representation of class
- + Avoid modeling global variability
- \$ + Success in specific object recognition

- S Throws away most image information
- S Parts need to be distinctive to separate from other classes

Regions or Pixels? \$ #Regions increase tractability but lose information \$ Generally use regions: \$ Local maxima of interest operators \$ Can give scale/orientation invariance MultiScale Harris Difference-of-Gaussian Saliency Figures from [Kadir04]

Linear-Time Matching Algorithm

- § A *Dynamic Programming* implementation runs in **quadratic time**
 - § Requires tree configuration of parts
- § Felzenszwalb & Huttenlocher (2000) developed **linear-time** matching algorithm
 - S Additional constraint on part-to-part cost function di
 - § Basic "Trick": Parallelize minimization computation over entire image using a <u>Generalized Distance Transform</u>

Distance Transforms Solve Distance transforms

Figure from "Efficient Matching of Pictorial Structures," P. Felzenszwalb and D. Huttenlocher, *Proc. Computer Vision and Pattern Recognition Conf.*, 2000

Using Pictorial Structures to Identify Proteins in X-ray Crystallographic Electron Density Maps

Frank DiMaio Jude Shavlik George N. Phillips, Jr.

Pictorial Structures for Map Interpretation

Basic Idea: Build pictorial structure that is able to model *all configurations of a molecule*

- § Each part in "collection of parts" corresponds to an **atom**
- § Model has **low-cost conformation** for **low-energy states** of the molecule

Representation of Appearance

- § Invariance needs to match that of shape model
- § Insensitive to small shifts in translation/scale
 - S Compensate for jitter of features
 - § e.g. SIFT
- § Illumination invariance
 - S Normalize out
 - S Condition on illumination of landmark part

Representation of Occlusion

- **S** Explicit
 - S Additional match of each part to missing state
- **§** Implicit
 - § Truncated minimum probability of appearance

Representation of Background Clutter

- **S** Explicit model
 - § Generative model for clutter as well as foreground object
- § Use a sub-window
 - § At correct position, no clutter is present

Model Structure

- Assume prior ratio is known or learned
- Find values for parameters θ that maximizes the likelihood ratio

$$p(X, S, A \mid \theta) = \sum_{h \in H} p(X, S, A, h \mid \theta)$$

- H is the set of all valid correspondences of image features to model parts, so $|H| = O(N^P)$ in general
- Factor the likelihood to simplify computation (using Chain Rule)

Learning

Learning Situations

- S Varying levels of supervision
 - § Unsupervised
 - § Image labels
 - § Object centroid/bounding box
 - § Segmented object
 - S Manual correspondence (typically sub-optimal)

Contains a motorbike

- § Generative models naturally incorporate labelling information (or lack of it)
- S Discriminative schemes require labels for all data points

Learning using EM

- Task: Estimation of model parameters
- Chicken and Egg type problem, since we initially know neither:
 - Model parameters
 - Assignment of regions to parts
- Let the assignments be a hidden variable and use EM algorithm to learn them and the model parameters

Learning procedure

- Find regions & their location & appearance
- Initialize model parameters
- Use EM algorithm and iterate to convergence:

E-step: Compute assignments for which regions belong to which part (red, green and blue dots)

M-step: Update model parameters

• Try to maximize likelihood - consistency in shape & appearance

Recognition

- § For each of *P* parts, run template over all locations in image
- S Detect local maxima, giving possible locations of each part
- § Given learned model, find maximum likelihood ratio of $p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\theta)/p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\theta_{bg})$ for all possible correspondences $-O(N^2P)$ where N= number of locations of each part in image
- § If greater than a threshold, signify object detected

Experimental Procedure Two series of experiments:

Scale variant (using pre-scaled images)

Scale invariant

P = 6-7

N = 20-30

20-30 parameters/part

10-15 PCA features

Datasets:

Motorbikes, Faces, Spotted cats, Airplanes, Cars from behind and side

§ 200 - 800 images

Training

- § 50% images
- § No identification of object within image

Testing

- § 50% images
- Simple object present/absent test
- § ROC equal error rate computed, using

background set of images

Motorbikes: Input Images

ROC equal error rates

Pre-scaled data (identical settings):

				Model		
Dataset	Total size of dataset	∼ Object width (pixels)	Motorbikes	Faces	Airplanes	Spotted Cats
Motorbikes	800	200	92.5	50	51	56
Faces	435	300	33	96.4	32	32
Airplanes	800	300	64	63	90.2	53
Spotted Cats	200	80	48	44	51	90.0

Scale-invariant learning and recognition:

	Total size	Object size	Pre-scaled	Unscaled
Dataset	of dataset	range (pixels)	performance	performance
Motorbikes	800	200-480	95.0	93.3
Airplanes	800	200-500	94.0	93.0
Cars (Rear)	800	100-550	84.8	90.3

Adding Viewpoint Invariance

S Locally approximated by an affine transformation

Affine-Invariant Patches

Lindeberg & Garding (1997); Mikolajczyk & Schmid (2002); Tell & Carlsson (2000); Tuytelaars & Van Gool (2002)

Idea:

3D objects are never planar in the large, but they are always planar in the small

Representation: Local invariants and their spatial layout

Intensity-based Method for Detecting Affine-Invariant Interest Points

Tuytelaars et al., 2000

- 1. Search for intensity extrema
- 2. Observe intensity profile along rays
- 3. Search for maximum of invariant function f(t) along each ray
- 4. Connect local maxima
- 5. Fit ellipse
- 6. Double ellipse size

$$f(t) = \frac{abs(I_0 - I)}{\max(\frac{\int abs(I_0 - I)dt}{t}, d)}$$

Affine Invariant Harris Interest Points

- S Localization & scale influence affine neighborhood
 - \$ => affine invariant Harris points (Mikolajczyk & Schmid'02)
- **S** Iterative estimation of these parameters
 - § localization local maximum of the Harris measure
 - S scale automatic scale selection with the Laplacian
 - s affine neighborhood normalization with second moment matrix
 - S Repeat estimation until convergence
- § Initialization with multi-scale interest points

Affine invariant Harris points

§ Iterative estimation of localization, scale, neighborhood

Initial points

Affine invariant Harris points

S Iterative estimation of localization, scale, neighborhood

Iteration #1

Affine invariant Harris points

S Iterative estimation of localization, scale, neighborhood

Iteration #2

Affine invariant Harris points

§ Initialization with multi-scale interest points

§ Iterative modification of location, scale and neighborhood

Affine Invariant Interest Point Detection

Application: Photo Tourism

- § http://phototour.cs.washington.edu/
- S Detect and match local patch features across images of a scene taken by many different people and found via shared image databases such as Flickr

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006

Probabilistic Parts and Structure Models Summary

- S Correspondence problem
- § Efficient methods for large # parts and # positions in image
- S Challenge to get representation with desired invariance
- **§** Minimal supervision
- § Future directions:
 - **§** Multiple views
 - § Approaches to learning
 - § Multiple category training

Combining Segmentation and Recognition

§ Example: Given an image and object category, segment the object

Segmentation should (ideally) be

- shaped like the object, e.g., cow-like
- obtained efficiently in an unsupervised manner
- able to handle self-occlusion