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Abstract. Web-based applications are one of the most widely
used types of software, and have become the backbone of
many e-commerce and communications businesses. These ap-
plications are often mission-critical for many organizations,
motivating their precise validation. Although regression test-
ing has been widely used to gain confidence in the reliability
of software by providing information about the quality of an
application, it has suffered limited use in this domain due to
the frequent nature of updates to websites and the difficulty
of automatically comparing test case output.

We present techniques to address these challenges in re-
gression testing web-based applications. Without precise com-
parators, test cases that fail due to benign program evolutions
must be manually inspected. Our approach harnesses the in-
herent similarities between unrelated web-based applications
to provide fully automated solutions to reduce the number
of such false positives, while simultaneously returning true
faults. By applying a model derived from regression testing
other programs, our approach can predict which test cases
merit human inspection. Our method is 2.5 to 50 times as
accurate as current industrial practice, but requires no user
annotations.

1 Introduction

Web-based applications have become an integral part of the
global economy, with Internet-based e-commerce projected
to reach over one trillion dollars by 2010 [45]. Despite their
pervasiveness, most web-based applications are not devel-
oped according to a formal process model [34]. Web-based
applications are subject to high levels of complexity and pres-
sure to change, manifesting in short delivery times, emerg-
ing user needs, and frequent developer turnover, among other
challenges [37]. Under such extreme circumstances, systems

are delivered without being tested [37], potentially result-
ing in functionality losses on the order of millions of dol-
lars per hour [33,48,51]. Such breakdowns are not isolated
incidents; user-visible failures are endemic to about 70% of
top-performing web-based applications, a majority of which
could have been prevented through earlier detection [42]. Such
monetary losses can be avoided by designing web-based ap-
plicationsto meet high reliability, usability, security, and avail-
ability requirements [32], which translates into well-designed
and well-tested software.

Regression testing is an established approach for gaining
confidence that a program continues to implement its specifi-
cation in the face of recurring updates, and is a major part of
software maintenance [36]. Maintenance activities consume
70% [13] to 90% [41] of the total life cycle cost of software,
summing to over $70 billion per year in the United States [38,
49], with regression testing accounting for as much as half
of this cost [23,39]. For software in general, a lack of re-
sources often restricts developers to utilize only a fraction of
the available regression tests [20,29,53]. Unfortunately, web-
based application testing is often perceived to be lacking a
significant payoff [21], making the likelihood of investing in
rigorous testing even more remote in this domain.

One major challenge with any regression testing approach
is that it is often limited by the effort required to compare re-
sults between two versions of program output. Formally, test-
ing can be viewed in terms of an oracle mechanism that pro-
duces an expected result and a comparator that checks the ac-
tual result against the expected result [10]. The oracle is com-
monly taken to be the output of a previous, trusted version of
the code on the same input and the comparator is a simple
lexical comparison, such as diff, of the two outputs. Any
difference is inspected by developers, as it is commonly an er-
ror in the new version, or may indicate an outdated expected
output (for example, when the output legitimately changes
due to new functionality). Unfortunately, traditional regres-
sion testing is particularly burdensome for web-based appli-
cations [46] because using di f f as the comparator produces
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too many false positives [48]. For example, rerunning a test
suite of a web-based application may result in otherwise-
identical output with a different footer, timestamp, session
cookie, or dynamically generated elements. While di £ f£-like
tools have the strength of not producing any false negatives, a
diff of older output against newer output will almost always
flag a potential error, even if no new defect has been intro-
duced. Each new version of the software may compound the
problem when other natural program evolutions take place,
by adding more and more changes flagged by di £ f that are
not actual errors. Therefore, a regression testing approach for
web-based applications would have to reduce the number of
false positives associated with a naive di f f-like compara-
tor, as well as provide an acceptable level of automation and
refrain from missing actual faults. Although automating the
replay of existing regression test suites is relatively straight-
forward in this domain, automating the comparator process
remains an active research area.

This paper presents SMART, a tool for reducing the cost
of regression testing for web-based applications by providing
a highly precise oracle comparator. We propose to combine
insights from structural differencing algorithms (e.g., [8]) in
addition to semantic features (e.g., [46]) into a distance met-
ric for test case output . This distance metric forms the cen-
ter of a highly precise oracle comparator which indicates test
case outputs need human inspection when its distance from
the oracle output exceeds a certain cutoff.

We first present our technique in a context where a small
fraction of the regression testing output is manually inspected
as normal, and that information is used to train a compara-
tor based on our features; the comparator then flags which
test cases in the rest of the output require human inspection.
We then expand upon this proof-of-concept by demonstrating
that the oracle comparator process can be completely auto-
mated in this domain, obviating the need for manual training
data, because inherent similarities between web-based appli-
cations can be used to reduce the cost of regression testing
them. We hypothesize that errors in web-based applications
can be successfully modeled due to the tree-structured nature
of XML/HTML output, and that unrelated web-based appli-
cations fail in similar ways. These similarities derive from
the common multi-tiered and multi-component structures of
these applications, and include behaviors such as corralling
errors into user-visible HTML. Both our fully-automated and
partially-automated comparators can be considered success-
ful if they reduce false positives (i.e., correctly tell developers
not to inspect test cases that have small changes but do not
indicate faults) while minimizing or avoiding false negatives
(i.e., incorrectly tells developers not to inspect actual defects).
In our experiments, a di £ f-based comparator incorrectly la-
bels non-faulty output as requiring inspection 70-90% of the
time; our approaches typically have fewer than 1% false pos-
itives.

! In this paper we use the term feature to refer to the set of all arguments
used by our distance metric: a feature is an aspect of test case output pairs,
such as the ratio of natural language text between two HTML documents.

Existing comparators for web-based applications typically
have false positive rates in the 4% range [47], although these
false positives resulted from testing on a single version of the
software using seeded faults. By contrast, this paper focuses
on finding faults between different versions of applications,
where the number of false positives reported by such tools
increases due to innocuous program evolutions. Additionally,
some previous approaches [47] require training on the target
application to achieve their false positive values. By contrast,
we present an automated oracle comparator that does not re-
quire manually training the tool. The main contributions of
this paper are:

A set of structural and syntactic features that are used to
determine if web-based application regression test output
should be inspected by human developers.

— An experimental evaluation of a proof-of-concept model
and distance metric using those features.

— A quantitative and qualitative comparison of the relative
power of those features, with a discussion of the possible
impact on regression test practices.

— An automated oracle comparator model that meets or ex-

ceeds the performance of the proof-of-concept model that

requires manually-provided training data.

A portion of these main contributions have been presented
previously [15,44]. This paper additionally includes the fol-
lowing:

— A more expansive base of benchmark programs for em-
pirical evaluation showing how an automated oracle com-
parator model can utilize the tree structured nature of web-
based application output and underlying program sim-
ilarities successfully. In particular, we double the lines
of code compared to previous work with the addition of
three real-world browser-based applications used by over
24,000-300,000 customers worldwide that rely heavily
on non-deterministic output.

— An additional experiment comparing the average feature
values for erroneous output compared to correct output.

— An additional experiment evaluating our model’s perfor-
mance when training our comparator on project-specific
data only.

— A deeper analysis of relative feature powers used by our
automated comparator. We identify four features that were
either important in every benchmark, or were highly in-
dicative of actual bugs, and discuss their relation to the
types and severities of bugs they tended to reveal.

— An additional experiment evaluating our automated com-
parator on the new real-world browser-based application
benchmarks that includes an analysis of the severity of ac-
tual bugs our tool failed to flag. Relying on an automated
model of fault severity from [16,17], we are able to quan-
titatively and qualitatively assign consumer-perceived sever-
ity ratings to the faults uncovered and missed by our ap-
proach, with the expectation that missed faults will gen-
erally be non-severe.
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2 Motivating Examples

Testing the functional components of web-based applications
is usually achieved by some form of capture-replay (as op-
posed to non-functional validation such as HTML validation,
link testing, or load testing), where tester input sequences are
recorded and replayed [18]. For these kinds of tests the oracle
output is often HTML output of a previous, trusted version of
the application, and di £ £ is used to compare the oracle out-
put with the actual test output. In situations where the two
outputs differ, manual inspection is required. Unfortunately,
the human interpretation of test results is a “tedious and error-
prone task” [48] and is potentially more burdensome for web-
based applications due to the frequent false positives associ-
ated with a di f £-like comparator.

Consider the following example from a di £ £ of two GCC-
XML test case outputs [2] (the text above the dashed line was
generated by the older application, while the rest is output
from the newer version).

< <Namespace id="_2" name="std" context="_1"

members=""/>
2 < <Function id="_3" name="foo" returns="_4"
context="_1" location="£f0:8">
4 > <Namespace id="_2" name="std" context="_1"
members="" mangled="_Z3std"/>
> <Function id="_3" name="foo" returns="_4"

context="_1" mangled="_Z3fooii" location="
£0:8" file="£f0" line="8" endline="15">

In both versions the same <Namespace> and <Function> ele-
ments are being defined. The main difference is that the newer
version of the application contains new functionality in the
form of additional attributes, such as mangled="_2z3fooii"
online 5. A di f £-like comparison for regression testing these
two outputs would lead to a false positive in this instance.
Furthermore, we hypothesize that web-based applications of-
ten evolve through the addition of new attributes to existing
elements, as one example of a typical change that should gen-
erally not indicate an error in regression testing. A more pre-
cise oracle-comparator should be able to avoid flagging the
situation above as an error, and such a comparator may be
completely automated by recognizing that many web-based
applications evolve in this predictable way with the addition
of new element attributes.

Similarly, HTML code is often updated in ways that do
not change the appearance or functionality experienced by the
consumer. Consider the diff output from two TXT2HTML
test case versions [50] (the newer output is below the dashed
line):

< <P>The same table could be indented.

2 < <TABLE border="1">

4 > <p>The same table could be indented.</p>
5 > <table border="1" summary="">

As in the previous example, the <table> element contains
a new attribute (summary). The newer output also matches
the paragraph tag <p> with a closing tag, probably because
newer versions of HTML will not support unmatched tags,

although most browsers will display these two bits of code
equivalently. As in the previous example, a diff of these
two outputs would yield a false positive due to any of the
reasons mentioned above.

Using di f f£-like comparators for the above examples, in
addition to outputs that involve small natural language changes,
reformatting, or nondeterministic output that changes with
every run of the application, would yield a high number of
false positives because humans would not consider these changes
errors. Simply ignoring certain classes of website updates,
however, raises the possibility of missing actual bugs. This
paper shows that it is possible to provide a highly precise
oracle comparator that reduces the false positives in test out-
put comparison that occur with more naive approaches, while
minimizing the number of false negatives.

3 Modeling Test Case Output Differences

The goal of our approach is to save developers effort dur-
ing regression testing web-based applications, primarily by
reducing the number of false positives obtained with di ff-
like tools. We specifically focus on web-based applications
due to the tree-structured nature of their output; trees are
well-formed objects with a directed edge relationship. Al-
though recent work has explored using semantic graph dif-
ferencing [35] and abstract syntax tree matching [31] for an-
alyzing source code evolution, such approaches are not help-
ful in comparing XML and HTML text outputs. Not only
do these approaches depend on the presence of source code
constructs such as variables and functions, which are absent
in generic HTML, to make judgments, but they are meant
to summarize changes rather than determine error instances.
By contrast, SMART relies on tree representations to decide
the relative importance of changes between two versions of
output with respect to their structural significance. Our ora-
cle comparator, SMART, is a model, composed of a distance
metric and a cutoff, that labels test case output pairs. We use
a distance metric to quantify the difference between a pair
of program outputs that is based on the weighted sum of
individual features. If the distance exceeds a specified cut-
off, the test case output pair is labeled as requiring human
inspection. Rather than hard-wiring any knowledge of pro-
gram semantics, SMART empirically learns the weights and
cutoffs on a per-project basis via least-squares linear regres-
sion. This model was chosen over other techniques because
it is straightforward to analyze; Section 4.2 presents the re-
sults of an analysis of variance of the relative contribution of
various features towards an accurate classification of test case
output.

Our approach classifies test case output based on struc-
tural and syntactic features of tree-structured documents. Most
features are relatively simple, such as counting the number
of inserted elements when converting one tree into the other.
Each feature is assigned a numeric weight that measures its
relative importance. A pair of test cases outputs is labeled
as requiring inspection whenever the weighted sum of all its
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feature values exceeds a certain cutoff. Both the weights and
cutoff are learned empirically by training the model; we re-
turn to this issue when discussing our experimental setup (see
Section 4.1.2).

3.1 Tree Alignment

In order to recognize such features, the input trees must first
be aligned by matching up nodes with similar elements. An
alignment is a partial mapping between the nodes of one tree
and the nodes of the other. To see why this alignment is nec-
essary, consider these two HTML fragments:

<u><b>textA</u></b> <i><u><b>textB</b></u></i>
2 <i><b><u>textB</u></b></i>

We must know how the fragments align before we can count
features: if we align the textB subtree of #2 with the texta
subtree of #1, we can count an inversion between the <u> and
<b> tags. However, if we align the textB subtree of #2 with
the textB subtree of #1, we can count inversions between the
<u>, <b> and <i> tags.

This insight motivates us to find an alignment based on
the minimal number of changes that enumerate the difference
between two test case outputs. We adapt the DIFFX [8] al-
gorithm for calculating structural differences between XML
documents to compute alignments on general tree-structured
data. Aligning the newer and older output trees allows SMART
to identify both local features derived from element pairs, as
well as global features such as the addition of natural lan-
guage text spattered across multiple locations in the newer
document.

Our technique employs features that fall into two loose
categories: identifying differences in the tree structure of the
output, and emulating human judgment of interesting differ-
ences between two XML or HTML pages, detailed below.
Most of the features are derived from the DIFFX mapping;
the remaining atomic features are indicated with an asterisk
in Figure 1.

3.2 Tree-based differences

Unlike flat text files, the nested tree structure of XML/HTML
output allows for the potential to classify many differences
as either faults or non-faults through an analysis of the tree
structure. Features may be positively or negatively correlated
with test output errors, depending on the application being
examined.

The DIFFX Algorithm. Three of our features are taken
from a variant of the DIFFX [8] algorithm that we adapted to
work on HTML and XML files. The algorithm computes the
number of moves, inserts and deletes required to transform
the first input into the second. It does this via bottom-up ex-
act tree matching combined with top-down isolated tree frag-
ment mapping; this amalgamated approach provides a high
quality characterization of the relationship between the two
input trees.

We hypothesize that moves, inserts, and especially deletes
frequently correlate with bugs, and that the size of the change
indicates the severity of the error. For example, a failure that
results in a stack trace being printed will involve a deletion
of a large amount of data and an insertion of the trace itself.
Considering moves instead of delete-insert pairs reduces the
number of changes between two trees.

Inversions. Inverted elements are unlikely to indicate er-
rors in web-based application output. To calculate inversions,
we perform a pre-order traversal of all nodes in both of the
document trees, removing text nodes as we are interested in
structural inversions. We then sort each list and calculate the
longest common subsequence between them. All nodes not
in the common subsequence are removed and the lists are
unsorted, returning the remaining nodes to their original rel-
ative orders. We finally walk the lists in tandem, comparing
element pairs and counting each difference; each difference
is a structural inversion.

Grouped Changes. We note when a set of elements that
form a contiguous subtree are changed as a group, measuring
the size of the grouped change in terms of the number of ele-
ments involved. We hypothesize that clustered edits are more
likely to be deserve inspection, often because they contain
missing components or lengthy exception reports, as opposed
to small changes scattered throughout the document. We also
record a boolean feature that notes the presence or absence of
grouped changes.

Depth of Changes. The relative depth of any edit op-
eration within a tree is measured under the hypothesis that
changes closer to the root are more likely to signal large se-
mantic differences and thus more likely to merit human in-
spection.

Changes to Only Text Nodes. We record with a boolean
feature whether the changes between two documents are re-
stricted only to the natural language text in the trees. We ex-
pect that documents with such text-only differences are un-
likely to contain semantic errors and thus should not be in-
spected. This feature in particular allows our approach to out-
perform di f £-like comparators, through the ability to ignore
natural-language text changes.

Order of Children. We record cases where two matched
nodes are otherwise the same but the ordering of their chil-
dren has changed. We hypothesize that changes in the order
of child nodes do not indicate high-level semantic errors and
thus should not be inspected.

3.3 Human-Judgment differences

The rest of our features attempt to emulate judgments that a
human would make on two test case outputs. These features
are specific to HTML and aim to model how a human would
view differences.

Text and Multimedia Ratios. Natural language and graph-
ics significantly influence human interpretation of a webpage.
We measure the ratio of displayed text between two versions
as well as the ratio of displayed text to multimedia objects.
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Small changes, such as replacing a textual link with a but-
ton are unlikely to warrant human inspection. Replacing large
amount of text, however, may be more likely to associate with
errors such as stack traces.

Error Keywords. Web-based applications often exhibit
similar failure modes. Beyond the standard error messages
displayed by web servers (such as 404 errors), many other
violations are tied to the underlying languages, and can be
reasonably predicted by a textual search of the document for
error keywords, such as “exception”. Searching for natural
language text to signal page errors has been previously ex-
plored in [9]. Output pairs containing error keywords in the
newer version, but not in the older, are likely to merit human
inspection.

Changes to Input Elements. Input elements, such as but-
tons and forms, represent the primary interface between con-
sumers and the application. We note the changes to these in-
put elements under the hypothesis that a missing button or
form indicates a significant loss of functionality and should
be examined.

Changed or Missing Attribute Values. Finally, we note
when two aligned elements contain the same attribute but
have a different attribute value. Consider the following diff
output:

< <Type id="_8" name="int"/>
P R—

> <Type id="_8" name="unsigned int"/>

If the two <Type> elements on lines 1 and 3 are aligned then
the change from "int" to "unsigned int" represents a mean-
ingful change. Note that this is different than an instance
where the second <Type> has a new attribute that the origi-
nal does not. Changed attributes may or may not be signifi-
cant; consider the semantic difference between an update to
height attribute of an image as opposed to the mistyping of
a action attribute of a form element. We hypothesize that
removing attributes, however, will generally be likely to merit
human inspection.

3.4 Feature Validation

In this subsection, we validate some of the assumptions that
underlie our approach. We determine whether it is reasonable
to use tree-structured features to detect test case outputs that
merit human inspection. We establish that our features gener-
ally take on different values for differences that merit human
inspection than for differences that do not.

Figure 1 shows the average normalized features on 919
test cases used in our experiments (see Figure 2). For exam-
ple, the normalized value of our feature that measures whether
changes were to text only is 0.9946 for test case output that
need not be inspected and 0.0179 for test case output that
should be inspected. We return to this issue in Section 4.2
when we present an analysis of variance to inspect feature
importance; the normalized values in Figure 1 are provided
simply as a means of viewing the data in this preliminary ex-
periment: our actual model does not normalize feature values.

Average — | Average —
Feature No Inspect Inspect
Text Only 0.9946 0.0179
DIFFX-move 0.0004 0.0507
DIFFX-delete 0.0007 0.1203
Grouped Boolean 0.0007 0.9739
DIFFX-insert 0.0041 0.0109
Error Keywords* 0.0000 0.0096
Input Elements* 0.0001 0.0031
Depth 0.0007 0.0172
Missing Attribute* 0.0047 0.1580
Children Order 0.0010 0.1769
Grouped Change 0.0002 0.1301
Text/Multimedia* 0.8548 0.9933
Inversions* 0.0010 0.0016
Text Ratios 0.7996 0.9636

Fig. 1. The average values of our features for test cases flagged
by diff that (1) do not merit manual inspection and (2) do
merit manual inspection, as determined by our human anno-
tators. Each feature is individually normalized to 1.0. Fea-
tures with an asterisk are atomic features not dependent on
the DIFFX mapping between two output pairs.

Extracting our features from the output of one test case took
2 seconds on average, and never more than 30 seconds, on a
3 GHz Intel Xeon computer.

3.5 Model Evaluation

Having established that it should be possible to classify test
case output based on the features discussed above, we must
next define a way to evaluate the performance of such a model.
The key task of SMART is, given the oracle output for a test
case and the current output for that same test case, to indicate
whether a potential error should be flagged and the situation
evaluated by a human. Consequently, it is possible that we
flag non-faults as requiring inspection; these false positives
yield wasted developer effort as humans fruitlessly inspect
correct output. Whenever our tool fails to flag actual faults,
these false negatives may result in consumer-visible bugs af-
ter deployment and revenue losses. We use precision and re-
call, metrics from the domain of information retrieval [40], to
measure our model’s success at this task:

recall = |Desired N Returned| <+ |Desired|

precision = |Desired N Returned| + | Returned|

Here Desired refers to the test cases which are actual bugs
and our model also labels as such (true positives). Returned
are all the test cases flagged as potential errors by our model,
which is composed of both the actual faults correctly flagged
by SMART, as well as the non-faults we flag as requiring in-
spection. Recall is defined as the ratio of desired error test
cases our model returns over the total number of desired er-
ror values (in other words, how close are we to finding all
the desired error cases). A low recall value indicates that our
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model is missing too many actual errors (i.e., has too many
false negatives). Precision refers to the number of actual er-
ror test cases our model flags as a fraction of the total number
of values returned — in other words, what fraction of our
model’s output is correct. A low precision value implies that
we have too many false positives and would waste significant
amounts of developer effort. Because precision can be triv-
ially maximized by returning only a single error, and recall
can be similarly maximized by returning all test case pairs as
errors, we combine precision and recall by taking their har-
monic mean: 2pr = (p + r). The result is called the F}-score,
and gives equal weight to the two variables [14].

4 Model Validation

We first evaluate SMART on ten open-source benchmarks that
produce either XML or HTML output, totaling 473,000 lines
of code, summarized in Figure 2. In order to provide a real-
istic regression testing simulation, we chose benchmarks for
which multiple versions were available, to capture as many
natural program evolutions as possible. We supplemented our
three large benchmarks with seven smaller ones to vary the
domains of the applications examined in this proof-of-concept
experiment. Because these additional benchmarks have sig-
nificantly fewer test cases than the primary three applications,
Section 7 supplements our dataset with over 6000 additional
test cases from three real-world, PHP browser-based applica-
tions.

For each benchmark, we manually inspected the test case
output generated by the two versions of the benchmark in-
dicated on the same benchmark-specific test suite. Our man-
ual inspection marked the output as “definitely not a bug”
or “possibly a bug, merits human inspection”. In an effort to
not rule out actual bugs, we conservatively erred on the side
of requiring human inspection. Each test case was annotated
twice, re-examining situations where the two annotations did
not initially agree, to maintain consistency. Our initial exper-
iments involve 7154 pairs of test case output, of which 919
were labeled as requiring inspection.

4.1 Experiment 1 — Model Selection

In this experiment, the feasibility of our approach is evaluated
when phrased as an information retrieval task. We create a
linear regression model based on the features from Section 3
and select an optimal cutoff to form a binary classifier.

4.1.1 Cross Validation

In order to validate our approach, our initial experiment in-
volves testing and training on the same data. One potential
problem with such an approach is biased from over fitting on
our dataset. To mitigate this threat, we used 10-fold cross val-
idation [26]. We randomly assigned test cases from all bench-
mark programs into ten equally-sized groups. Each group is

Comparator “ Fi-score | Precision | Recall
SMART 0.9931 0.9972 | 0.9890
SMART w/

cross-validation 0.9935 0.9951 | 0.9920
diff 0.3004 0.1767 | 1.0000
xmldiff 0.2406 0.1368 | 1.0000
fair coin toss 0.2045 0.1286 | 0.4984
biased coin toss 0.2268 0.1300 | 0.8868

Fig. 3. The F-score, precision, and recall values for SMART
on our entire dataset. Results for di f £, xm1dif £, and ran-
dom approaches are given as baselines; di f £ represents cur-
rent industrial practice.

reserved once for testing, and the remaining nine groups are
used to train the model; we thus never train and test on the
same data. The cross validation results are then averaged across
each batch and compared to the results when we tested and
trained on the entire dataset. If the two outcomes are not sig-
nificantly different, we can conclude that we were not subject
to bias.

4.1.2 Experimental Procedure

SMART classifies pairs of tree-structured outputs as either re-
quiring human inspection or not. In this experiment:

1. We first perform the cross-validation steps (Section 4.1.1).
On each iteration, we train a linear model as if the re-
sponse variable (i.e., our boolean human annotation of
whether a human should inspect that output or not) were
continuous in the range [0,1].

2. The real-valued model outputs are turned into a binary
classifier by comparing against a cutoff by performing a
linear search to find a model cutoff. SMART will flag the
test case as needing inspection or not depending on how
the response variable compares to the cutoff. We choose
the cutoff and comparison that yield the highest F -score
for each validation step.

3. After cross-validation, the model is trained and tested on
our entire dataset. We again find the best model cutoff and
comparison to maximize the F-score.

4.1.3 Results

Figure 3 shows our precision, recall, and F -score values for
our dataset. As a point of comparison, we also computed the
predictive power of other comparator approaches, namely,
diff, xmldiff [4]%, coin toss, and biased coin toss as base-
line values. The fair coin returns “no” with even probabil-
ity. The biased coin returns “no” with probability equal to
the actual underlying distribution for this dataset: (7154 —
919) /7154 (which is generally not known in advance). SMART
has clear advantages in predictive power over all of our base-
lines, with our approach yielding three times diff’s Fj-
score.

2 xmldiff, an off-the-shelf di f £-like tool for XML and HTML [4],
was a worse comparator than than basic di f £ because it was unable to pro-
cess some benignly ill-formatted output.
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Benchmark Versions “ LOC [ Description Test cases | Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K | W3C HTML validation 2402 25
LiBXML2 v2.3.5v2.3.10 84K | XML parser 441 0
Gce-XML Nov’05 Nov’07 20K | XML output for GCC 4111 875
CODE2WEB v1.0vl.1 23K | pretty printer 3 3
DocBook v1.72 v1.74 182K | document creation 7 5
FREEMARKER | v2.3.11v2.3.13 69K | template engine 42 1
Jsppp v0.5av0.5.1a 10K | pretty printer 25 0
TEXT2HTML v2.23 v2.51 6K | text converter 23 6
TXT2TAGS v2.3v2.4 26K | text converter 94 4
UMT v0.8 v0.98 15K | UML transformations 6 0
| Total \ [ 473K | \ 7154 | 919 |

Fig. 2. The benchmarks used in our experiments. The “Test cases” column gives the number of regression tests we used for that
project; the “Test cases to Inspect” column counts those tests for which manual inspection indicated a possible bug.

l Feature H Coefficient \ F \ P ‘
Text Only -0.288 | 168970 | < 0.001
DIFFX-move +0.002 | 150840 | < 0.001
DIFFX-delete +0.029 | 46062 | < 0.001
Grouped Boolean +0.714 7804 | < 0.001
DIFFX-insert +0.029 4761 | < 0.001
Grouped Change -0.012 465 | < 0.001
Children Order -0.002 317 | < 0.001
Inversions +0.001 246 0.020
Missing Attribute -0.048 121 | < 0.001
Error Keywords +0.174 115 | < 0.001
Depth - 0.000 21 | < 0.001
Text Ratios -0.007 18 | < 0.001
Input Elements -0.019 5 0.030

Fig. 4. Analysis of variance of our model. A + in the “Coef-
ficient” column means high values of that feature correlate
with test cases outputs that should be inspected (both + and -
indicate useful features). The higher the value in the “F” col-
umn, the more the feature affects the model. The “p” column
gives the significance level of F'; features with no significant
main effect (p > 0.05) are not shown.

As shown in Figure 3, little to no bias was revealed by
cross-validation. The absolute difference in I} -score between
the model and its corresponding averaged cross validation
steps was 0.0004.

4.2 Experiment 2 — Feature Analysis

Having established that SMART is able to successfully flag
both faults and non-faults, we evaluate relative feature im-
portance and determine which features correlate with out-
put that should be inspected. Figure 4 shows the results of
a per-feature analysis of variance on the model using the en-
tire dataset, listing only those features with a significant main
effect. F' denotes the F'-ratio, which is close to 1 if the fea-
ture does not affect the model; conceptually F' represents the
square root of variance explained by that feature over vari-
ance not explained. The p column denotes the significance
level of F' (i.e., the probability that the feature does not affect
the model).

Our most significant feature was whether or not the dif-
ference between a pair of test cases output could be quaran-

tined to only low-level text. We found that text-only changes
have a strong negative effect on human inspection, and rely-
ing on such a feature is one of the key reasons we are able
to outperform diff, because many web-based applications
may update natural language text as part of normal program
evolutions.

Our second most important feature was DIFFX-move, which,
by contrast, was frequently correlated with test case errors.
Rather than relying on only insertions or deletions, moves
are able to capture both of these types of changes as a move
always occurs in conjunction with any of the other two edits.
Consequently, despite the high F'-ratio of the DIFFX-move
feature, its model coefficient was an order of magnitude smaller
than those of insert or delete. Therefore, although moves were
most frequently associated with actual bugs, other features
also had to be present in order for the test case output to
merit human inspection. Our boolean feature that indicated
the presence of clustered changes was also highly correlated
with errors. Notably, grouped changes were more important
than DIFFX-inserts, which may have been scattered across the
output.

Some of our features were less powerful than we origi-
nally hypothesized. For example, the presence of error key-
words did not effect our model as much as the features listed
above. We return to the issue of error keywords in Section 7.2.3.
Despite the moderate F'-ratio of this feature, its coefficient
was the highest across all features, indicating that it was strongly
predictive of error instances when present.

Additionally, SMART depends heavily on the DIFFX algo-
rithm to calculate structural changes between pairs of web-
based application output. DIFFX is an approximation, and
any errors in mapping one output tree to another may re-
duce the performance of our approach. To investigate the im-
pact of DIFFX’s potential false positives and false negatives
on SMART’s performance, we conducted a pilot study where
we manually perturbed the number of DIFFX-reported inser-
tions, deletions, and moves reported by between zero and at
one standard deviation for each of these three features. We
then examined changes in SMART’s performance when these
error-seeded DIFFX feature values were randomly applied to
between 0 and 100% of the test case output pairs. Overall,
even in the worst case, where every output pair’s feature val-
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Benchmark | Comparator [ Fy [ Prec [ Reca ‘
HTMLTIDY | SMART 1.000 | 1.000 | 1.000
diff 0.048 | 0.025 | 1.000
xmldiff 0.021 | 0.010 | 1.000
Gce-XML SMART 0.999 | 1.000 | 0.999
diff 0.352 | 0.213 | 1.000
xmldiff 0.352 | 0.213 | 1.000
All ten SMART 0.993 | 0.997 | 0.989
(global) diff 0.300 | 0.177 | 1.000
xmldiff 0.241 | 0.138 | 1.000

Fig. 5. Fi-score, precision (Prec), and recall (Reca) when
trained and tested on individual projects, as well as all ten of
our benchmarks. Results for diff are presented as a base-
line.

ues were perturbed by an entire standard deviation, the F'1-
score for our dataset decreased by at most 0.001, suggesting
that our overall model is robust to errors in the underlying
structural mapping.

To gain additional insight into relative feature power and
number of required features beyond that provided by the F'-
values in Figure 4, we also conducted a “leave-one-out” ex-
periment. We cumulatively removed one feature at a time,
starting with the feature with the lowest F'-value. When re-
moving up to four of the lowest-performing four features (In-
put Elements, Text Ratios, Depth, and Error Keywords), the
F score varied by less than 0.001. F}-scores dropped from
0.99 to to 0.98 when only three features remained, and dropped
to 0.26 when only two features remained. Although some of
the changes in F} score seem small, subsequent experiments
(e.g., Figure 6) demonstrate that even a 1% increase in false
positives has a severe impact on the real-world usability of
the technique.

4.3 Experiment 3 — Project-specific Models

Having established the feasibility of training such a general
comparator, we investigated whether it was possible to im-
prove our model’s performance when training a tailored com-
parator for specific projects. We used the same experimental
setup for our per-project classifiers described in Section 4.1.2.
We restricted attention to the 6513 test case output pairs for
Gcce-XML and HTMLTIDY, because those two benchmarks
were large enough to be feasible for individual study. Fig-
ure 5 shows SMART’s average Fi-score, precision and recall
values when trained and tested on each program separately.

For HTMLTIDY we obtain perfect performance, with no
false positives or false negatives. Our precision is thus an
order of magnitude better than that of diff: our technique
presents only 25 test case outputs to developers compared to
the 960 flagged by dif£.

For Gcc-XML we obtain near-perfect recall (0.999) and
perfect precision; we present 874 test cases for human in-
spection compared to diff’s 4100, but we fail to flag one
test case that did merit human inspection.

Project-specific feature weights contributed to our strong
per-project performance. For example, the DIFFX-delete and

DIFFX-insert features were equally important for the HTMLTIDY

project, but not across all benchmarks. As another example,
DIFFX-insert and error keywords were significantly associ-
ated with errors in HTMLTIDY but not at all in GCC-XML.
Intuitively, using our technique for either of the projects alone
is always advantageous. When the same global model is ap-
plied to all ten benchmarks, however, recall suffers: we fail to
present some actual regression test errors for human inspec-
tion.

5 Training the Model with Human Annotations

Although SMART has near-perfect precision and recall in our
experiments so far, it is unlikely that humans will be will-
ing to annotate ninety percent of their test case outputs as
cross-validation training data for the comparator. In this sec-
tion, we explore a more realistic scenario where developers
are responsible for training SMART on twenty percent of the
output from each run of the test suite, which they manually
annotate, and testing on the remaining eighty percent. We in-
clude multiple releases of the same product to characterize
the performance in this longitudinal manner. Subsequent re-
leases of the same project retain training information from
previous releases, as well as incorporating the false positive
or true positive results of any test case that our tool deemed
to require manual inspection.

Our goal is to estimate the effort we save developers when
using SMART, by defining a cost of looking (LookCost) at
a test case and a cost of missing (MissCost) for each test
case that should have been flagged but was not. We consider
SMART a useful investment when the cost of using it:

LookCost x (TruePos + FalsePos + Annot)
+ MissCost x FualseNeg

is less than the cost of |[diff| x LookCost. Here Annot de-
notes the number of test cases that are manually annotated
for training (20% of the total). Therefore, SMART saves effort
when the cost of looking at the test cases flagged by di f £ but
not by our model exceeds the cost of missing any relevant test
cases we fail to report. We thus express the condition under
which SMART is profitable:

LookCost - — FualseNeg
MissCost = TruePos + FalsePos + Annot — |diff|

We assume LookCost < MissCost [54], so we would like this
ratio to be as small as possible.

5.1 Results

Figure 6 shows our results, as well as the number of test cases
that a developer would need to examine when using diff
as a baseline. For example, when applying our technique to
the last release of HTMLTIDY, if the cost of missing a poten-
tially useful regression test report is less than or equal to 1000
times the cost of triaging and inspecting a test case, we save
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developer effort. A ratio of O indicates no false negatives, and
thus a net win compared to di f £, regardless of LookCost or
MissCost.

SMART’s performance generally improves on subsequent
releases, and it totally avoids missing any faults in one in-
stance for both HTMLTIDY and GCC-XML. In situations where
there is a large increase in the relative number of regression
test errors, such as a rushed release of a product, such as
the fourth release of HTMLTIDY, SMART performs the worst.
When the manual annotation of 20% of the training test case
outputs shows a historically unreasonable number of regres-
sion test errors, a developer would not be advised to use our
approach.

Previous work on bug report triage has used a LookCost
to MissCost ratio of 0.023 as a metric for success for an anal-
ysis that required 30 days to operate [22]. The typical perfor-
mance of our technique, which includes the cost of the 20%
manual annotation burden and would take 1.3 hours on av-
erage per release, is 0.0183 — a 20% improvement over that
figure. By excluding the single HTMLTIDY outlier mentioned
above, our ratio improves to 0.0015, exceeding the utility of
previous tools by an order of magnitude and requiring an or-
der of magnitude less time.

6 Automating the Model

The previous sections demonstrated that designing a highly
precise oracle comparator that relies on surface feature val-
ues between pairs of regression test case output is a feasible
and reasonable approach for reducing the cost of regression
testing web-based applications. Our comparator, SMART, sig-
nificantly outperforms dif f and other baselines, and is able
to successfully save developer effort. Given the resource con-
straints web-based applications are developed under [37], and
the perceived low return on investment in this domain [21],
we believe that in order for any approach to be adopted in
industry, automation is essential. The remainder of this pa-
per explores automated approaches for oracle comparators
for web-based applications, that do not require manual anno-
tation of training data.

Although Section 4.3 presented results where a compara-
tor customized to a benchmark application outperforms that
trained on a global dataset, we believe that inherent under-
lying similarities between unrelated web-based applications
can be exploited to automate the oracle comparator process.

6.1 Experimental Setup

To test our hypothesis that underlying similarities from un-
related web-based applications are sufficient for training a
highly precise oracle comparator, we designed an experiment
which relied on the same training dataset from Section 4 (see
Figure 2), and tested on applications not in the training set.
Optionally, developers may choose to supplement the training
dataset with their own annotations of data from the application-
at-test, but we do not require them.

F-score for Various Comparators
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Fig. 8. F7-score on each test benchmark (HTMLTIDY, GCC-
XML, VQWIKI, CLICK) using our Model, and other baseline
comparators. 1.0 is a perfect score: no false positives or false
negatives.

We selected four benchmarks, shown in Figure 7, to serve
as our test data. HTMLTIDY and GCcC-XML were the only
benchmarks from our previous experiments that had enough
output pairs labeled as faults (given by the “Test Cases to
Inspect” column) to serve as festing (as opposed to train-
ing) subjects. We also relied upon two open source browser-
based applications (CLICK and VQWIKI) to supplement our
test benchmarks in a “worst-case scenario” fashion: none of
the training benchmarks are browser-based applications, and
successful performance on them further supports our claims
about inherent web-based application similarities.

VQWIKI [3] is wiki server software that can be used
out-of-the-box as a browser-based application. CLICK [1] is
a Java Enterprise Edition web-based application framework
that ships with a sample browser-based application demon-
strating the framework’s features. HTMLTIDY and GCC-XML
are two open-source HTML- and XML-based applications
that are also a part of our training benchmarks; we therefore
removed each benchmark’s respective test case outputs from
the corpus of training data, so that we never tested and trained
on the same data. In total we tested our model on 6728 test
case pairs, 941 of which were labeled as errors by manual
inspection (see Figure 7).

6.2 Experimental Results

Figure 8 shows our model’s F-score values for each test
benchmark, as well as the baselines in Section 4.1.3 (see Fig-
ure 3). Figure 9 and Figure 10 present the recall and pre-
cision values, respectively, from which the Fj-scores were
calculated. SMART is anywhere from over 2.5 to almost 50
times as good as di £ f at correctly labeling test case outputs,
with similar improvements over xm1diff. Both browser-
based applications (CLICK and VQWIKI) obtain perfect re-
sults, and the Fi-score of 0.98 for our second largest HTML
benchmark, HTMLTIDY is near optimal. Overall, relying on
underlying web-based application similarities to train an ora-
cle comparator to test an unrelated web-based application is
a successful approach. For example, an analysis of variance
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Test | Should True Positive False Positives False Negatives
Benchmark | Release | Cases | Inspect | SMART | diff | SMART | diff | SMART | diff | Ratio
HTMLTIDY | 2nd 2402 12 5 12 78 781 7 0 | 0.0099
3rd 2402 48 48 48 0 782 0 0|0
4th 2402 254 109 254 1 574 145 0 | 0.2019
5th 2402 48 48 48 0 775 0 0|0
6th 2402 20 19 20 1 774 1 0 | 0.0013
Gce-XML | 2nd 4111 662 658 662 16 | 2258 4 0 | 0.0018
3rd 4111 544 544 544 0| 2577 0 0|0
| Total [ [ 20232 [ 1588 | 1431 [ 1588 | 96 | 8521 [ 157 | 0] 0.0183 |

Fig. 6. Simulated performance of our technique on 20232 test case executions from multiple releases of two projects. The “Test
Cases” column gives the total number of regression tests per release. The “Should Inspect” column counts the number of those
tests that our manual annotation indicated should be inspected (i.e., might indicate a bug). The “Inspected” column gives the
number of tests that our technique and di f f flag for inspection. The “False Positives” and “False Negatives” columns measure
accuracy, and the “Ratio” column indicates the value of LookCost/MissCost above which our technique becomes profitable

(lower values are better).

l Benchmark [ Versions H LOC [ Description Test cases | Test cases to Inspect ‘
HTMLTIDY | Jul’05 Oct’05 38K | W3C HTML validation 2402 25
Gce-XML | Nov’05 Nov’07 20K | XML output for GCC 4111 875
VQWIKI 2.8-beta 2.8-RC1 39K | wiki web application 135 34
CLICK 1.5-RC2 1.5-RC3 11K | JEE web application 80 7

| Total [ | 108K | [ 6728 | 941 |

Fig. 7. The benchmarks used as test data for Experiment 1. The “Test cases” column gives the number of regression tests used;
the “Test cases to Inspect” column counts those tests for which our manual inspection indicated a possible bug. When testing

on HTMLTIDY or GCC-XML, we remove it from the training set.
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Fig. 9. Recall on each test benchmark (HTMLTIDY, GCC-
XML, VQWIKI, CLICK) using our Model, and other baseline
comparators.

revealed that text-only changes were strongly negatively as-
sociated with bugs across all benchmarks, and similar to the
conclusions presented in Section 4.2. By utilizing our read-
ily available training data set and companion comparator, de-
velopers would be able to significantly reduce the number of
false positives associated with testing web-based applications
while minimizing or eliminating false negatives.

While our F’-score for our XML benchmark, GCC-XML,
was three times better than that of diff, its recall score of

Precision for Various Comparators
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Fig. 10. Precision on each test benchmark (HTMLTIDY, GCC-
XML, VQWIKI, CLICK) using our Model, and other baseline
comparators.

0.84 implies that we may be missing a significant number of
actual faults. Unlike our other test applications, GCC-XML
outputs XML rather than HTML code, and may not be able to
make full use of our human-emulating semantic features de-
scribed in Section 3.3, or may exhibit errors differently than
in the HTML-emitting applications (we return to this notion
in Section 7.2). Instead of suggesting developers continue to
use dif f-like comparators, or rely on extensive manual an-
notation, we propose that they continue to apply our approach
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with one small modification: by extending the training data
set with seeded faults obtained from automated fault injec-
tion, developers can customize SMART to a specific applica-
tion while still avoiding relying on manual annotations. We
explore this concept in the following subsection.

6.3 Training Data from Defect Seeding

Our relatively low recall value for GCC-XML suggests that
this application-at-test exhibits errors in a way that differs
from our other training benchmarks. By relying on automated
defect seeding, we claim that it is possible to improve the re-
sults of our automated comparator to levels comparable with
a manual approach.

Seeding the source code of an application with defects has
been previously explored [25,27,47]. It can be assumed that
any output from a fault-seeded version for a deterministic test
case that differs from the expected output can be attributed to
the injected fault, and thus that output pair should be added
to the training data set with the label “should inspect”. While
automatically generating, compiling and running mutants can
be CPU-intensive, it does not require manual intervention. In
this experiment, a subset of mutation operators from Ellims
et al. [19] were injected into a single version of the source
code on a single random line. Examples of mutation operators
include deleting a line of code, replacing a statement with a
return, or changing a binary operator, such as swapping AND
for OR. Each mutant version of the source code, containing a
single mutation, was then re-run on the entire test suite, and
all differing outputs were collected; we were able to obtain
11,000 usable erroneous output pairs within 90 minutes on a
3 GHz Intel Xeon computer.

Figure 11 shows our Fj-scores when adding between 0
and 5 defect-seeded output pairs to the set of training data
(selecting 0 mutants is provided as a baseline) over 1000 tri-
als. Adding any single mutant is always better than using
none, although the large margin of error implies that best
performance is obtained when selecting the most appropri-
ate mutant. After adding 5 mutants our F-score of 0.999 ap-
proaches the optimal value of 1. We hypothesize that it is
possible to dramatically affect SMART’s predictive power by
adding a small number of mutants because for the case of
Gcc-XML, there were only 44 errors in the training data set,
and adding one more to such a small number can significantly
change the results. Other benchmarks may require more mu-
tants to obtain similar levels of increased performance, al-
though we have demonstrated that it is quite simple to auto-
matically generate these defects. We conclude that very little
application-specific training data (5 labeled output pairs) is
needed to bring even our-worst performing benchmark up to
near-optimal performance, and even such application-specific
data can be easily obtained automatically.

F-score for Number of Mutant Test Case Outputs
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Fig. 11. Fi-score for GCC-XML using our model with differ-
ent numbers of test case output pairs from original-mutant
versions of the source code. The “0” column indicates no mu-
tant test outputs were used as part of the training data. Each
bar represents the average of 1000 random trails; error bars
indicate the standard deviation.

7 Case Study: Popular Browser-based Applications

Section 5 and Section 6 explored annotation-based and au-
tomated approaches using SMART to reduce the number of
false positives associated with regression testing web-based
applications, while minimizing or eliminating false negatives.
This section presents the results of SMART’s performance on
three popular, open-source PHP browser-based applications.
Although Section 6.2 evaluated our model’s performance on
two browser-based applications, CLICK and VQWIKI, our
goal is to investigate SMART’s performance on additional and
potentially more typical and challenging benchmarks. For this
purpose we evaluated our tool’s performance on three open-
source popular browser-based applications summarized in Fig-
ure 12.

Our first benchmark, PRESTASHOP, is an e-commerce ap-
plication with over 24,000 companies employing their own
instances of the product worldwide [6]. Besides featuring au-
thentication and database properties, PRESTASHOP is inter-
esting from a regression testing perspective because it makes
use of a non-deterministic “featured product” which changes
between runs of the application test suite. OPENREALTY is
an on-line real estate listing management application with
over ten thousand registered members in their development
forum [5]. VANILLA is a standards-compliant, multi-lingual,
theme-able, pluggable discussion forum for the web with “over
300,000 businesses, brands, and fans” [7]. All three PHP ap-
plications make use of session cookies that result in addi-
tional non-deterministic output that would be flagged by a
naive comparator such as diff.

To provide a precise analysis of SMART’s fault revealing
properties for these popular browser-based applications, we
used manual seeding of source code faults for each bench-
mark, rather than running the test suite on two different ver-
sions as in previous sections. Although this no longer pro-
vides us an opportunity to ignore natural program evolutions,
we chose to conduct this experiment to know with certainty



12 Dobolyi, Soechting and Weimer: Automating Regression Testing Using Web-based Application Similarities

Benchmark Versions LOC | Description Training Cases Testing Cases
Faults | Non-Faults | Faults | Non-Faults
PRESTASHOP | v1.1.0.55 || 155K | e-commerce (shopping cart) 0 83 431 83
OPENREALTY | v2.5.6 185K | real estate listing management 4506 33 62 33
VANILLA vl.l.5a 35K | web forum 895 48 462 48
| Total \ [ 375K | | 5401 | 164 [ 955 | 164 |

Fig. 12. Additional web-based application benchmarks. PRESTASHOP, OPENREALTY, and VANILLA are all popular, open-source
PHP applications that make heavy use of non-deterministic output. The “Training Faults” test cases were obtained by automatic
fault seeding (see Section 6.3). The “Testing Faults” were manually seeded. The “Non-Faults” columns represent clean runs
(and may included non-deterministic data, such as “featured product” information). Ideally, all of the “Testing Cases” instances

should be correctly categorized by a precise comparator.

whether or not the faults that we should flag are actual er-
rors. This is in contrast to the potential faults flagged in pre-
vious sections. Furthermore, we believe that the heavy use
of non-deterministic output in these benchmarks provides a
challenge equal to that of ignoring harmless program evolu-
tions in our previous experiments.

7.1 Severity of Missed Faults

We follow the setup of Section 6.3 for this experiment; a com-
parator is trained for each individual benchmark using the
pre-existing training data from the benchmarks in Figure 2, as
well as additional automatically injected faults obtained us-
ing the methods in Section 6.3. Figure 12 indicates the num-
ber of automatically injected faults used as training data for
each benchmark in the “Training Faults” column. Because of
the heavy reliance on non-deterministic output for these PHP
benchmarks, we also supplemented the training data set with
clean runs of the test suite where no faults were injected but
where non-deterministic output still existed, these are labeled
as “Training Non-Faults”. The training data for OPENRE-
ALTY and VANILLA were augmented with such injected-fault
information; for comparison, PRESTASHOP was not. The num-
ber of training faults and non-faults used in the remaining two
benchmarks were natural artifacts of the number of automat-
ically injected faults that happened to be exercised by a test
case, and the size of the test suite, respectively — there was
no conscious effort to present any particular ratio of faults to
non-fault for the training dataset. We hypothesize that it may
be more difficult to reduce false positives in web-based ap-
plications which make the heaviest use of non-deterministic
output.

The “Testing Faults” column of Figure 12 gives the num-
ber of manually injected faults SMART should detect. Be-
cause these are known faults, rather than potential faults as
flagged by a human annotator, we expect the experiments in
this section to have more false negatives. Therefore, we also
seek to characterize the consumer perceived severity of cor-
rectly flagged and missed faults. We claim that if the sever-
ity of missed faults is not high, using SMART under the au-
tomated approach is still a useful investment to developers,
even if some bugs are missed, given the resource constraints
of development in this domain. Finally, the “Testing Non-

Faults” column gives normal test case output that should be
correctly classified — different from the training data in terms
of non-deterministic output.

We follow previous work [16,17] in dividing fault sever-
ity (i.e., consumer perceptions of fault importance) into four
levels: severe, medium, low and very low. These severity rat-
ings correspond to varying levels of human actions based
upon a fault seen; for example, severe faults occur when the
user would either file a complaint or probably not return to the
website. A rating of very low indicates that no fault was no-
ticed by the consumer. The severity model used here is based
on a human study. We involve fault severity because SMART
may fail to report some defects, but not all defects are equally
important to users.

Figure 13 presents the results of a severity analysis of
the faults missed by our approach, broken down into severe
and non-severe (medium, low, and very low) categories. The
“Weighted Found” column refers to the percent of total faults
correctly identified by SMART when assigning weights rang-
ing from 1-4 for severity in increasing order. For PRESTASHOP,
OPENREALTY, and VANILLA, our technique missed 1%, 9%,
and 0% of the severe faults in their testing data respectively,
indicating that overall the percentage of severe faults missed
is extremely low. Out of 532 severe faults considered, SMART
missed only 7.

The last column of Figure 13 shows the number of non-
faults that were classified correctly by SMART. Using the ter-
minology of Section 5, this corresponds to the amount of ef-
fort saved compared to diff (i.e., the factor multiplied by
LookCost). For example, for VANILLA, our approach reduces
developer inspection costs by 97% without missing any se-
vere faults. For PRESTASHOP, our approach reduces inspec-
tion costs by 47% while missing only 1% of severe faults.

7.2 Feature Analysis

Our final experimental goal is to explicitly evaluate the hy-
potheses about feature associations with faults and non-faults
presented in Section 3. Figure 14 presents the results of anal-
ysis of variance experiments conducted on all of our test ap-
plications. Each value represents the coefficient of the feature
in the model — higher values are more associated with er-
rors, for features whose p-value was less than 0.05. F' values
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Benchmark Goal Goal Goal Goal Miss Miss Miss Miss | Weighted | % Effort
Severe | Medium Low | Very Low | Severe | Medium Low | Very Low | % Found Saved
Faults Faults | Faults Faults | Faults Faults | Faults Faults Faults
PRESTASHOP 302 45 57 27 3 32 17 26 98% 47%
OPENREALTY 44 1 1 16 4 1 0 10 85% 100%
VANILLA 186 183 10 83 0 5 8 0 89% 97%

Fig. 13. Breakdown of missed faults across our three PHP benchmarks. Human-perceived fault severity is emphasized, and ranges

9% ¢

over “very low”, “low”, “medium” and “‘severe”.

are not shown, and for the training dataset, only those fea-
tures are shown which overlap with at least one significant
feature from one of the testing benchmarks. We now examine
the results qualitatively in detail, tying in feature importance
to concrete software engineering features. In this section we
conduct a deeper analysis of the delete, move, text-only, and
error keywords features, beginning with their significance in
our representative PHP benchmarks, and extending our anal-
ysis to all test applications we have visited in our work.

7.2.1 Moves and Deletes

Of all the features SMART employs, DIFFX-move and DIFFX-
delete were the only two that correlated with judgments in a
statistically significant manner across every test benchmark,
as seen in Figure 14. In addition, the F'-value for at least one
of these features was always either the highest or second-
highest feature for each specific benchmark model, indicating
that these features significantly affected the respective model.

Given the importance of DIFFX-move and DIFFX-delete
in our models, we sought to characterize the nature of the
faults they tended to predict, as they were generally indica-
tive of faults across most benchmarks. To do so, we manu-
ally examined the HTML output for test cases in our dataset
which were labeled as having high DIFFX-move and DIFFX-
delete values, as well as those with low DIFFX-move and
DIFFX-delete values. For our three PHP browser-based ap-
plications, high DIFFX-delete values indicated large chunks
of expected output were missing. For example, in VANILLA
an output pair with a high DIFFX-delete feature value typi-
cally corresponds to output in which all forum comments are
gone, or in which a search returns no results. In OPENRE-
ALTY, high DIFFX-delete values were associated with miss-
ing a large loan calculator form, while in PRESTASHOP, they
indicated blank pages that contained a single error message
such as “Error: install directory is missing”. Similarly, high
DIFFX-delete values in VQWIKI and CLICK, our other two
browser-based applications, were instances of pages not be-
ing found or missing the entire body of data. By contrast, low
DIFFX-delete values were associated with less severe errors
such as missing links, small parts of pages, or small bits of
functionality such as a Javascript calendar.

Like DIFFX-delete, high DIFFX-move values were also
generally associated with faults. For our three PHP bench-
marks, high DIFFX-move scores indicated authentication fail-
ures, missing entire forms, or other high severity faults with

explicit error messages. For our other benchmarks, high DIFFX-
move values revealed the same faults as those with DIFFX-
delete scores. Low DIFFX-move values were less indicative
of lower severity errors than low DIFFX-delete scores. For ex-
ample, low DIFFX-move scores were found when large parts
of the webpage were missing, as well as for small amounts of
missing data such as parts of pages or incorrectly calculated
data items.

Overall high DIFFX-delete and DIFFX-move are gener-
ally indicative of severe faults in web-based applications, as
they correlate with large amounts of missing data. The user-
perceived severity of such faults can frequently be predicted
by the size of the DIFFX-delete value.

7.2.2 Text-only differences

The third feature we examine in depth is when the difference
between two HTML outputs can be qualified as only changes
to the natural language text within the documents. More than
any other feature, text-only changes significantly impacted
the negative performance of SMART in cases of false pos-
itives and false negatives when its respective F-value was
high (PRESTASHOP, OPENREALTY, VANILLA, GCC-XML,
and HTMLTIDY).

For example, text-only changes in PRESTASHOP corre-
lated negatively with faults, but were not helpful at reducing
false positives. For PRESTASHOP, a rotating “featured prod-
uct of the day” display caused even the “clean” (non-fault)
output pairs to include text-only changes. Text-only changes
in OPENREALTY and VANILLA had the opposite effect on
SMART’s performance: rather than failing to rule out false
positives, in the case of OPENREALTY, text-only changes
were responsible for every false negative. For example, faults
such as incorrectly calculating the number of comments on a
forum appears to our model as simple text-only changes. In
VANILLA, all other false negatives were due our tool ignor-
ing changed HTML attribute values, our default behavior to
avoid flagging changes to image height and other non-errors.
For example, in VANILLA an input field’s name attribute was
mistyped. In future work, we propose to explore SMART’s
performance when flagging attribute changes for HTML files
as well as XML output.

7.2.3 Error Keywords

Finally, we return to the issue of error keywords and their
ability to predict faults in web-based application output. Man-
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Benchmark | move ins del| text| group| childjmissing inv| new| depth error| text| group|functi-| new
only attr] text keywords| ratio| binary|onality| text
PRESTASHOP |+0.084| -0.004(+0.009| -0.368 -0.008| -0.515
OPENREALTY|[+0.008 +0.036] -0.388 +0.576
VANILLA |-0.002|+0.023|+0.024| -0.326| -0.025| -0.003
HTMLTIDY |[+0.001[+0.050]-0.025|-0.919|-0.121 -0.061(+0.010 +0.220/+0.004/|+0.553(+0.630{-0.010
Gce-XML  [+0.000 +0.005| -0.163|-0.013 +0.000 -0.011 +0.835
CLICK +0.000[+0.000|+0.000|+0.000{+0.000{+0.000 +0.000 +0.000| +1.000+0.000
VQWIKI [+0.088(+0.000]| -0.000
TRAINING [+0.002+0.029|+0.029| -0.288| -0.012| -0.002| -0.048|+0.001 -0.000| +0.174{-0.007|+0.714| -0.019

Fig. 14. Coefficients of feature values across all test benchmarks, plus the generic training dataset.

ual inspection of output pairs rated as severe revealed that
they frequently contain error keywords. Despite this, the over-
all predictive power (F'-value) of this feature was generally
low, with the exception of CLICK where error keywords were
able to perfectly predict actual faults. The main reason is that
none of these real-world browser-based applications ever dis-
played a stack trace directly, and instead wrapped their visi-
ble errors in more human-friendly formats; this is in contrast
to our experience with web-based application faults in gen-
eral [17]. From a consumer perspective, it should be possible
to design web-based applications that fail elegantly without
stack traces or upsetting error messages [17] and yet still rely
on a sophisticated tool such as SMART that can nevertheless
detect such failures without relying on a search for any par-
ticular keywords in the document.

8 Experiment Summary

This paper approaches the problem of providing a highly pre-
cise oracle comparator for web-based application regression
test output by proposing SMART, an approach that relies on
surface features of web-based application output to determine
whether or not human should inspect test case output pairs. Sec-
tion 4 demonstrated that such structural and semantic fea-
tures can be successfully used to model web-based applica-
tion output and make judgments about errors. Initially, we
tested SMART in instances where manual annotation of test
case output is required to train the classifier. On 7154 test
cases from 10 projects, SMART obtains a precision of 0.9972,
arecall of 0.9890, and an F-score of 0.9931, over three times
as good as di f£’s Fj-score of 0.3004. Encouraged by these
very strong machine learning results, we further tested our
technique in a simulated deployment involving 20232 test
case executions of 6513 test cases and multiple releases of
two projects. Under such circumstances humans were asked
to annotate 20% of their test case output pairs to serve as
training data for the classifier; the remaining 80% of the test
case output was then offered for classification by our tool. In
such a scenario we had 8425 fewer false positives than diff,
and we save development effort when the ratio of the cost of
inspecting a test case to the cost of missing a relevant report
is over 0.0183; numbers in that range correspond to industrial
practice.

Given the extreme resource constraints under which web-
based applications are developed, we extended this proof-of-
concept model from Section 5 by replacing it with a com-
pletely automated approach. Section 6 demonstrated that us-
ing test case output pairs from unrelated web-based appli-
cations to train a model to predict errors in output in the
application-at-test is a viable strategy. SMART was able to
achieve perfect recall and precision for our two browser-based
application benchmarks, while close to perfect (0.98 and 0.99)
Fy -scores for our two web-based applications. To obtain such
a near-perfect F-score for GCC-XML, our XML-emitting
benchmark application, we augmented the training data set
with automatically generated outputs obtained via defect seed-
ing. To obtain the F'-score of 0.999 for GCC-XML, we aug-
ment the training data with five automatically generated out-
puts obtained via defect seeding. In all cases we outperform
dif f£-like comparator by a factor between 2.5 and 50 times,
significantly reducing the number of false positives, and thus
the human resources required, when compared to this more
naive approach.

Finally, we extended our analyses to three real-world, pop-
ular, open-source PHP benchmarks to more accurately mea-
sure SMART’s ability to detect faults in a more natural set-
ting where web-based applications make heavy use of non-
deterministic data. When tested on known, manually-injected
faults, SMART was able to correctly flag most of the actual
bugs, missing only 1% actual severe errors on average. We
found out that our ability to accurately identify faults is in-
versely proportional to our effectiveness at ruling out non-
faults. Finally, we analyzed our model’s feature importance
for these three benchmarks, extending our study to all test
items in this paper. We found that DIFFX-move and DIFFX-
delete significantly affected all models across all benchmarks.
DIFFX-delete in particular was highly predictive of fault sever-
ity. We also examined the effect our natural language analy-
ses had on our models. Our text-only feature was, in general,
useful for outperforming di f £-like tools, but was sometimes
not helpful in reducing false positives for challenging non-
deterministic data such as a rotating featured product on a e-
commerce site. Ultimately, we believe that SMART’s ability
to usefully capture or ignore textual changes in a document
relies on the structural context of that text, effectively rais-
ing the abstraction level of the text. Finally, we analyzed the
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importance of error keywords in our model and discovered
an overlap between this feature and DIFFX-delete, which can
explain the lower importance of this feature. This implies that
SMART is able to detect errors even without the presence of
such natural language text, which is beneficial for developers
who choose to provide more user-friendly failure modes to
their consumers.

9 Threats to Validity

Although this paper presents significant savings in terms of
developer effort during regression test comparison and evalu-
ation, it is possible that our results do not generalize to indus-
trial practice. For example, the benchmarks we selected may
not be indicative of other applications. To mitigate this threat,
we attempted to choose open-source benchmarks rather than
toy applications, from a variety of domains. Our combined
benchmarks are over seven times larger than the combined
benchmarks of the previous work that we are most closely re-
lated to [48] in terms of lines of code, and we have over twice
as many total test cases. In addition, all of our benchmarks are
freely-available open source applications. We also chose to
supplement our benchmarks with three widely-used popular
open source browser-based applications in Section 7, which
we believe to be representative of common websites. These
specific benchmarks relied heavily on non-deterministic out-
put and were selected to pose an additional level of difficulty
for that reason.

In Section 3.3 and Section 6 it is possible that our human
annotations were unable to accurately label potential errors in
web-based application regression test output. To avoid miss-
ing actual bugs, our annotations were conservative: we only
annotated test outputs as not meriting inspection if we were
highly certain they did not indicate an error. Consequently,
we may have mislabeled non-errors as errors, which reduces
our ability to outperform di f £, but does not impact the cor-
rectness of our approach. Similarly, because annotators were
also partly responsible for suggesting features for the model,
it is possible that bias exists in the annotations themselves, al-
though this situation was guarded against by annotating each
pair of output at least twice for consistency. In addition, the
experiments in Section 7 utilize known faults, rather than po-
tential faults, thereby avoiding this problem entirely.

Many of our experiments make use of automated defect
seeding to obtain faults to be used as part of the training
data set for our comparator. There may be some classes of
web-based applications, however, where defect seeding is in-
appropriate to generate such mutants. For example, consider
a Wiki application where the formatting and content of dis-
played natural language text is important. Fault seeding may
be unable to generate instances on which to train our model
to recognize potentially meaningful changes to natural lan-
guage text which may be otherwise ignored in most of our
benchmarks.

10 Related Work

Many testing methodologies use oracle comparators that re-
quire manual intervention in the presence of discrepancies [18,
28,37,48]. For example, user session data can be used as both
input and also test cases [18,46], but there must be a way to
compare obtained results with expected results. Lucca et al.
address web-based application testing with an object-oriented
web application model [28]. They outline a comparator which
automatically compares the actual results against the expected
values of the test execution. Our technique can be thought of
as a working instantiation of such a design, and we extend the
notion to structural differences.

Sneed explores a case study on testing a web-based appli-
cation system for the Austrian Chamber of Commerce [43].
A capture-replay tool was used to record the dialog tests,
and XML documents produced by the server were compared
at the element level: if the elements did not match, the test
failed. Our approach also compares XML documents, but does
not necessarily rely on exact element matching, and thus re-
ports fewer false positives.

Providing a precise comparator for web-based applica-
tions remains an open research area. Sprenkle ez al. and Sam-
path et al. have focused on oracle comparators for testing
web-based applications [46—48]. They investigate features de-
rived from di £ £, content, and structure, and refine these fea-
tures into oracle comparators [48] based on HTML tags, un-
ordered links, tag names, attributes, forms, the document, and
content. Applying decision tree learning allows them to iden-
tify the best combination of oracle comparators for a spe-
cific application in [47]. Our approach also combines ma-
chine learning and automated oracle comparators, though our
features and benchmarks are not always HTML-specific and
can be more generally applied. A more important difference
between our approaches is that they suggest developers hand-
seed faults from bug reports to create faulty versions of code,
from which outputs can be collected and used as training
data [47]. Our method does not require manual seeding of
faults and uses training data from other applications to auto-
mate this process. Additionally, rather than introducing mul-
tiple oracles targeted at different hypothetical types of web-
based applications [47,48], our model uses features that we
claim are closer to tree-based differences and human judg-
ments in a holistic manner to train one generic comparator
that can be tailored to the application at test automatically.
Finally, their approach is validated by measuring their ora-
cles’ abilities to reveal seeded faults in one version of an ap-
plication (i.e., measuring differences between the clean appli-
cation and a fault-seeded one). By contrast, our experiments
in Section 3.3 and Section 6 train and test on data between
different versions of the same application. Our approach con-
tends directly with common and benign program evolutions,
in contrast to the setting of Sprenkle et al. [47], wherea diff
comparator would have no false positives for a deterministic
application.

Although recent work has explored using abstract syn-
tax tree matching [31] and semantic graph differencing [35]
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for analyzing source code evolution, such approaches are not
helpful when comparing XML and HTML text outputs. Not
only do they depend on the presence of source code con-
structs such as variables and functions (which are not present
in generic HTML or XML) to make distinctions, but they are
meant to summarize changes, rather than to decide if a pair
of test case outputs indicate an error. There is currently no
industry standard for comparing pairs of XML/HTML docu-
ments beyond that of diff used in capture-replay contexts
and user-session based testing [24]. Developers have the op-
tion of customizing di f f-like comparators for their target
applications, such as by using regular expressions to filter out
conflicting dates, but these tools must be manually config-
ured for each application and potentially each test case, and
may not be robust as the website evolves. Differencing logi-
cal UML models is also an active research area [55], where
both the lexical and structural differences between two doc-
uments are considered. SMART uses a similar approach to
inspect changes between two versions of tree-based artifacts
associated with software, but is used to differentiate between
errors, rather than just intelligently summarize changes.

Binkley [11,12] as well as Vokolos and Frankl [52] ap-
proach regression testing by characterizing the semantic dif-
ferences between two versions of program source code using
program slicing. By doing so, only program differences need
to be tested and the total number of test cases that need to
be executed between versions are reduced. Our approach fo-
cuses on the semantic differences between two versions of the
program output; our technique is orthogonal to theirs, and our
tool can be used in a retest-all framework or in conjunction
with theirs in a setting in which some regression tests have
been skipped due to source code similarity.

Capture-replay scripts suffer from the “fragile test prob-
lem”, where a robot user fails for trivial reasons [30]. Meszaros
outlines the two parts of this problem: interface sensitivity,
where “seemingly minor changes to the interface can cause
tests to fail even though a human user would say the test
should still pass”, and context sensitivity, such as to the date
of the given test suite [30]. Our approach prevents the fragile
test problem in many instances, reducing the number of false
positives and allowing for older test case outputs to be reused
when comparing to newer versions.

11 Conclusion

Despite their high reliability requirements and user-centric
nature, the testing of web-based applications is often ignored
due to a lack of time, resources, and a low perceived return on
investment. Consequently, recent work on web-based appli-
cations focuses on automating as much of the testing process
as possible. This paper presented a new technique that takes
advantage of the special structure of XML/HTML output, as
well as the underlying similarities between unrelated web-
based applications, to provide a fully automated approach for
regression test output comparison in this domain. In a study
of open-source benchmarks totaling over 848,000 lines of

code, our highly precise oracle comparator, SMART, was be-
tween 2 to 50 times more capable than diff at correctly la-
beling non-faults, saving developers significant effort. At the
same time, SMART is highly effective at finding actual faults,
obtaining perfect recall for three of our benchmarks. In an ef-
fort to explore the real-world impact using our approach, we
tested SMART on three popular open-source PHP web-based
applications that made heavy use of non-deterministic data.
Overall we found that SMART was able to successfully flag
99% of the severe faults on average in these applications au-
tomatically, without relying on any manual annotation of test
case output by developers.
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