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Binocular Stereo

• Take 2 images from different known
viewpoints ⇒ 1st calibrate

• Identify corresponding points between 2 
images

• Derive the 2 lines on which world point lies

• Intersect 2 lines

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923
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Stereo

• Basic Principle:  Triangulation
– Gives reconstruction as intersection of two rays
– Requires 

• calibration

• point correspondence

Depth from Disparity
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[Szeliski & Kang ‘95]

depth map 3D rendering
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Multi-View Geometry

• Different views of a scene are not unrelated

• Several relationships exist between two, three and 
more cameras

• Question: Given an image point in one image, 
does this restrict the position of the corresponding 
image point in another image?

Epipolar Geometry: Formalism

• Depth can be reconstructed based on 
corresponding points (disparity)

• Finding corresponding points is hard & 
computationally expensive

• Epipolar geometry helps to significantly reduce 
search from 2-D to 1-D line

Epipolar Geometry: Demo

Java Applet

http://www-
sop.inria.fr/robotvis/personnel/sbougnou/Meta3DViewer/EpipolarGeo.html

Sylvain Bougnoux, INRIA Sophia Antipolis
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• Scene point P projects to image point pl = 
(xl, yl, fl) in left image and point pr = (xr, yr, fr) 
in right image

• Epipolar plane contains P, Ol, Or, pl and pr –
called co-planarity constraint

• Given point pl in left image, its 
corresponding point in right image is on line 
defined by intersection of epipolar plane 
defined by pl, Ol, Or and image Ir – called  
epipolar line of pl

• In other words, pl and Ol define a ray where P
may lie;  projection of this ray into Ir is the 
epipolar line

Marc Pollefeys, 
University of Leuven, 
Belgium, Siggraph
2001 Course

Epipolar Line Geometry
• Epipolar Constraint:  The correct match 

for a point pl is constrained to a 1D search 
along the epipolar line in Ir

• All epipolar planes defined by all points in 
Il contain the line Ol Or

⇒ All epipolar lines in Ir intersect at a 
point, er, called the epipole

• Left and right epipoles, el and er, defined 
by the intersection of line OlOr with the 
left and right images Il and Ir, respectively
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Epipolar Geometry
Marc Pollefeys, 
University of Leuven, 
Belgium, Siggraph
2001 Course

Epipolar Geometry: Rectification

• [Trucco 157-160]

• Motivation: Simplify search for corresponding 
points along scan lines (avoids interpolation and 
simplify sampling)

• Technique: Image planes parallel -> pairs of 
conjugate epipolar lines become collinear and 
parallel to image axis.
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Stereo Image Rectification

• Image Reprojection
– reproject image planes onto common 

plane parallel to line between optical centers
– a homography (3x3 transform)

applied to both input images
– pixel motion is horizontal after this transformation
– C. Loop and Z. Zhang, Computing Rectifying 

Homographies for Stereo Vision, Computer Vision and 
Pattern Recognition Conf., 1999

Rectification

Marc Pollefeys, 
University of Leuven, 
Belgium, Siggraph
2001 Course

Rectification Example

before

after

Rectification Procedure
Given:  Intrinsic and extrinsic parameters for 2 cameras

1.  Rotate left camera so that the epipole goes  to       
infinity along the horizontal axis

⇒ left image parallel to baseline
2.  Rotate right camera using same transformation
3.  Rotate right camera by R, the transformation of 

the right camera frame with respect to the left 
camera

4.  Adjust scale in both cameras

Implement as backward transformations, and resample 
using bilinear interpolation
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• Conjugate Epipolar Line: A pair of 
epipolar lines in Il and Ir defined by P, Ol and 
Or

• Conjugate (i.e., corresponding) Pair: A 
pair of matching image points from Il and Ir

that are projections of a single scene point      

Definitions
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Basic Stereo Algorithm

For each epipolar line

For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows

stereo

left image right image disparities

Stereo Correspondence

disparity = x1-x2 is inversely proportional to depth

3D scene structure recovery

(x1,y) (x2,y)
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Stereo Matching

• Features vs. pixels?
– Do we extract features prior to matching?

Julesz-style Random Dot Stereogram

Difficulties in Stereo Correspondence

2) Low texture:

?

?

Perfect case:
never happens!

left image right image

1) Image noise:
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Local Approach

• Look at one image patch 
at at time 

• Solve many small 
problems independently

• Faster, less accurate

Global Approach

• Look at the whole image 
• Solve one large problem
• Slower, more accurate

How Difficult is Correspondence?

• local works for high texture
• enough texture in a patch to 

disambiguate

high texture

• global works up to medium 
texture

• propagates estimates from 
textured to untextured regions

medium texture

low texture • salient regions work up to low 
texture

• propagation fails; some regions 
are inherently ambiguous, match 
only unambiguous regions 
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Fixed Window Size Problems
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Window Size

– Smaller window
+

–

– Larger window
+

–

W = 3 W = 20

Better results with adaptive window
• T. Kanade and M. Okutomi, A Stereo 

Matching Algorithm with an Adaptive 
Window: Theory and Experiment, Proc. 
Int. Conf. Robotics and Automation, 
1991

• D. Scharstein and R. Szeliski. Stereo 
matching with nonlinear diffusion, Int. J. 
Computer Vision, 28(2):155-174, 1998

• Effect of window size

Sample Compact Windows 
[Veksler 2001]

Comparison to Fixed Window

Veksler’s compact windows:16% errorstrue disparities

fixed small window: 33% errors fixed large window: 30% errors

1.67

0.53

1.69

2.79

1.00

1.79

1.52

Venus

0.331.613.36Veksler’s var. 
windows

0.260.618.08Multiw. Cut 

2.390.421.86Graph cuts

1.790.361.27GC+occl.

0.840.981.15Belief prop

0.311.301.94Graph cuts

0.370.341.58Layered

MapSawtoothTsukubaAlgorithm
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Constraints

2) most nearby pixels should have similar 
disparity

disparity 
continuous 

in most 
places

except a few 
places: 
disparity 

discontinuity

1) corresponding pixels should be close in color

p q

Additional geometric constraints for 
correspondence

• Ordering of points: 
Continuous surface: 
same order in both 
images.

• Is that always true?

A B C A  B C

A  B  C

A B C

Forbidden 
Zone of M

Forbidden Zone

m1 m2

M

N

n1 n2

Practical applications: 
– Object bulges out: ok

– In general: ordering 
across whole image 
is not reliable feature

– Use ordering 
constraints for 
neighbors of M within 
small neighborhood 
only
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Global Approach [Horn’81, Poggio’84, …]

encode desirable properties of d in E(d):

( ) ( ) ( )
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∑ ∑
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qpp
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match pixels of 
similar color

most nearby pixels 
have similar disparity

E(d)=E pd qd
rd

MAP-MRF
2

NP-hard problem ⇒ need approximations

Stereo as Energy Minimization

• Matching cost formulated as energy
– “data” term penalizing bad matches

– “neighborhood term” encouraging spatial
smoothness (continuity; disparity gradient)
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Minimization Methods

1. Continuous d: Gradient Descent
– Gets stuck in local minimum

2. Discrete d: Simulated Annealing

[Geman and Geman, PAMI 1984]
– Takes forever or gets stuck in local minimum
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Stereo as a Graph Problem [Boykov, 1999]

PixelsLabels 

(disparities)

d1

d2

d3

edge weight

edge weight

),,( 3dyxD

),( 11 ddV

Graph Definition

d1

d2

d3

• Initial state
– Each pixel connected to it’s immediate neighbors

– Each disparity label connected to all of the pixels

Stereo Matching by Graph Cuts

d1

d2

d3

• Graph Cut
– Delete enough edges so that

• each pixel is (transitively) connected to exactly one label node

– Cost of a cut:  sum of deleted edge weights

– Finding min cost cut equivalent to finding global minimum of the
energy function

Graph Cuts

• Solved in polynomial time w/ min-cut/max-flow

• Boykov and Kolmogorov algorithm
– runs in seconds

Cut C

∑
edges 

• Graph G=(V,E)

• Edge weight w: E R

• Cost(C) =     w(edge)

• Problem: find min Cost cut

+

in C
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Results of Boykov’s Graph Cut 
Algorithm

Results
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

Proc. Int. Conf. Computer Vision, 1999

Ground truth

Local: Compact Window Global: Expansion

18 sec
16% error

75 sec,
16% error

10 sec
0.33% error

33 sec,
0.35% error

5=λ 100=λ

high texture

12 sec, 3.36% error

medium texture

32 sec, 1.86% error, 20=λ

Difficulties

• Parameter selection

• Running time: from 34 to 86 seconds

( ) ( ) ( )
{ }

∑ ∑
Ρ∈ Ν∈

≠δλ+=
p q,p

qpp dddMdE

smaller      allows 
more discontinuities

λ

optimal      = 5λ optimal      = 20λ

Computing a Multi-way Cut
• With two labels:  classical min-cut problem

– Solvable by standard network flow algorithms

• polynomial time in theory, nearly linear in practice

• More than 2 labels: NP-hard [Dahlhaus et al., STOC ‘92]

– But efficient approximation algorithms exist

• Within a factor of 2 of optimal

• Computes local minimum in a strong sense

– even very large moves will not improve the energy

• Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy 
Minimization via Graph Cuts, Proc. Int. Conf. Computer Vision, 1999

– Basic idea

• reduce to a series of 2-way-cut sub-problems, using one of:

– swap move:  pixels with label L1 can change to L2, and vice-
versa

– expansion move:  any pixel can change it’s label to L1
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State of the Art

Late 90’s state of the art Recent state of the art

left image true disparities

5.23% errors 1.86% errors

Evaluation of Stereo Algorithms

http://bj.middlebury.edu/~schar/stereo/web/
results.php

“A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,” 
Int. J. Computer Vision, 2002

Algorithm Tsukuba Sawtooth Venus Map

Layered  1.58 0.34 1.52 0.37

Belief prop.

1.94 1.30 1.79 0.31Graph cuts 
1.15 0.98 1.00 0.84

GC+occl. 1.27 0.36 2.79 1.79
Graph cuts 1.86 0.42 1.69 2.39
Multiw. cut  8.08 0.61 0.53 0.26
Comp. win. 3.36 1.61 1.67 0.33
Realtime 4.25 1.32 1.53 0.81
Bay. diff. 6.49 1.45 4.00 0.20

SSD+MF  
3.49 2.03 2.57 0.22Cooperative 
5.23 2.21 3.74 0.66

Stoch. diff. 3.95 2.45 2.45 1.31
Genetic  2.96 2.21 2.49 1.04
Pix-to-pix  5.12 2.31 6.30 0.50
Max flow 2.98 3.47 2.16 3.13
Scanl. opt. 5.08 4.06 9.44 1.84
Dyn. prog.  4.12 4.84 10.1 3.33
Shao 9.67 4.25 6.01 2.36
MMHM  9.76 4.76 6.48 8.42
Max. surf. 11.10 5.51 4.36 4.17

Database by D. Scharstein and R. Szeliski
% errors
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The Effect of Baseline on Depth 
Estimation

1/z

width of 
a pixel

width of 
a pixel

1/z

pixel matching score



25



26

Real-Time Stereo

• Used for robot navigation (and other tasks)
– Several software-based real-time stereo techniques have been 

developed (most based on simple discrete search)

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

– Camera calibration errors

– Poor image resolution

– Occlusions

– Violations of brightness constancy (specular reflections)

– Large motions

– Low-contrast image regions

Stereo Reconstruction Pipeline
• Steps

– Calibrate cameras

– Rectify images

– Compute disparity

– Estimate depth

• What will cause errors?

Active Stereo with Structured Light

• Project “structured” light patterns onto the object

– simplifies the correspondence problem

camera 2

camera 1

projector

camera 1

projector

Li Zhang’s one-shot stereo

Laser Scanning

• Optical triangulation
– Project a single stripe of laser light
– Scan it across the surface of the object
– This is a very precise version of structured light 

scanning

Direction of travel

Object

CCD

CCD image plane

Laser
Cylindrical lens

Laser sheet

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/
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Portable 3D Laser Scanners

Minolta Vivid 910 can scan 
300,000 points in 2.5 sec


