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Abstract. This paper considers some known abstract domains for
affine-relation analysis (ARA), along with several variants, and stud-
ies how they relate to each other. We show that the abstract domains
of Müller-Olm/Seidl (MOS) and King/Søndergaard (KS) are, in general,
incomparable, but give sound interconversion methods. We also show
that the methods of King and Søndergaard can be applied without bit-
blasting—while still using a bit-precise concrete semantics.

1 Introduction

The work reported in this paper was motivated by our work on TSL [16], which
is a system for generating abstract interpreters for machine code. With TSL,
one specifies an instruction set’s concrete operational semantics by defining an
interpreter

interpInstr : instruction× state → state.

For a given abstract domain A, a sound abstract transformer for each instruction
of the instruction set is obtained by defining a sound reinterpretation of each
operation of the TSL meta-language as an operation over A. By extending the
reinterpretation to TSL expressions and functions—including interpInstr—the
set of operator-level reinterpretations defines the desired set of abstract trans-
formers for the instructions of the instruction set.

However, this method abstracts each TSL operation in isolation, and is
therefore rather myopic. Moreover, the operators that TSL provides to spec-
ify an instruction set’s concrete semantics include arithmetic, logical, and “bit-
twiddling” operations. The latter include left-shift; arithmetic and logical right-
shift; bitwise-and, bitwise-or, and bitwise-xor; etc. Few abstract domains retain
precision over the full gamut of such operations.

A more global approach that considers the semantics of an entire instruction
(or, even better, an entire basic block or other path fragment) can yield a more
precise transformer. One way to specify the goals of such a global approach is
through the notion of symbolic abstraction [22]:
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– An abstract domain A is said to support a symbolic implementation of the α
function of a Galois connection if, for every logical formula ψ that specifies
(symbolically) a set of concrete stores [[ψ]], there is a method α̃ that finds a
sound abstract value α̃(ψ) ∈ A that over-approximates [[ψ]]. That is, [[ψ]] ⊆
γ(α̃(ψ)), where [[ψ]] denotes the meaning function for the logic.

– For some abstract domains, it is even known how to perform a best symbolic
implementation of α, denoted by α̂ [22]. For every ψ, α̂ finds the best value
in A that over-approximates [[ψ]].

In particular, the issue of “myopia” is addressed by first creating a logical formula
ϕI that captures the concrete semantics of each instruction I (or basic block,
or path fragment) in quantifier-free bit-vector logic (QFBV), and then perform-
ing α̃(ϕI) or α̂(ϕI). (The generation of a QFBV formula that, with no loss of
precision, captures the concrete semantics of an instruction or basic block is a
problem that itself fits the TSL operator-reinterpretation paradigm [16, §3.4].)

We explored how to address these issues using two existing abstract domains
for affine-relation analysis (ARA)—one defined by Müller-Olm and Seidl (MOS)
[19, 21] and one defined by King and Søndergaard (KS) [11, 12]—as well as a
third domain of affine generators that we introduce. (Henceforth, the three do-
mains are referred to as MOS, KS, and AG, respectively.) All three domains
represent sets of points that satisfy affine relations over variables that hold ma-
chine integers, and are based on an extension of linear algebra to modules over
a ring [8, 7, 1, 25, 19, 21]. The contributions of our work can be summarized as
follows:

– For MOS, it was not previously known how to perform α̃MOS(ϕ) in a non-
trivial fashion (e.g., other than defining α̃MOS to be λf.⊤). In contrast, King
and Søndergaard gave an algorithm for α̂KS [12, Fig. 2], which led us to
examine more closely how MOS and KS are related. A KS value consists of
a set of constraints on the values of variables. We introduce a third abstract
domain, AG, which can be considered to be the generator counterpart of
KS. A KS constraint-based value can be converted to an AG value with no
loss of precision, and vice versa.
In contrast, we show that MOS and KS/AG are, in general, incompara-

ble. However, we give sound interconversion methods: we show that an AG
value vAG can be converted to an over-approximatingMOS value vMOS—i.e.,
γ(vAG) ⊆ γ(vMOS)—and that an MOS value wMOS can be converted to an
over-approximating AG value wAG—i.e., γ(wMOS) ⊆ γ(wAG).
Consequently, by means of the conversion path ϕ → KS → AG → MOS,

we show how to perform α̃MOS(ϕ) (§4.5).
– To apply the techniques described in the two King and Søndergaard papers

[11, 12], it is necessary to perform bit-blasting. Their goal is to create imple-
mentations of operations that are precise, modulo the inherent limitations
of precision that stem from using KS. They use bit-blasting to express a bit-
precise concrete semantics for a statement or basic block. Working at the bit
level lets them track the effect of non-linear bit-twiddling operations, such
as shift and xor.
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One drawback of bit-blasting is the huge number of variables that it in-
troduces (e.g., 32 or 64 bit-valued variables for each int-valued program
variable). Given that one is performing numerous cubic-time operations on
the matrices that arise, there is a question as to whether the bit-blasted ver-
sion of KS could ever be applied to problems of substantial size. The times
reported by King and Søndergaard are quite high [12, §7], although they
state that there is room for improvement by, e.g., using sparse matrices.
In our work, we use an SMT solver rather than a SAT solver, and show that

implementations of operations that are best operations for the KS domain
can be obtained without resorting to bit-blasting. Instead, we work with
QFBV formulas that capture symbolically the precise bit-level semantics of
each instruction or basic block, and take advantage of the ability of α̂KS to
create best word-level transformers.3

The greatly reduced number of variables that comes from working at word
level opens up the possibility of applying our methods to much larger prob-
lems, and in particular to performing interprocedural analysis. We show how
to use the KS domain as the basis for interprocedural ARA. In particular, we
use a two-vocabulary version of KS to create a weight domain for a weighted
pushdown system (WPDS) [23, 2, 10] (§5).

In addition to the specific contributions listed above, this paper provides insight
on the range of options one has for performing affine-relation analysis, and how
the different approaches relate to each other.

Organization. The remainder of the paper is organized as follows: §2 summa-
rizes relevant features of the various ARA domains considered in the paper. §3
presents the AG domain, and shows how an AG value can be converted to a
KS value, and vice versa. §4 presents our results on the incomparability of the
MOS and KS domains, but gives sound methods to convert a KS value into
an over-approximating MOS value, and vice versa. §5 explains how to use the
KS domain for interprocedural analysis without bit-blasting. §6 presents exper-
imental results. §7 discusses related work. Proofs can be found in a companion
technical report [4].

2 Terminology and Notation

All numeric values in this paper are integers in Z2w for some bit width w. That
is, values are machine integers with the standard machine addition and multi-
plication. Addition and multiplication in Z2w form a ring, not a field, so some
facets of standard linear algebra do not apply (and thus we must regard our
intuitions about linear algebra with caution). In particular, all odd elements in
Z2w have a multiplicative inverse (which may be found in time O(logw) [26, Fig.
10-5]), but no even elements have a multiplicative inverse. The rank of a value

3 The two methods are not entirely comparable because the bit-blasting approach
works with a great deal more variables (to represent the values of individual bits).
However, for word-level properties the two are comparable. For instance, both can
discover that the action of an xor-based swap is to exchange the values of two
program variables.

3



x ∈ Z2w is the maximum integer p ≤ w such that 2p|x. For example, rank(1) = 0,
rank(12) = 2, and rank(0) = w.

Throughout the paper, k is the size of the vocabulary, the variable set under
analysis. A two-vocabulary relation is a relation between values of variables in
its pre-state vocabulary to values of variables in its post-state vocabulary.

Matrix addition and multiplication are defined as usual, forming a matrix
ring. We denote the transpose of a matrix M by M t. A one-vocabulary matrix
is a matrix with k+1 columns. A two-vocabulary matrix is a matrix with 2k+1
columns. In each case, the “+1” is for technical reasons (which vary according to
what kind of matrix we are dealing with). I denotes the (square) identity matrix
(whose size can be inferred from context).

Actual states in the various abstract domains are represented by k-length

row vectors. The row space of a matrixM is rowM
def

= {x | ∃w : wM = x}. When
we speak of the “null space” of a matrix, we actually mean the set of row vectors
whose transposes are in the traditional null space of the matrix. Thus, we define

nulltM
def

= {x |Mxt = 0}.

Matrices in Howell Form. An appreciation of how linear algebra in rings
differs from linear algebra in fields can be obtained by seeing how certain issues
are finessed when converting a matrix to Howell form [8]. The Howell form of
a matrix is an extension of reduced row-echelon form [17] suitable for matrices
over Zn. Because Howell form is a canonical form for matrices over principal
ideal rings [8, 25], it provides a way to test pairs of abstract-domain elements for
equality of their concretizations—an operation needed by analysis algorithms to
determine when a fixed point is reached.

Definition 1. The leftmost nonzero value in a row vector is its leading value,
and the leading value’s index is the leading index. A matrix M is in row-
echelon form iff
– All rows consisting entirely of zeroes are at the bottom.
– The sequence of leading indices of rows is strictly increasing.

If M is in row-echelon form, let [M ]i denote the matrix that consists of all rows
of M whose leading index is i or greater.

A matrix M is in Howell form iff
1. M is in row-echelon form,
2. the leading value of every row is a power of two,
3. each leading value is the largest value in its column, and
4. for every row r of M , for any p ∈ Z, if i is the leading index of 2pr, then

2pr ∈ row[M ]i.

Suppose that w = 4. Item 4 of Defn. 1 is illustrated by M = [ 4 2 4
0 4 0 ]. The first

row of M has leading index 1. Multiplying the first row by 4 produces [0 8 0],
which has leading index 2. This meets condition 4 because [0 8 0] = 2 · [0 4 0],
so [0 8 0] ∈ row[M ]2.

The Howell form of a matrix is unique among all matrices with the same row
space (or null space) [8]. As mentioned above, Howell form provides a way to
test pairs of KS or AG elements for equality of their concretizations.
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Algorithm 1 Howellize: Put the matrix G in Howell form.

1: procedure Howellize(G)
2: Let j = 0 ⊲ j is the number of already-Howellized rows
3: for all i from 1 to 2k + 1 do

4: Let R = {all rows of G with leading index i}
5: if R 6= ∅ then
6: Pick an r ∈ R that minimizes rank ri
7: Pick the odd u and rank p so that u2p = ri
8: r ← u−1r ⊲ Adjust r, leaving ri = 2p

9: for all s in R \ {r} do
10: Pick the odd v and rank t so that v2t = si
11: s← s−

(
v2t−p

)
r ⊲ Zero out si

12: if row s contains only zeros then

13: Remove s from G

14: In G, swap r with Gj+1 ⊲ Place r for row-echelon form
15: for all h from 1 to j do ⊲ Set values above ri to be 0 ≤ · < ri
16: d← Gh,i ≫ p ⊲ Pick d so that 0 ≤ Gh,i − dri < ri
17: Gh ← Gh − dr ⊲ Adjust row Gh, leaving 0 ≤ Gh,i < ri

18: if ri 6= 1 then ⊲ Add logical consequences of r to G

19: Add 2w−pr as last row of G ⊲ New row has leading index > i

20: j ← j + 1

The notion of a saturated set of generators used by Müller-Olm and Seidl [21]
is closely related to Howell form, but is defined for an unordered set of generators
rather than row-vectors arranged in a matrix, and has no analogue of item 3.
The algorithms of Müller-Olm and Seidl do not compute multiplicative inverses
(see §7), so a saturated set has no analogue of item 2. Consequently, a saturated
set is not canonical among generators of the same space.

Our technique for putting a matrix in Howell form is given as procedure
Howellize (Alg. 1). Much of Howellize is similar to a standard Gaussian-
elimination algorithm, and it has the same overall cubic-time complexity as
Gaussian elimination. In particular, Howellize minus lines 15–19 puts G in
row-echelon form (item 1 of Defn. 1) with the leading value of every row a power
of two. (Line 8 enforces item 2 of Defn. 1.) Howellize differs from standard
Gaussian elimination in how the pivot is picked (line 6) and in how the pivot
is used to zero out other elements in its column (lines 7–13). Lines 15–17 of
Howellize enforce item 3 of Defn. 1, and lines 18–19 enforce item 4. Lines 12–
13 remove all-zero rows, which is needed for Howell form to be canonical.

The Affine Generator Domain. An element in the Affine Generator domain
(AG) is a two-vocabulary matrix whose rows are the affine generators of a two-
vocabulary relation.

An AG element is an r-by-(2k + 1) matrix G, with 0 < r ≤ 2k + 1. The
concretization of an AG element is

γAG (G)
def

=
{
(x, x′) | x, x′ ∈ Z

k
2w ∧ [1|x x′] ∈ rowG

}
.
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The AG domain captures all two-vocabulary affine spaces, and treats them as
relations between pre-states and post-states.

The bottom element of the AG domain is the empty matrix, and the AG

element that represents the identity relation is the matrix
[
1 0 0
0 I I

]
. To compute

the join of two AG matrices, stack the two matrices vertically and Howellize the
result.

The King/Søndergaard Domain. An element in the King/Søndergaard
domain (KS) is a two-vocabulary matrix whose rows represent constraints on
a two-vocabulary relation. A KS element is an r-by-(2k + 1) matrix X , with
0 ≤ r ≤ 2k + 1. The concretization of a KS element is

γKS (X)
def

=
{
(x, x′) | x, x′ ∈ Z

k
2w ∧ [x x′|1] ∈ nulltG

}
.

Like the AG domain, the KS domain captures all two-vocabulary affine
spaces, and treats them as relations between pre-states and post-states. The
original KS paper [11] gives polynomial-time algorithms for join and projection;
projection can be used to implement composition.

It is easy to read off affine relations from a KS element: if
[a1 · · · ak a′1 · · · a′k |–b] is a row of X , then

∑
i aixi+

∑
i a

′
ix

′
i = b is a constraint

on γKS (X). The conjunction of these constraints describes γKS (X) precisely.
The bottom element of the KS domain is the matrix [0 0|1], and the KS

element that represents the identity relation is the matrix [I -I|0].
A Howell-form KS element can easily be checked for emptiness: it is empty

if and only if it contains a row whose leading entry is in its last column. In that
sense, an implementation of the KS domain in which all elements are kept in
Howell form has redundant representations of bottom (whose concretization is
∅). However, such KS elements can always be detected during Howellize and
replaced by the canonical representation of bottom, [0 0|1].

The Müller-Olm/Seidl Domain. An element in the Müller-Olm/Seidl do-
main (MOS) is an affine set of affine transformers, as detailed in [21]. An MOS
element represents a set of (k + 1)-by-(k + 1) matrices. Each matrix T is a

one-vocabulary transformer of the form T =
[
1 b

0 M

]
, which represents the state

transformation x′ := x ·M + b, or, equivalently, [1|x′] := [1|x]T .
An MOS element B consists of a set of (k + 1)-by-(k + 1) matrices, and

represents the affine span of the set, denoted by 〈B〉 and defined as follows:

〈B〉
def

=

{
T

∣∣∣∣∣ ∃w ∈ Z
|B|
2w : T =

∑

B∈B

wBB ∧ T1,1 = 1

}
.

The meaning of B is the union of the graphs of the affine transformers in 〈B〉

γMOS (B)
def

=
{
(x, x′)

∣∣ x, x′ ∈ Z
k
2w ∧ ∃T ∈ 〈B〉 : [1|x]T = [1|x′]

}
.

The bottom element of the MOS domain is ∅, and the MOS element that repre-
sents the identity relation is the singleton set {I}.
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The operations join and compose can be performed in polynomial time. If
B and C are MOS elements, then B ⊔ C = Howellize (B ∪ C) and B ◦ C =
Howellize {BC |B ∈ B ∧ C ∈ C}. In this setting,Howellize of a set of (k+1)-
by-(k+1) matrices {M1, . . . ,Mn} means “Apply Alg. 1 to a larger, n-by-(k+1)2

matrix, each of whose rows is the linearization (e.g., in row-major order) of one
of the Mi.”

3 Relating AG and KS Elements

AG and KS are equivalent domains. One can convert an AG element to an
equivalent KS element with no loss of precision, and vice versa. In essence, these
are a single abstract domain with two representations: constraint form (KS) and
generator form (AG).

We use an operation similar to singular value decomposition, called diagonal
decomposition:

Definition 2. The diagonal decomposition of a square matrix M is a triple
of matrices, L, D, R, such that M = LDR; L and R are invertible matrices;
and D is a diagonal matrix in which all entries are either 0 or a power of 2.

Müller-Olm and Seidl give a decomposition algorithm that nearly performs
diagonal decomposition [21, Lemma 2.9], except that the entries in theirD might
not be powers of 2. We can easily adapt that algorithm. Suppose that their
method yields LDR (where L and R are invertible). Pick u and r so that ui2

ri =
Di,i with each ui odd, and define U as the diagonal matrix where Ui,i = ui. (If
Di,i = 0, then ui = 1.) It is easy to show that U is invertible. Let L′ = LU

and D′ = U−1D. Consequently, L′D′R = LDR = M , and L′D′R is a diagonal
decomposition.

From diagonal decomposition we derive the dual operation, denoted by ·⊥,
such that the rows of M⊥ generate the null space of M , and vice versa.

Definition 3. The dualization of M is M⊥, where:
– Pad(M) is the (2k + 1)-by-(2k + 1) matrix [M

0
],

– L,D,R is the diagonal decomposition of Pad(M),

– T is the diagonal matrix with Ti,i
def

= 2w−rank(Di,i), and

– M⊥ def

=
(
L−1

)t
T
(
R−1

)t

This definition of dualization has the following useful property:

Theorem 1. For any matrix M , nulltM = rowM⊥ and rowM = nulltM⊥.

We can therefore use dualization to convert between equivalent KS and AG
elements. For a given (padded, square) AG matrix G = [c|Y Y ′], we seek a KS
matrix Z of the form [X X ′|b] such that γKS (Z) = γAG (G). We construct Z

by letting [b|X X ′] = G⊥ and permuting those columns to Z
def

= [X X ′|b]. This
works by Thm. 1, and because

γAG (G) = {(x, x′) | [1|x x′] ∈ rowG}

=
{
(x, x′)

∣∣ [1|x x′] ∈ nulltG⊥
}

=
{
(x, x′)

∣∣ [x x′|1] ∈ nullt Z
}
= γKS (Z) .
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Furthermore, to convert from any KS matrix to an equivalent AG matrix, we
reverse the process. Reversal is possible because dualization is an involution: for

any matrix M ,
(
M⊥

)⊥
=M.

4 Relating KS and MOS

4.1 MOS and KS are Incomparable

The MOS and KS domains are incomparable: some relations are expressible
in each domain that are not expressible in the other. Intuitively, the central
difference is that MOS is a domain of sets of functions, while KS is a domain of
relations.

KS can capture restrictions on both the pre-state and post-state vocabularies
while MOS captures restrictions only on its post-state vocabulary. For example,

when k = 1, the KS element for “assume x = 2” is
{[

1 0 −2
1 −1 0

]}
, i.e., “x =

2∧x′ = x”. An MOS element cannot encode an assume statement. For “assume
x = 2”, the best MOS element is the identity transformer

{[
1 0
0 1

]}
. In general,

an MOS element cannot encode a non-trivial condition on the pre-state. If an
MOS element contains a single transition, it encodes that transition for every
possible pre-state. Therefore, KS can encode relations that MOS cannot encode.

On the other hand, an MOS element can encode two-vocabulary relations

that are not affine. One example is the matrix basis B =

{[
1 0 0
0 1 1
0 0 0

]
,

[
1 0 0
0 0 0
0 1 1

]}
.

The set that B encodes is

γMOS (B) =





[
x y x′ y′

]
∣∣∣∣∣∣∣∣

∃w0, w1 :
[
1 x y

]


1 0 0
0 w0 w0

0 w1 w1


 =

[
1 x′ y′

]

∧ w0 + w1 = 1





=
{[
x y x′ y′

] ∣∣ ∃w0 : x
′ = y′ = w0x+ (1− w0)y

}

=
{[
x y x′ y′

] ∣∣ ∃w0 : x
′ = y′ = x+ (1− w0)(y − x)

}

=
{[
x y x′ y′

] ∣∣ ∃p : x′ = y′ = x+ p(y − x)
}

(1)

Affine spaces are closed under affine combinations of their elements. Thus,
γMOS (B) is not an affine space because some affine combinations of its elements
are not in γMOS (B). For instance, let a =

[
1 −1 1 1

]
, b =

[
2 −2 6 6

]
, and c =[

0 0 −4 −4
]
. By Eqn. (1), we have a ∈ γMOS (B) when p = 0 in Eqn. (1), b ∈

γMOS (B) when p = −1, and c 6∈ γMOS (B) (the equation “−4 = 0 + p(0 − 0)”
has no solution for p). Moreover, 2a − b = c, so c is an affine combination of
a and b. Thus, γMOS (B) is not closed under affine combinations of its elements,
and so γMOS (B) is not an affine space. Because every KS element encodes a
two-vocabulary affine space, MOS can represent γMOS (B) but KS cannot.

4.2 Converting MOS Elements to KS

Soundly converting an MOS element to a KS element is equivalent to stating
two-vocabulary affine constraints satisfied by that MOS element. To convert an
MOS element B to a KS element, we
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1. build a two-vocabulary AG matrix from each one-vocabulary matrix in B,
2. compute the join of all the AG matrices from Step 1, and
3. convert the resulting AG matrix to a KS element.

For Step 1, assume that B =
{[

1 ci
0 Ni

] ∣∣∣ 0 < i
}
, ci ∈ Z

1×k
2w , and Ni ∈ Z

k×k
2w . If

the original MOS element B0 fails to satisfy this property, let C = Basis(B0), pick
the unique B ∈ C such that B1,1 = 1, and let B = {B}∪ {B + C |C ∈ C \ {B}}.
B now satisfies the property, and 〈B〉 = 〈B0〉.

From B, we construct the matrices Gi =
[
1 0 ci
0 I Ni

]
. Note that, for each matrix

Bi ∈ B with corresponding matrix Gi, γMOS ({Bi}) = γAG (Gi). In Step 2, we
join the Gi matrices in the AG domain to yield one matrix G. Thm. 2 proves
the soundness of this transformation from MOS to AG, i.e., γAG (G) ⊇ γMOS (B).
Finally, G is converted in Step 3 to an equivalent KS element by the method
given in §3.

Theorem 2. Suppose that B is an MOS element such that, for every B ∈ B,

B =
[
1 cB
0 MB

]
for some cB ∈ Z

1×k
2w and MB ∈ Z

k×k
2w . Define GB =

[
1 0 cB
0 I MB

]
and

G =
⊔

AG {GB |B ∈ B}. Then, γMOS(B) ⊆ γAG(G).

4.3 Converting KS Without Pre-State Guards to MOS

If a KS element is total with respect to pre-state inputs, then we can convert it to
an equivalent MOS element. First, convert the KS element to an AG element G.

When G expresses no restrictions on its pre-state, it has the form G =

[
1 0 b

0 I M

0 0 R

]
,

where b ∈ Z
1×k
2w ; I,M ∈ Z

k×k
2w ; and R ∈ Z

k×r
2w with 0 ≤ r ≤ k.

Definition 4. An AG matrix of the form
[
1 0 b

0 I M

]
, such as the Gi matrices

discussed in §4.2, is said to be in explicit form because it represents the state
transformation x′ := x ·M + b.

Explicit form is desirable because we can read off the MOS element
{[

1 b

0 M

]}

from the AG matrix of Defn. 4.
G is not in explicit form because of the rows [0|0 R]; however, G is quite

close to being in explicit form, and we can read off a set of matrices to create
an appropriate MOS element. We produce this set of matrices via the Shatter

operation, where

Shatter(G)
def

=

{[
1 b

0M

]}
∪

{[
0 Rj,∗

0 0

] ∣∣∣∣ 0 < j ≤ r

}
, where Rj,∗ is row j of R.

As shown in Thm. 3, γAG (G) = γMOS (Shatter(G)). Intuitively, this holds be-
cause coefficients in an affine combination of the rows of G correspond cleanly
to coefficients in an affine combination of the Rj,∗ matrices in Shatter(G).

Theorem 3. When G =

[
1 0 b

0 I M

0 0 R

]
, then γAG (G) = γMOS (Shatter(G)) .
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Algorithm 2 MakeExplicit: Transform an AG matrix G in Howell form to
near-explicit form.

Require: G is an AG matrix in Howell form
1: procedure MakeExplicit(G)
2: for all i from 2 to k + 1 do ⊲ Consider each col. of the pre-state voc.
3: if there is a row r of G with leading index i then

4: if rank ri > 0 then

5: for all j from 1 to 2k + 1 do ⊲ Build s from r, with si = 1
6: sj ← rj ≫ rank ri

7: Append s to G

8: G← Howellize(G)

9: for all i from 2 to k + 1 do

10: if there is no row r of G with leading index i then

11: Insert, as the ith row of G, a new row of all zeroes

4.4 Converting KS With Pre-State Guards to MOS

If a KS element is not total with respect to pre-state inputs, then there is no
MOS element with the same concretization. However, we can find sound over-
approximations within MOS for such KS elements.

We convert the KS element into an AG matrix G as in §4.3 and put G in
Howell form. There are two ways that G can enforce guards on the pre-state
vocabulary: it might contain one or more rows whose leading value is even, or it
might skip some leading indexes in row-echelon form.

While we cannot put G in explicit form, we can run MakeExplicit to
coarsen G so that it is close enough to the form that arose in §4.3. Adding extra
rows to an AG element can only enlarge its concretization. Thus, to handle a
leading value 2p, p > 0 in the pre-state vocabulary, MakeExplicit introduces
an extra, over-approximating row constructed by copying the row with leading
value 2p and right-shifting each value in the copied row by p bits (lines 4–8).
After the loop on lines 2–8 finishes, every leading value in a row that generates
pre-state-vocabulary values is 1. MakeExplicit then introduces all-zero rows
so that each leading element from the pre-state vocabulary lies on the diagonal
(lines 9–11).

Example 1. Suppose that k = 3, w = 4, and G =

[
1 0 2 0 0 0 0
4 0 12 2 4 0

4 0 8

]
. After line 11

of MakeExplicit, all pre-state vocabulary leading values of G have been made

ones, and the resulting G′ has rowG′ ⊇ rowG. In our case, G′ =

[
1 0 2 0 0 0 0
1 0 3 0 1 0

2 0 0
8

]
.

To handle “skipped” indexes, lines 9–11 insert all-zero rows into G′ so that each
leading element from the pre-state vocabulary lies on the diagonal. The resulting

matrix is




1 0 2 0 0 0 0
1 0 3 0 1 0
0 0 0 0 0
0 0 0 0
2 0 0

8


.
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Theorem 4. For G ∈ AG, γAG (G) ⊆ γMOS (Shatter (MakeExplicit(G))).

Thus, we can use Shatter, MakeExplicit, and the KS–to–AG conversion of
§3 to obtain an over-approximation of a KS element in MOS.

Example 2. The final MOS value for Ex. 1 is

{[
1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

]
,

[
0 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
,

[
0 0 0 8
0 0 0 0
0 0 0 0
0 0 0 0

]}
.

4.5 Symbolic Implementation of the α Function for MOS

As mentioned in the Introduction, it was not previously known how to per-
form symbolic abstraction for MOS. Using α̂KS [12, Fig. 2] in conjunction with

the algorithms from §3 and §4.4, we can soundly define α̃MOS(ϕ)
def
= let G =

ConvertKStoAG (α̂KS(ϕ)) in Shatter (MakeExplicit (G)) .

5 Using KS for Interprocedural Analysis

This section describes how to use the KS domain in interprocedural-analysis
algorithms in the style of Sharir and Pnueli [24], Knoop and Steffen [13], Müller-
Olm and Seidl [18], and Lal et al. [15].

Project. In [11, §3], King and Søndergaard describe a way to project a KS ele-
ment X onto a suffix xi, . . . , xk of its vocabulary: (i) put X in row-echelon form,
and (ii) remove every row a in which any of a1, . . . , ai−1 is nonzero. However,
when the leading values of X are not all 1, step (ii) is not guaranteed to produce
the most-precise projection of X onto xi, . . . , xk (although the value obtained
is always sound). Instead, we put X in Howell form, and by Thm. 5, step (ii)
returns the most-precise projection.

Theorem 5. Suppose that M has c columns. If matrix M is in Howell form,

x ∈ nulltM if and only if ∀i : ∀y1, . . . yi−1 :
[
y1 · · · yi−1 xi · · · xc

]
∈ nullt[M ]i.

Example 3. Suppose that X = [4 2|6], with w = 4, and the goal is to project
away the first column (for x1). King and Søndergaard obtain the empty matrix,

which represents no constraints on x2. The Howell form of X is
[
4 2 6
0 8 8

]
, and

thus the most precise projection of X onto x2 is [8|8], which represents x2 ∈
{1, 3, . . . , 15}.

Compose. In [12, §5.2], King and Søndergaard present a technique to com-
pose two-vocabulary affine relations. For completeness, that algorithm follows.
Suppose that we have KS elements Y =

[
Ypre Ypost y

]
and Z =

[
Zpre Zpost z

]
,

where Y∗ and Z∗ are k-column matrices, and y and z are column vectors. We
want to compute Y ◦ Z; i.e., some X such that (x, x′′) ∈ γKS (X) if and only if
∃x′ : (x, x′) ∈ γKS (Y ) ∧ (x′, x′′) ∈ γKS (Z).

Because the KS domain has a projection operation, we can create Y ◦Z by first

constructing the three-vocabulary matrix W =
[
Ypost Ypre 0 y

Zpre 0 Zpost z

]
. Any element
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(x′, x, x′′) ∈ γKS (W ) has (x, x′) ∈ γKS (Y ) and (x′, x′′) ∈ γKS (Z). Consequently,
projecting away the first vocabulary ofW yields a matrix X such that γKS (X) =
γKS (Y ) ◦ γKS (Z), as required.

Join. In [11, §3], King and Søndergaard give a method to compute the join of
two KS elements by building a (6k+3)-column matrix and projecting onto its last
2k+1 variables. We improve their approach slightly, building a (4k+2)-column
matrix and then projecting onto its last 2k+1 variables. That is, to join two KS
elements Y =

[
Ypre Ypost y

]
and Z =

[
Zpre Zpost z

]
, we first construct the ma-

trix
[
−Ypre −Ypost −y Ypre Ypost y

Zpre Zpost z 0 0 0

]
, and then project onto the last 2k+ 1 columns.

Roughly speaking, this works because
[
−Y Y

Z 0

][
u

v

]
= 0 if and only if Y (v−u) =

0 ∧ Zu = 0.
Because (v − u) ∈ nullY , and u ∈ nullZ, v = ((v − u) + u) ∈ nullY +

nullZ. The correctness of this join algorithm can be proved by starting from the
King and Søndergaard join matrix [11, §3], applying row-reductions, permuting
columns due to be projected away, and partially performing the projection.

Merge Functions. Knoop and Steffen [13] extended the Sharir and Pnueli
algorithm [24] for interprocedural dataflow analysis to handle local variables. At
a call site at which procedure P calls procedure Q, the local variables of P are
modeled as if the current incarnations of P ’s locals are stored in locations that
are inaccessible to Q and to procedures transitively called by Q. Because the
contents of P ’s locals cannot be affected by the call to Q, a merge function is
used to combine them with the value returned by Q to create the state after Q
returns. Other work using merge functions includes Müller-Olm and Seidl [18]
and Lal et al. [15].

To simplify the discussion, assume that all scopes have the same number of
locals L. Each merge function is of the form

Merge(a, b)
def
= ReplaceLocals(b) ◦ a.

Suppose that vocabulary i consists of sub-vocabularies gi and li. The operation
ReplaceLocals(b) is defined as follows:
1. Project away vocabulary l2 from b.
2. Insert L columns for l2 in which all entries are 0.
3. Append L rows, [0, I, 0,−I|0], so that in ReplaceLocals(b) each variable

in vocabulary l2 is constrained to have the value of the corresponding variable
in vocabulary l1.

The α̂ Operation. King and Søndergaard give an algorithm for α̂ [12, Fig.
2]. That algorithm needs the minor correction of using Howell form instead of
row-echelon form for the projections that take place in its join operations, as
discussed above.

6 Experiments

Our experiments were run on a single core of a single-processor quad-core 3.0
GHz Xeon computer running 64-bit Windows XP (Service Pack 2), configured so
that a user process has 4 GB of memory. To implement α̂KS, we used the Yices
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Performance (x86) Better KS

Prog. Measures of size MOS KS precision

name instrs CFGs BBs branches WPDS post* query WPDS t/o post* query 1-voc.

finger 532 18 298 48 0.969 0.281 0.094 121.0 5 0.297 0.016 11/48 (23%)
subst 1093 16 609 74 1.422 0.266 0.031 199.0 4 0.328 0.094 13/74 (18%)
label 1167 16 573 103 1.359 0.282 0.046 154.6 2 0.375 0.032 50/103 (49%)
chkdsk 1468 18 787 119 1.797 0.172 0.031 397.2 16 0.203 0.047 3/119 (2.5%)
logoff 2470 46 1145 306 3.047 2.078 0.610 817.8 19 1.906 0.094 37/306 (12%)
setup 4751 67 1862 589 5.578 1.406 0.484 1917.8 64 1.157 0.063 34/589 (5.8%)

Fig. 1. WPDS experiments. The columns show the number of instructions (instrs);
the number of procedures (CFGs); the number of basic blocks (BBs); the number
of branch instructions (branches); the times, in seconds, for MOS and KS WPDS
construction, running post*, and finding one-vocabulary affine relations at blocks that
end with branch instructions, as well as the number of WPDS rules for which KS-
weight generation timed out (t/o); and the degree of improvement gained by using
α̂KS-generated KS weights rather than TSL-generated MOS weights (measured as the
number of basic blocks that (i) end with a branch instruction, and (ii) begin with
a node whose inferred one-vocabulary affine relation was strictly more precise under
KS-based analysis).

solver [3], with the timeout for each invocation set to 3 seconds. The experiments
were designed to answer the following questions:

1. Is it faster to use MOS or KS?
2. Does MOS or KS yield more precise answers? This question actually has

several versions, depending on whether we are interested in
– the two-vocabulary transformers for individual statements (or basic

blocks)
– the one-vocabulary affine relations that hold at program points

We ran each experiment on x86 machine code, computing affine relations over
the x86 registers.

To address question 1, we ran ARA on a corpus of Windows utilities using
the WALi [10] system for weighted pushdown systems (WPDSs) [23, 2]. We used
two weight domains: (i) a weight domain of TSL-generated MOS transformers,
and (ii) a weight domain of α̂KS-generated KS transformers. The weight on each
WPDS rule encoded the MOS/KS transformer for a basic block B = [I1, . . . , Ik]
of the program, including a jump or branch to a successor block.

– In the case of MOS, the semantic specification of each instruction Ij ∈ B

is evaluated according to the MOS reinterpretation of the operations of the
TSL meta-language to obtain [[Ij ]]MOS. ([[·]]MOS denotes the MOS semantics
for an instruction.) The single-instruction transformers are then composed:
wB

MOS := [[Ik]]MOS ◦ . . . ◦ [[I1]]MOS.
– In the case of KS, a formula ϕB is created that captures the concrete se-

mantics of B, and then the KS weight for B is obtained by performing
wB

KS := α̂KS(ϕB).

We used EWPDS merge functions [15] to preserve caller-save and callee-save
registers across call sites. The post* query used the FWPDS algorithm [14].
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Fig. 1 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches) along with the times for constructing
abstract transformers and running post*.4 Column 10 of Fig. 1 shows the num-
ber of WPDS rules for which KS-weight generation timed out. During WPDS
construction, if Yices times out during α̂KS, the implementation creates the
MOS weight for the rule instead, and then converts it to an over-approximating
KS weight (§4.2). The number of rules equals the number of basic blocks plus
the number of branches, so a timeout occurred for about 0.3–2.6% of the rules
(geometric mean: 1.1%).

The experiment showed that the cost of constructing transformers via an
SMT solver is high: creating the KS weights via α̂KS is about 185 times slower
than creating MOS weights using TSL (computed as the geometric mean of the
construction-time ratios).

To address question 2, we performed two experiments:

– On a corpus of 11,144 instances of x86 instructions, we compared (i) the KS
transformer created by applying α̂KS to a quantifier-free bit-vector (QFBV)
formula that captures the precise bit-level semantics of an instruction against
(ii) the MOS transformer created for the instruction by the operator-by-
operator reinterpretation method supported by TSL [16].

– We compared the precision improvement gained by using α̂KS-generated KS
weights rather than TSL-generated MOS weights in the WPDS-based anal-
yses used to answer question 1. In particular, column 13 of Fig. 1 reports
the number of basic blocks that (i) end with a branch instruction, and (ii)
begin with a node whose inferred one-vocabulary affine relation was strictly
more precise under KS-based analysis.

The first precision experiment showed that the α̂KS method is strictly more
precise for about 8.3% of the instructions—910 out of the 11,022 instructions
for which a comparison was possible. There were 122 Yices timeouts: 105 during
α̂KS and 17 during the weight-comparison check.

Undetermined

Identical KS more Timeout during Timeout during Total
precision precise KS construction KS/MOS comparison

10,112 910 105 17 11,144

Example 4. One instruction for which the α̂KS-created transformer is better than
the MOS transformer is “add bh,al”, which adds the low-order byte of regis-
ter eax to the second-to-lowest byte of register ebx. The transformer created
by the TSL-based operator-by-operator reinterpretation method corresponds
to havoc(ebx). All other registers are unchanged in both transformers—i.e.,

4 Due to the high cost of the KS-basedWPDS construction, we ran all analyses without
the code for libraries. Values are returned from x86 procedure calls in register eax,
and thus library functions were modeled approximately (albeit unsoundly, in general)
by “eax := ?”, where “?” denotes an unknown value [18] (sometimes written as
“havoc(eax)”).
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“(eax′ = eax) ∧ (ecx′ = ecx) ∧ . . .”. In contrast, the transformer obtained via
α̂KS is

(216ebx′ = 216ebx+ 224eax) ∧ (eax′ = eax) ∧ (ecx′ = ecx) ∧ . . .

Both transformers are over-approximations of the instruction’s semantics, but
the latter captures a relationship between the low-order two bytes of ebx and
the low-order byte of eax, and hence is more precise.

The second precision experiment was based on the WPDS-based analyses
used to answer question 1. The experiment showed that in our WPDS runs,
the KS weights identified more precise one-vocabulary affine relations at about
12.3% of the basic blocks that end with a branch instruction (computed as the
geometric mean of the precision ratios); see column 13 of Fig. 1.5 In addition
to the phenomenon illustrated in Ex. 4, two other factors contribute to the
improved precision obtained via the KS domain:
– As discussed in §4.1 and §4.4, an MOS weight cannot express a transforma-

tion involving a guard on the pre-state vocabulary, whereas a KS weight can
capture affine equality guards.

– To construct a KS weight wB
KS, α̂KS is applied to ϕB, which not only

is bit-level precise, but also includes all memory-access/update and flag-
access/update operations. Consequently, even though the KS weights we used
in our experiments are designed to capture only transformations on regis-
ters, wB

KS can account for transformations of register values that involve a
sequence of memory and/or flag operations within a basic block.
The fact that ϕB can express dependences among registers that are mediated

by one or more flag updates and flag accesses by instructions of a block, can
allow a KS weight generated by α̂KS(ϕB) to sometimes capture NULL-pointer or
return-code checks (as affine equality guards). For instance, the test instruction
sets the zero flag ZF to true if the bitwise-and of its arguments is zero; the jnz

instruction jumps if ZF is false. Thus,
– “test esi, esi; . . . jnz xxx” is an idiom for a NULL-pointer check: “if(p

== NULL)...”
– “call foo; test eax, eax; . . . jnz yyy” is an idiom for checking whether

the return value is zero: “if(foo(...) == 0)...”.
The KS weights for the fall-through branches include the constraints “esi =
0 ∧ esi′ = 0” and “eax = 0 ∧ eax′ = 0”, respectively, which both contain
guards on the pre-state (i.e., “esi = 0” and “eax = 0”, respectively). In contrast,
the corresponding MOS weights—“esi′ = esi” and “eax′ = eax”—impose no
constraints on the pre-state.

If a block B = [I1, . . . , Ik] contains a spill to memory of register R1 and
a subsequent reload into R2, the fact that wB

KS is created from ϕB, which has

5 Register eip is the x86 instruction pointer. There are some situations that cause the
MOS weights to fail to capture the value of eip at a successor. Therefore, before
comparing the affine relations computed via MOS and KS, we performed havoc(eip)
so as to avoid biasing the results in favor of KS merely because of trivial affine
relations of the form “eip = constant”.
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a “global perspective” on the semantics of B, can—in principle—allow wB
KS

to capture the transformation R′
2 = R1. The corresponding MOS weight wB

MOS

would not capture R′
2 = R1 because the TSL-generated MOS weights are created

by evaluating the semantic specifications of the individual instructions of B (over
a domain of MOS values) and composing the results. Because each MOS weight
[[Ij ]]MOS in the composition sequence wB

MOS := [[Ik]]MOS ◦ . . . ◦ [[I1]]MOS discards
all information about how memory is transformed, the net effect on R′

2 in wB
MOS

is havoc(R′
2). A second type of example involving a memory update followed by

a memory access within a basic block is a sequence of the form “push constant ;
pop esi”; such sequences occur in several of the programs listed in Fig. 1.

Unfortunately, in our experiments Yices timed out on the formulas that arose
in both kinds of examples, even with the timeout value set to 100 seconds.

7 Related Work

The original work on affine-relation analysis (ARA) was an intraprocedural ARA
algorithm due to Karr [9]. Müller-Olm and Seidl introduced the MOS domain
for affine relations, and gave an algorithm for interprocedural ARA [19, 21]. King
and Søndergaard defined the KS domain, and used it to create implementations
of best abstract ARA transformers for the individual bits of a bit-blasted con-
crete semantics [11, 12]. They used bit-blasting to express a bit-precise concrete
semantics for a statement or basic block. The use of bit-blasting let them track
the effect of non-linear bit-twiddling operations, such as shift and xor.

In this paper, we also work with a bit-precise concrete semantics; however,
we avoid the need for bit-blasting by working with QFBV formulas expressed in
terms of word-level operations; such formulas also capture the precise bit-level
semantics of each instruction or basic block. We take advantage of the ability
of an SMT solver to decide the satisfiability of such formulas, and use α̂KS to
create best word-level transformers.

In contrast with both the Müller-Olm/Seidl and King/Søndergaard work, we
take advantage of the Howell form of matrices. For each of the domains KS, AG,
and MOS, because Howell form is canonical for non-empty sets of basis vectors,
it provides a way to test pairs of elements for equality of their concretizations—
an operation needed by analysis algorithms to determine when a fixed point is
reached.

The algorithms given by Müller-Olm and Seidl avoid computing multiplica-
tive inverses, which are needed to put a matrix in Howell form (line 8 of Alg. 1).
However, their preference for algorithms that avoid inverses was originally moti-
vated by the fact that at the time of their original 2005 work they were unaware
[20] of Warren’s O(logw) algorithms [26, §10-15] for computing the inverse of an
odd element, and only knew of an O(w) algorithm [19, Lemma 1].

Gulwani and Necula introduced the technique of random interpretation and
applied it to identifying both intraprocedural [5] and interprocedural [6] affine re-
lations. The fact that random interpretation involves collecting samples—which
are similar to rows of AG elements—suggests that the AG domain might be
used as an efficient abstract datatype for storing and manipulating data during
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random interpretation. Because the AG domain is equivalent to the KS domain
(see §3), the KS domain would be an alternative abstract datatype for storing
and manipulating data during random interpretation.
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A Dualization

For any matrix M , it is a common lemma that
(
M−1

)t
= (M t)

−1
. Thus, the

notation M−t denotes
(
M−1

)t
.

Lemma 1. Let D and T be square, diagonal matrices, where Dii = 2pi and
Tii = 2w−pi for all i. Then, nullt T = rowD and nulltD = rowT .

Proof. Let z be any row vector. To see that nullt T = rowD:

z ∈ nullt T ⇐⇒ Tzt = 0 ⇐⇒ ∀i : zi2
w−pi = 0

⇐⇒ ∀i : 2pi |zi ⇐⇒ ∃v : ∀i : vi2
pi = zi

⇐⇒ ∃v : vD = z ⇐⇒ z ∈ rowD.

One can show that nulltD = rowT by essentially the same reasoning.

Theorem 1. For any matrix M , nulltM = rowM⊥ and rowM = nulltM⊥.

Proof. Again, let L, D, and R be the diagonal decomposition ofM (see Defn. 2,
and construct T from D as in Lem. 1. Recall that L is invertible. To see that
rowM = nulltM⊥,

rowM = rowLDR = rowDR, so x ∈ rowDR ⇐⇒ xR−1 ∈ rowD

⇐⇒ xR−1 ∈ nullt T ⇐⇒ TR−txt = 0 ⇐⇒ x ∈ nullt TR−t.

We know that L−t is also invertible, so

nullt TR−t = nullt L−tTR−t = nulltM⊥.

Thus, rowM = nulltM⊥. One can show that nulltM = rowM⊥ by essentially
the same reasoning.

B Domain Conversions

Thm. 2 shows that the transformation from MOS to AG given in §4.2 is sound.

Theorem 2. Suppose that B is an MOS element such that, for every B ∈ B,

B =
[
1 cB
0 MB

]
for some cB ∈ Z

1×k
2w and MB ∈ Z

k×k
2w . Define GB =

[
1 0 cB
0 I MB

]
and

G =
⊔

AG {GB |B ∈ B}. Then, γMOS(B) ⊆ γAG(G).

Proof. First, recall that for any two AG elements E and F , E ⊔AG F equals
Howellize ([EF ]) . Because Howellize does not change the row space of a
matrix, γAG (E ⊔AG F ) equals γAG ([EF ]) . By the definition of G, we know that
γAG(G) = γAG(G), whereG is all of the matricesGB stacked vertically. Therefore,
to show that γMOS(B) ⊆ γAG(G), we show that γMOS(B) ⊆ γAG(G).

Suppose that (x, x′) ∈ γMOS(B). Then, for some vector v,

[
1 x
]
(
∑

B∈B

vBB

)
=
[
1 x′

]
.
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If we break this equation apart, we see that

∑

B∈B

vB = 1 and
∑

B∈B

vBcB + x

(
∑

B∈B

vBMB

)
= x′.

Let ⊗ denote Kronecker product. Now consider the following product, which
uses (v ⊗

[
1 x
]
) as a vector of coefficients for the rows of G:

(
v ⊗

[
1 x
])

G =
∑

B∈B

[
vB vBxI vBcB + vBxMB

]

=

[∑

B∈B

vB x

(
∑

B∈B

vB

)
∑

B∈B

vBcB + x

(
∑

B∈B

vBMB

)]

=
[
1 x x′

]
.

Thus,
[
1 x x′

]
is a linear combination of the rows of G, and so (x, x′) ∈ γAG(G).

Therefore, γMOS(B) ⊆ γAG(G). ⊓⊔

Theorem 3. When G =

[
1 0 b

0 I M

0 0 R

]
, then γAG (G) = γMOS (Shatter(G)) .

Proof.

(x, x′) ∈ γAG(G) ⇐⇒ ∃v :
[
1 x v

]
G =

[
1 x x′

]

⇐⇒ ∃v : b+ xM + vR = x′

⇐⇒ ∃v :
[
1 x
]
([

1 b

0M

]
+
∑

i

vi

[
0 Ri

0 0

])
=
[
1 x′

]

⇐⇒ (x, x′) ∈ γMOS(Shatter(G))

⊓⊔

Lemma 2. Suppose that M and N are square matrices of equal dimension such
that
1. M has only ones and zeroes on its diagonal,
2. if Mi,i = 1, then Mh,i = 0 for all h 6= i, and
3. if Mi,i = 0, then Ni,h = 0 for all h.
Then, MN = N .

Proof. We know (MN)i,j =
∑

hMi,hNh,j. By Items 2 and 3, if h 6= i then either
Mi,h = 0 or Nh,j = 0, so (MN)i,j = Mi,iNi,j . If Mi,i = 0, then by Item 2,
Nij = 0; otherwise, Mi,i = 1. In either case, (MN)i,j = Ni,j , as we require. ⊓⊔

Lemma 3. When G =

[
1 a b

0 J M

0 0 R

]
, such that

[
1 a

0 J

]
and

[
1 b

0 M

]
satisfy the condi-

tions of Lem. 2, then γAG(G) ⊆ γMOS (Shatter(G)).
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Proof.

(x, x′) ∈ γAG(G) =⇒ ∃v, v′ :
[
1 v v′

]
G =

[
1 x x′

]

=⇒ ∃v, v′ :
[
1 v
] [1 a

0 J

]
=
[
1 x
]

∧
[
1 v
] [1 b

0M

]
+ v′

[
0 R

]
=
[
1 x′

]

By Lem. 2,
[
1 v
] [1 b

0M

]
=
[
1 v
] [1 a

0 J

] [
1 b

0M

]
=
[
1 x
] [1 b

0M

]
, so

(x, x′) ∈ γAG(G) =⇒ ∃v′ :
[
1 x
] [1 b

0M

]
+ v′

[
0 R

]
=
[
1 x′

]

=⇒ ∃v′ :
[
1 x
]
([

1 b

0M

]
+
∑

i

v′i

[
0 Ri

0 0

])
=
[
1 x′

]

=⇒ (x, x′) ∈ γMOS(Shatter(G))

⊓⊔

Theorem 4. For G ∈ AG, γAG (G) ⊆ γMOS (Shatter (MakeExplicit(G))).

Proof. Without loss of generality, assume that G has 2k + 1 columns and is in
Howell form.

MakeExplicit(G) consists of two loops. In the first loop, every row r with
leading index i ≤ k + 1 for which the rank of the leading value is greater than
0 is generalized by creating from r a row s, which is added to G, such that s’s
leading index is also i, but its leading value is 1. Consequently, after the call on
Howellize(G) in line 8 of MakeExplicit, the leading value of the row with
leading index i is 1.

In the second loop, the matrix is expanded by all-zero rows so that any row
with leading index i ≤ k + 1 is placed in row i.

Thus, for any AG element G, we can decompose MakeExplicit(G) into the

matrix

[
1 c b

0 J M

0 0 R

]
, where c, b ∈ Z

1×k
2w ; J,M ∈ Z

k×k
2w ; and R ∈ Z

r×k
2w for some r ≤ k.

Moreover, we know that
– J is upper-triangular,
– J has only ones and zeroes on its diagonal,
– if Jj,j = 1, then column j of J is zero everywhere else, and
– if Jj,j = 0, then row j of J and row j of M are all zeroes.

By these properties, Lem. 3 holds, and we know that γAG (G) ⊆
γMOS (Shatter (MakeExplicit(G))) .

C Howell Properties

Definition 5. Two module spaces R and S are perpendicular (denoted by
R ⊥ S) if
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1. r ∈ R ∧ s ∈ S =⇒ rst = 0,
2. (∀r ∈ R : rst = 0) =⇒ s ∈ S, and
3. (∀s ∈ S : rst = 0) =⇒ r ∈ R.

Lemma 4. If R ⊥ S and R ⊥ S′, then S = S′.

Lemma 5. For any matrix M , rowM ⊥ nulltM .

These are standard facts in linear algebra; their standard proofs essentially carry
over for module spaces.

Lemma 6. If R ⊥ R′ and S ⊥ S′, then R+ S ⊥ R′ ∩ S′.

Proof. Pick GR and GS so that rowGR = R and rowGS = S. Because the rows
of a matrix are linear generators of its row space,

R+ S = row
[
GR

GS

]
, so, by Lem. 5, R+ S ⊥ nullt

[
GR

GS

]
.

Because each row of a matrix acts as a constraint on its null space,

R+ S ⊥ nulltGR ∩ nulltGS .

By Lem. 5 again, we know that rowGR ⊥ nulltGR = R ⊥ R′, so nulltGR = R′

by Lem. 4. Similarly, nulltGS = S′. Thus, R+ S ⊥ R′ ∩ S′. ⊓⊔

Note. Recall from §2 that [M ]i is the matrix that consists of all rows of M
whose leading index is i or greater. For any row r, define LI (r) to be the leading
index of r. Define ei to be the vector with 1 at index i and 0 everywhere else.

Theorem 6. If matrix M is in Howell form, and x ∈ rowM , then x ∈
row[M ]LI (x).

Proof. Pick v so that x = vM , let j
def

= LI (v), and let ℓ
def

= LI (Mj,∗). If ℓ ≥
LI (x), then we already know that x ∈ row[M ]LI (x). Otherwise, assume ℓ <
LI (x). Under these conditions, as depicted in the diagram below,

Mv

x

Mj,*

0

0

0

j l

LI(x)

0 0

l

0

0

– (vM)ℓ = 0, because LI (vM) = LI (x) > ℓ,
– Mh,ℓ = 0 for any h > j, by Rule 1 of Defn. 1, and
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– vh = 0 for any h < j, because j = LI (v).
Therefore, 0 = (vM)ℓ =

∑
h vhMh,ℓ = vjMj,ℓ. Thus, because j = LI (v), we

know that LI (vjMj,∗) is strictly greater than ℓ = LI (Mj,∗).
Because multiplication by invertible values can never change nonzero values

to zero, we have LI (vjMj,∗) = LI
(
2rank(vj)Mj,∗

)
. Thus, by Rule 4 of Defn. 1, we

know that vjMj,∗ can be stated as a linear combination of rows j+1 and greater.
That is, vjMj,∗ ∈ row[M ]j+1, or equivalently, vjMj,∗ = uM with LI (u) ≥ j+1.
We can thus construct v′ = v− vjej + u for which x = v′M and LI (v′) ≥ j +1.

By employing this construction iteratively for increasing values of j, we can
construct x = yM with LI

(
MLI(y),∗

)
≥ LI (x). Consequently, x can be stated

as a linear combination of rows with leading indexes LI (x) or greater; i.e.,
x ∈ row[M ]LI (x). ⊓⊔

Theorem 5. Suppose that M has c columns. If matrix M is in Howell form,

x ∈ nulltM if and only if ∀i : ∀y1, . . . yi−1 :
[
y1 · · · yi−1 xi · · · xc

]
∈ nullt[M ]i.

Proof. We know that rowM ⊥ nulltM , and that row[M ]i ⊥ nullt[M ]i. Let
Ei be the module space generated by {ej | j < i}, and let Fi be the module
space generated by {ej | j ≥ i}. Clearly, Ei ⊥ Fi. By Thm. 6, we have that
row[M ]i = rowM ∩ Fi. Thus,

nullt[M ]i ⊥ rowM ∩ Fi.

By Lem. 6, we therefore have

nullt[M ]i = nulltM + Ei, (2)

Because (nulltM+Ei) is the set
{
x+ y

∣∣ x ∈ nulltM ∧ ∀h ≥ i : yh = 0
}
, Eqn. (2)

is an equivalent way of stating the property to be shown. ⊓⊔
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