
Anticipatory Procrastination

Joshua Yanchar Matt Elder Bill Harris Donald Knuth Chris Hinrichs
yanchar@cs.wisc.edu elder@cs.wisc.edu wrharris@cs.wisc.edu hinrichs@cs.wisc.edu

Abstract
Fundamental theoretical results demonstrate that many, no less than
92, things are hard. Moreover, things can be boring, unpleasant, or
in the pathological case, both. To redistribute such effort away from
humans was the field of computer science born, shifting effort to
machines and grad students.

To cut this Gordian Knot of “having to do stuff”, we propose
an elegant solution: “Not doing it today”. We call our technique
anticipatory procrastination. While this may seem an unintuitive
approach, we feel we’ve solved this; it seems reasonable at a high
level. We’ve found empirical evidence that such an approach can
work. In fact, this may be the most commonly implemented solu-
tion to the general problem of getting stuff done, the well-known
STUFF problem.

1. Introduction
Fundamental theoretical results demonstrate that many, no less than
92, things are hard. [3] Moreover, things can be boring [9], unpleas-
ant [8], or in the pathological case, both [5]. To redistribute such
effort away from humans was the field of computer science born,
shifting effort to machines and grad students. Unfortunately, Turing
proved that not all work can be shoved off onto such automata [1].
As a result, humans are left with nontrivial amounts of work, re-
quiring advanced scheduling and work assignment heuristics. Their
performance is often unacceptable.

To cut this Gordian Knot of “having to do stuff”, we propose
an elegant solution: “Not doing it today”. We call our technique
anticipatory procrastination. While this may seem an unintuitive
approach, we feel we’ve solved this; it seems reasonable at a high
level. We’ve found empirical evidence that such an approach can
work. In fact, this may be the most commonly implemented solu-
tion to the general problem of getting stuff done, also known as the
STUFF problem.

This is the table of contents paragraph, it will be over shortly.
Section 2 describes prior academic work in the field. Section 3
illustrates our experimental methods and results, and demonstrates
the scalability and parallelism of our radical approach. Section 4
concludes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage (as if that was possible) and that copies bear this
notice and the full citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee.

2. Related Work
We have seen this solution to STUFF throughout academic history.
For an early example, consider Fermat’s 1637 statement, “I have
a truly marvellous proof of this proposition which this margin is
too narrow to contain.” This statement incorporated a landmark
proof technique. The ingenuity of this technique allowed Fermat
to delegate his proof to 400 years of his students while keeping
his name attached to the theorem. This technique remains relevant
today, most commonly encountered as exercises left to the reader.

For decades, it has been assumed that the surest way to arrive
quickly at the results of a computation is through sophisticated al-
gorithms, efficient implementation, and other such mind-rending
work. Gottbrath et al., however, demonstrate that an effective tech-
nique to obtain results is to push optimization downstream. Their
approach is for you to sit on your hands and wait for Intel do the
work. [4]

Another clear application of Anticipatory Procrastination in-
volves responding to undergraduate questions, or, more accurately,
not responding to undergraduate questions. For example, one simu-
lated graduate student’s experience demonstrates that our algorithm
improves performance. [2]

Knuth has demonstrated effective techniques for resisting low
latency responses in the presence of high-performance communica-
tion channels. By batching his physical messaging in three month
quanta and simply not addressing electronic messaging, Knuth ig-
nores you more efficiently than you would otherwise be ignored.
He also proves that a large subclass of STUFF has solutions that
follow directly from ignoring it. [7]

A disk read head seeks slowly across its disk. Thus, an eager
disk scheduler can send the disk head on an expensive seek when
a small amount of waiting would have allowed it to perform an
operation locally. Iyer and Druschel thus show that anticipatory
procrastination can be as effective for system devices as it is for
higher level task scheduling. [6]

A recent example of anticipatory procrastination in an academic
context is Assignment 2 of the University of Wisconsin Advanced
Operating Systems class. Results of this work are still preliminary,
but are regarded within the relevant community1 as a resounding
success.

3. Experimental Methods and Results
See Figure 1.

4. Conclusion
To cut this Gordian Knot of “having to do stuff”, we have proposed
an elegant solution: “Not doing it today”. This may have seemed an
unintuitive approach, but we’ve found empirical evidence that such
an approach can work. In fact, this may be the most commonly
implemented solution to STUFF.

1 us.

mailto:yanchar@cs.wisc.edu
mailto:elder@cs.wisc.edu
mailto:wrharris@cs.wisc.edu
mailto:hinrichs@cs.wisc.edu


Figure 1. Summary of methods and results.

References
[1] M. Alan. Turing. On computable numbers, with an application to

the Entscheidungsproblem.Proceedings of the London Mathematical
Society, 42(2):230–265, 1936.

[2] Jorge Cham. 24-hour waiting period.http://www.phdcomics.com/
blog.php?postarchive=1&previous=1203352531, 2008.

[3] Michael R. Garey and David S. Johnson.Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1979.

[4] C. Gottbrath, J. Bailin, C. Meakin, T. Thompson, and JJ Charfman.
The Effects of Moore’s Law and Slacking on Large Computations.
Arxiv preprint astro-ph/9912202, 1999.

[5] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Ben Liblit. EIO: Error-
handling is occasionally correct. InProceedings of the Sixth USENIX
Conference on File and Storage Technologies (FAST ’08), San Jose,
California, February 2008. USENIX.

[6] S. Iyer and P. Druschel. Anticipatory scheduling: a disk scheduling
framework to overcome deceptive idleness in synchronous I/O.ACM
SIGOPS Operating Systems Review, 35(5):117–130, 2001.

[7] Donald Knuth. Email.http://www-cs-faculty.stanford.edu/
∼knuth/email.html, 1990.

[8] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.
Jordan. Public deployment of cooperative bug isolation, May 24 2004.

[9] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON File Systems. InProceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05), pages 206–
220, Brighton, United Kingdom, October 2005.

http://www.phdcomics.com/blog.php?postarchive=1&previous=1203352531
http://www.phdcomics.com/blog.php?postarchive=1&previous=1203352531
http://www-cs-faculty.stanford.edu/~knuth/email.html
http://www-cs-faculty.stanford.edu/~knuth/email.html

	Introduction
	Related Work
	Experimental Methods and Results
	Conclusion

