Image-Based Scene Reconstruction

Goal

- scene from multiple images taken from a set of arbitrary Automatic construction of photo-realistic 3D models of a
- Image-based modeling; 3D photography stnioqw9iv

Applications

- planning, site analysis, treaty monitoring by a virtual video camera for flybys, mission rehearsal and Interactive visualization of remote environments or objects
- Virtual modification of a real scene for augmented reality

from Multiple Views Volumetric Scene Reconstruction

Chuck Dyer

www.cs.wisc.edu/~dyer dyer@cs.wisc.edu University of Wisconsin

Light Fields

images [Levoy and Hanrahan, 1996] A range of viewpoints represented by a set of

Two General Approaches

World Representation

- (and possibly photometric) model of scene • World centered: Recover a complete 3D geometric
- Operations: feature correspondence, tracking,
- calibration, structure from motion, model fitting, ...

Plenoptic Function Representation

- sample scene geometry · Camera centered: Integration of images which
- E.g., panoramas, light fields, LDIs
- warping, compositing, interpolation, ... • Operations: image segmentation, registration,

Weaknesses of the Standard Approach

- Views must be close together in order to obtain point correspondences
- Point correspondences must be tracked over many consecutive frames
- Many partial models must be fused
- Must fit a parameterized surface model to point features
- No explicit handling of occlusion differences between

Voxel-based Scene Reconstruction Methods

- 1. Shape from Silhouettes
- Volume intersection [Martin & Aggarwal, 1983]
- 2. Shape from Photo-Consistency
 Voxel coloring [Seitz & Dyer, 1997]
- Space carving [Kutulakos & Seitz, 1999]

Properties of Volume Intersection

Pros

- Easy to implement
- · Accelerated via octrees

Suoo

- Concavities are not reconstructed
- Reconstruction does not use photometric properties
- in each image segmentation to extract silhouettes

Voxel-based Scene Reconstruction Methods 1. Shape from Silhouettes 2. Shape from Photo-Consistency • Voxel coloring [Seitz & Dyer, 1997] • Space carving [Kutulakos & Seitz, 1999] • Space carving [Kutulakos & Seitz, 1999]

Example: 2D Scene and Line of Cameras

- Arrange cameras to simplify occlusion relationships
- Depth-order traversal of voxels determines visibility

Layers radiate outwards from cameras

- Cameras oriented in many different directions
- Planar depth ordering does not apply

Coarse-to-Fine Voxel Coloring: Octrees

Decompose colored voxels into octants; repeat Spatial coherence = add neighboring voxels Determine colored voxels at current level

Augmented **FOM BGS**

Scaling Up Voxel Coloring

- Time complexity ∝ #voxels x #images
- Too many voxels in large, high-resolution scenes
- Enhancements
- each layer of voxels • Texture mapping - use hardware to project images to
- fine processing • Variable voxel resolution - use octrees and coarse-to-
- infinite domain • Volumetric warping - warp voxel space to extend to an

• G. Slabaugh, T. Malzbender, B. Culbertson, 2000 Volumetric Warping

Dynamic Voxel Coloring: Input Views

Voxel Coloring for Dynamic Scenes

Given: Video sequences from multiple cameras

Goal: Interactive, real-time fly-by of dynamic scene

Limitations of Depth Ordering

A view-independent depth order may not exist:

Need more general algorithm

- Unconstrained camera positions
- Unconstrained scene geometry and topology

Space Carving Algorithm

Step 1: Initialize V to volume containing true scene with all voxels marked opaque

Step 2: For every voxel on surface of V

- Test photo-consistency of voxel with those cameras that are "in front of" it
- If voxel is inconsistent, carve it (i.e., mark it transparent)

2feb 3: Repeat 2fep 2 until all voxels consistent

Voxel Coloring for Dynamic Scenes

- Coarse-to-fine recursive decomposition focuses
 on regions of interest
- Exploit temporal coherence
- Use coloring at time t_k to initialize lowest resolution voxels at time $t_{k,\gamma}$
- Trace rays from changed pixels only

Voxel-based Scene Reconstruction Methods

- 1. Shape from Silhouettes
- Volume intersection [Martin & Aggarwal, 1983]
- 2. Shape from Photo-Consistency
- Voxel coloring [Seitz & Dyer, 1997]
- Space carving [Kutulakos & Seitz, 1999]

Space Carving Convergence

i.e., union of all photo-consistent scenes • Guaranteed convergence to the photo hull,

Multi-Pass Plane Sweep

True Scene

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

Reconstruction

True Scene

Space Carving Algorithm

Optimal algorithm is unwieldy

Complex visibility update procedure

Alternative: Multi-Pass Plane Sweep Algorithm

This property ensures that carving converges

 $p \in \hat{S}$ inconsistent $\Rightarrow p \in S'$ inconsistent

 $p \in S$ consistent $\Rightarrow p \in S$ consistent

Visibility Property

- Converges quickly in practice • Efficient, can use texture-mapping hardware
- Easy to implement

Reconstruction

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

Repeat until convergence

Multi-Pass Plane Sweep

· Consider cameras on only one side of plane

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane

Multi-Pass Plane Sweep

- Repeat until convergence

Multi-Pass Plane Sweep

Repeat until convergence

Multi-Pass Plane Sweep

· Consider cameras on only one side of plane

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- · Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

Repeat until convergence

Multi-Pass Plane Sweep

· Consider cameras on only one side of plane

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- · Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

Repeat until convergence

Multi-Pass Plane Sweep

· Consider cameras on only one side of plane

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

Multi-Pass Plane Sweep

Repeat until convergence

Multi-Pass Plane Sweep

· Consider cameras on only one side of plane

- Sweep plane in each of 6 principle directions
- · Consider cameras on only one side of plane
- Repeat until convergence

Voxel Coloring / Space Carving Summary

"The more the marble wastes, the more the statue grows." – Michelangelo

Pros

- Non-parametric
- Can model arbitrary geometry and topology
- Camera positions unconstrained
- Guaranteed convergence

suog

- Expensive to process high resolution voxel grids
- · Carving stops at first consistent voxel, not best
- Assumes simple, known surface reflectance model, usually Lambertian

Collaborators

• Steve Seitz, Andrew Prock, Kyros Kutulakos

Other Extensions

- Dealing with calibration errors
- Kutulakos, 2000
- Construct approximate photo hull defined by weakening the definition of photo-consistency so that it requires only that there exists a photo-consistent pixel within distance r of the ideal position
- Partly transparent scenes
- De Bonet and Viola, 1999
- Compute at each voxel the probability that it is visible (or the degree of opacity)
- Optimization algorithm finds best linear combination of colors and opacities at the voxels along each visual ray to minimize the error with the input image colors

Current Work

- BRDF estimation from multiple views
- Modeling is more than geometry need to simultaneously recover surface reflectance models
- Wide-baseline feature point correspondence
- Calibration from multiple moving objects
- Metric self-calibration from static scenes