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Abstract. We present the algorithms used in MCVETO (Machine-Code
VErification TOol), a tool to check whether a stripped machine-
code program satisfies a safety property. The verification problem that
MCVETO addresses is challenging because it cannot assume that it has
access to (i) certain structures commonly relied on by source-code verifi-
cation tools, such as control-flow graphs and call-graphs, and (ii) meta-
data, such as information about variables, types, and aliasing. It can-
not even rely on out-of-scope local variables and return addresses being
protected from the program’s actions. What distinguishes MCVETO from
other work on software model checking is that it shows how verification of
machine-code can be performed, while avoiding conventional techniques
that would be unsound if applied at the machine-code level.

1 Introduction

Recent research has led to new kinds of tools for analyzing programs for bugs and
security vulnerabilities. In these tools, program analysis conservatively answers
the question “Can the program reach a bad state?” Many impressive results have
been achieved; however, the vast majority of existing tools analyze source code,
whereas most programs are delivered as machine code. If analysts wish to vet
such programs for bugs and security vulnerabilities, tools for analyzing machine
code are needed.

Machine-code analysis presents many new challenges. For instance, at the
machine-code level, memory is one large byte-addressable array, and an ana-
lyzer must handle computed—and possibly non-aligned—addresses. It is crucial
to track array accesses and updates accurately; however, the task is complicated
by the fact that arithmetic and dereferencing operations are both pervasive and
inextricably intermingled. For instance, if local variable x is at offset –12 from the
activation record’s frame pointer (register ebp), an access on x would be turned
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into an operand [ebp–12]. Evaluating the operand first involves pointer arith-
metic (“ebp–12”) and then dereferencing the computed address (“[·]”). On the
other hand, machine-code analysis also offers new opportunities, in particular,
the opportunity to track low-level, platform-specific details, such as memory-
layout effects. Programmers are typically unaware of such details; however, they
are often the source of exploitable security vulnerabilities.

The algorithms used in software model checkers that work on source code
[5, 23, 6] would be be unsound if applied to machine code. For instance, be-
fore starting the verification process proper, SLAM [5] and BLAST [23] perform
flow-insensitive (and possibly field-sensitive) points-to analysis. However, such
analyses often make unsound assumptions, such as assuming that the result of
an arithmetic operation on a pointer always remains inside the pointer’s origi-
nal target. Such an approach assumes—without checking—that the program is
ANSI C compliant, and hence causes the model checker to ignore behaviors that
are allowed by some compilers (e.g., arithmetic is performed on pointers that
are subsequently used for indirect function calls; pointers move off the ends of
structs or arrays, and are subsequently dereferenced). A program can use such
features for good reasons—e.g., as a way for a C program to simulate subclassing
[36]—but they can also be a source of bugs and security vulnerabilities.

This paper presents the techniques that we have implemented in a model
checker for machine code, called MCVETO (Machine-Code VErification TOol).
MCVETO uses directed proof generation (DPG) [21] to find either an input that
causes a (bad) target state to be reached, or a proof that the bad state cannot
be reached. (The third possibility is that MCVETO fails to terminate.)

What distinguishes the work on MCVETO is that it addresses a large number
of issues that have been ignored in previous work on software model checking,
and would cause previous techniques to be unsound if applied to machine code.
The contributions of our work can be summarized as follows:

1. We show how to verify safety properties of machine code while avoiding
a host of assumptions that are unsound in general, and that would be in-
appropriate in the machine-code context, such as reliance on symbol-table,
debugging, or type information, and preprocessing steps for (a) building a
precomputed, fixed, interprocedural control-flow graph (ICFG), or (b) per-
forming points-to/alias analysis.

2. MCVETO builds its (sound) abstraction of the program’s state space on-
the-fly, performing disassembly one instruction at a time during state-space
exploration, without static knowledge of the split between code vs. data. (It
does not have to be prepared to disassemble collections of nested branches,
loops, procedures, or the whole program all at once, which is what can con-
fuse conventional disassemblers [28].)
The initial abstraction has only two abstract states, defined by the predi-

cates “PC = target” and “PC 6= target” (where “PC” denotes the program
counter). The abstraction is gradually refined as more of the program is
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exercised (§3). MCVETO can analyze programs with instruction aliasing4 be-
cause it builds its abstraction of the program’s state space entirely on-the-fly
(§3.1). Moreover, MCVETO is capable of verifying (or detecting flaws in) self-
modifying code (SMC). With SMC there is no fixed association between an
address and the instruction at that address, but this is handled automati-
cally by MCVETO’s mechanisms for abstraction refinement. To the best of
our knowledge, MCVETO is the first model checker to handle SMC.

3. MCVETO introduces trace generalization, a new technique for eliminating
families of infeasible traces (§3.1). Compared to prior techniques that also
have this ability [7, 22], our technique involves no calls on an SMT solver,
and avoids the potentially expensive step of automaton complementation.

4. MCVETO introduces a new approach to performing DPG on multi-procedure
programs (§3.3). Godefroid et al. [20] presented a declarative framework
that codifies the mechanisms used for DPG in SYNERGY [21], DASH [6], and
SMASH [20] (which are all instances of the framework). In their framework,
interprocedural DPG is performed by invoking intraprocedural DPG as a
subroutine. In contrast, MCVETO’s algorithm lies outside of that framework:
the interprocedural component of MCVETO uses (and refines) an infinite
graph, which is finitely represented and queried by symbolic operations.

5. We developed a language-independent algorithm to identify the aliasing con-
dition relevant to a property in a given state (§3.4). Unlike previous tech-
niques [6], it applies when static names for variables/objects are unavailable.

Items 1 and 2 address execution details that are typically ignored (unsoundly) by
source-code analyzers. Items 3, 4, and 5 are applicable to both source-code and
machine-code analysis. MCVETO is not restricted to an impoverished language.
In particular, it handles pointers and bit-vector arithmetic.

In our implementation, we restricted ourselves to use only language-
independent techniques. In particular, we used a technique for generating au-
tomatically some of the key primitives of MCVETO’s analysis components from
a description of an instruction set’s semantics [27, 26]—i.e., (a) an emulator
for running tests, (b) a primitive for performing symbolic execution, and (c) a
primitive for the pre-image operator (Pre). In addition, we developed language-
independent approaches to the issues discussed above (e.g., item 5). Conse-
quently, our system acts as a Yacc-like tool for creating versions of MCVETO

for different instruction sets: given an instruction-set description, a version of
MCVETO is generated automatically. We created two such instantiations of
MCVETO from descriptions of the Intel x86 and PowerPC instruction sets.

Organization. §2 contains a brief review of DPG. §3 describes the new DPG
techniques used in MCVETO. §4 describes how different instances of MCVETO are
generated automatically from a specification of the semantics of an instruction
set. §5 presents experimental results. §6 discusses related work. §7 concludes.

4 Programs written in instruction sets with varying-length instructions, such as x86,
can have “hidden” instructions starting at positions that are out of registration with
the instruction boundaries of a given reading of an instruction stream [28].
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2 Background on Directed Proof Generation (DPG)

Given a program P and a particular control location target in P , DPG returns
either an input for which execution leads to target or a proof that target is
unreachable (or DPG does not terminate). Two approximations of P ’s state
space are maintained:
– A set T of concrete traces, obtained by running P with specific inputs. T

underapproximates P ’s state space.
– A graph G, called the abstract graph, obtained from P via abstraction (and

abstraction refinement). G overapproximates P ’s state space.
Nodes in G are labeled with formulas; edges are labeled with program statements
or program conditions. One node is the start node (where execution begins);
another node is the target node (the goal to reach). Information to relate the
under- and overapproximations is also maintained: a concrete state σ in a trace
in T is called a witness for a node n in G if σ satisfies the formula that labels n.

n’ : � ∧ ¬�

k

n : �

m : �

k

n’’ : � ∧ �

I

⟹

I

m : �

♦♦♦♦ ♦♦♦♦

♦♦♦♦ ♦♦♦♦

Fig. 1. The general refinement
step across frontier (n, I,m).
The presence of a witness is
indicated by a “�” inside of a
node.

If G has no path from start to target, then
DPG has proved that target is unreachable, and
G serves as the proof. Otherwise, DPG locates a
frontier : a triple (n, I,m), where (n,m) is an edge
on a path from start to target such that n has a
witness w but m does not, and I is the instruction
on (n,m). DPG either performs concrete execu-
tion (attempting to reach target) or refines G by
splitting nodes and removing certain edges (which
may prove that target is unreachable). Which ac-
tion to perform is determined using the basic step
from directed test generation [18], which uses symbolic execution to try to find
an input that allows execution to cross frontier (n, I,m). Symbolic execution is
performed over symbolic states, which have two components: a path constraint,
which represents a constraint on the input state, and a symbolic map, which
represents the current state in terms of input-state quantities. DPG performs
symbolic execution along the path taken during the concrete execution that pro-
duced witness w for n; it then symbolically executes I, and conjoins to the path
constraint the formula obtained by evaluating m’s predicate ψ with respect to
the symbolic map. It calls an SMT solver to determine if the path constraint
obtained in this way is satisfiable. If so, the result is a satisfying assignment that
is used to add a new execution trace to T . If not, DPG refines G by splitting
node n into n′ and n′′, as shown in Fig. 1.

Refinement changes G to represent some non-connectivity information: in
particular, n′ is not connected to m in the refined graph (see Fig. 1). Let ψ be
the formula that labels m, c be the concrete witness of n, and Sn be the symbolic
state obtained from the symbolic execution up to n. DPG chooses a formula ρ,
called the refinement predicate, and splits node n into n′ and n′′ to distinguish
the cases when n is reached with a concrete state that satisfies ρ (n′′) and when
it is reached with a state that satisfies ¬ρ (n′). The predicate ρ is chosen such
that (i) no state that satisfies ¬ρ can lead to a state that satisfies ψ after the
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int main() {
int x, y;

if(*) {
x = 200;

y = 300;

adjust(x, y);

}
else {
x = 300;

y = 200;

adjust(x, y);

}
if (y != 500)

UNREACHABLE();

return 0;

}

void adjust(int& x, int& y) {
while(x > 0) {
x--;

y++;

}
}

F

while(x>0)

T

x = 200

y = 300

F

x--

y++

x = 300

y = 200

exit

adjust(x,y) ad
ju

st
(x

,y
)

ret

ret

if(*)

if (y≠500)

T

FT

F

x = 300

F

x = 300

(a) (b)

Fig. 2. (a) A program with a non-deterministic branch; (b) the program’s ICFG.

execution of I, and (ii) the symbolic state Sn satisfies ¬ρ. Condition (i) ensures
that the edge from n′ to m can be removed. Condition (ii) prohibits extending
the current path along I (forcing the DPG search to explore different paths). It
also ensures that c is a witness for n′ and not for n′′ (because c satisfies Sn)—and
thus the frontier during the next iteration must be different.

3 MCVETO

This section explains the methods used to achieve contributions 1–5 listed in
§1. While MCVETO was designed to provide sound DPG for machine code, a
number of its novel features are also useful for source-code DPG. Thus, to make
the paper more accessible, our running example is the C++ program in Fig. 2.
It makes a non-deterministic choice between two blocks that each call procedure
adjust, which loops—decrementing x and incrementing y. Note that the affine
relation x+ y = 500 holds at the two calls on adjust, the loop-head in adjust,
and the branch on y!=500.

Representing the Abstract Graph. The infinite abstract graph used in
MCVETO is finitely represented as a nested word automaton (NWA) [2] and
queried by symbolic operations. (See App. A for definitions related to NWAs.)
As discussed in §3.1 the key property of NWAs for abstraction refinement is
that, even though they represent matched call/return structure, they are closed
under intersection [2]. That is, given NWAs A1 and A2, one can construct an
NWA A3 such that L(A3) = L(A1) ∩ L(A2).

In our NWAs, the alphabet consists of all possible machine-code instructions.
In addition, we annotate each state with a predicate. Operations on NWAs ex-
tend cleanly to accommodate the semantics of predicates—e.g., the ∩ operation
labels a product state 〈q1, q2〉 with the conjunction of the predicates on states
q1 and q2. In MCVETO’s abstract graph, we treat the value of the PC as data;
consequently, predicates can refer to the value of the PC (see Fig. 3).
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Fig. 4. (a) and (b) Two generalized traces, each of which reaches the end of the pro-
gram. (c) The intersection of the two generalized traces. (A “�” indicates that a node
has a witness.)

3.1 Abstraction Refinement Via Trace Generalization

In a source-code model checker, the initial overapproximation of a program’s
state space is often the program’s ICFG. Unfortunately, for machine code it
is difficult to create an accurate ICFG a priori because of the use of indirect
jumps, jump tables, and indirect function calls—as well as more esoteric fea-
tures, such as instruction aliasing and SMC. For this reason, MCVETO begins
with the degenerate NWA-based abstract graph G0 shown in Fig. 3, which over-
approximates the program’s state space; i.e., Go accepts an overapproximation
of the set of minimal5 traces that reach target. The abstract graph is refined
during the state-space exploration carried out by MCVETO.

PC ≠ targets:

*

*

PC = targett:

δc =

{

(s, *, s),
(s, *, t)

}

δr =

{

(s, s, *, s),
(s, s, *, t)

}

(a) (b)

Fig. 3. (a) Internal-transitions in
the initial NWA-based abstract
graph G0 created by MCVETO; (b)
call- and return-transitions in G0. *
is a wild-card symbol that matches
all instructions.

To avoid having to disassemble collec-
tions of nested branches, loops, procedures,
or the whole program all at once, MCVETO

performs trace-based disassembly: as concrete
traces are generated during DPG, instruc-
tions are disassembled one at a time by de-
coding the current bytes of memory starting
at the value of the PC. Each indirect jump or
indirect call encountered can be resolved to
a specific address. Trace-based disassembly is
one of the techniques that allows MCVETO to
handle self-modifying code.

MCVETO uses each concrete trace π ∈
T to refine abstract graph G. As mentioned in §2, the set T of concrete
traces underapproximates the program’s state space, whereas G represents an

5 A trace τ that reaches target is minimal if τ does not have a proper prefix that
reaches target.
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overapproximation of the state space. MCVETO repeatedly solves instances of
the following trace-generalization problem:

Given a trace π, which is an underapproximation of the program, convert π
into an NWA-based abstract graph Gπ that is an overapproximation of the
program.

We create Gπ by “folding” π—grouping together all nodes with the same PC
value, and augmenting it in a way that overapproximates the portion of the
program not explored by π (denoted by π/[PC]); see Figs. 4(a) and (b) and
Fig. 5. In particular, Gπ contains one accepting state, called TS (for “target
surrogate”). TS is an accepting state because it represents target, as well as all
non-target locations not visited by π.

We now have two overapproximations, the original abstract graph G and
folded trace Gπ. Thus, by performing G := G ∩ Gπ , information about the
portion of the program explored by π is incorporated into G, producing a third,
improved overapproximation; see Fig. 4(c). (Equivalently, intersection eliminates
the family of infeasible traces represented by the complement of Gπ; however,
because we already have Gπ in hand, no automaton-complementation operation
is required—cf. [22].)

The issue of how one forms an NWPrefix from an instruction sequence—i.e.,
identifying the nesting structure—is handled by a policy in the trace-recovery
tool for classifying each position as an internal-, call-, or return-position. Cur-
rently, for reasons discussed in §3.5, we use the following policy: the position
of any form of call instruction is a call-position; the position of any form of
ret instruction is a return-position. In essence, MCVETO uses call and ret

instructions to restrict the instruction sequences considered. If these match the
program’s actual instruction sequences, we obtain the benefits of the NWA-based
approach—especially the reuse of information among refinements of a given pro-
cedure. The basic MCVETO algorithm is stated as Alg. 1.

Trace Generalization for Self-Modifying Code. To perform trace general-
ization for self-modifying code, state names are now of the form qa,I , where a is
an address and I is an instruction. Item 1 of Fig. 5 is changed to

– All positions 1 ≤ k < |w|+ 1 for which (i) PC[k] has a given address a, and
(ii) w[k] has a given instruction I are collapsed to a single NWA state qa,I .
All such states are rejecting states (the target was not reached).

Internal-, call-, and return-steps are now quadruples,
〈PC[i], w[i],PC[i+ 1], w[i+ 1]〉 depending on whether i, for 1 ≤ i < |w|,
is an internal-, call-, or return-position, respectively. Other items are changed
accordingly to account for instructions in state names. In addition, items [8]–[10]
are replaced by

– For each position i, 1 ≤ i < |w|+ 1, Gπ contains
• an internal-transition (qPC[i],w[i], ∗,TS)
• a call-transition (qPC[i],w[i], ∗,TS)
• a return-transition (qPC[i],w[i], qPC[j],w[j], ∗,TS), where 1 ≤ j < i and
w[j] is the unmatched call with largest index in w[1..i− 1].
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Definition 1. A trace π that does not reach target is represented by (i) a nested-
word prefix (w, ) over instructions (App. A), together with (ii) an array of PC
values, PC[1..|w| + 1], where PC[|w| + 1] has the special value HALT if the trace
terminated execution. Internal-steps, call-steps, and return-steps are triples of
the form 〈PC[i], w[i],PC[i+ 1]〉, 1 ≤ i < |w|, depending on whether i is an internal-

position, call-position, or return-position, respectively. Given π, we construct Gπ

def

=
π/[PC] as follows:
1. All positions 1 ≤ k < |w|+1 for which PC[k] has a given address a are collapsed

to a single NWA state qa. All such states are rejecting states (the target was not
reached).

2. For each internal-step 〈a, I, b〉, Gπ has an internal-transition (qa, I, qb).
3. For each call-step 〈ac, call, ae〉, Gπ has a call-transition (qac , call, qae).

(“call” stands for whatever instruction instance was used in the call-step.)
4. For each return-step 〈ax, ret, ar〉 for which the PC at the call predecessor holds

address ac, Gπ has a return-transition (qax , qac , ret, qar ). (“ret” stands for
whatever instruction instance was used in the return-step.)

5. Gπ contains one accepting state, called TS (for “target surrogate”). TS is an
accepting state because it represents target, as well as all the non-target locations
that π did not explore.

6. Gπ contains three “self-loops”: (TS, *,TS) ∈ δi, (TS, *,TS) ∈ δc, and
(TS,TS, *,TS) ∈ δr. (We use “*” in the latter two transitions because there
are many forms of call and ret instructions.)

7. For each unmatched instance of a call-step 〈ac, call, ae〉, Gπ has a return-
transition (TS, qac , *,TS). (We use * because any kind of ret instruction could
appear in the matching return-step.)

8. Let Bb denote a (direct or indirect) branch that takes branch-direction b.
– If π has an internal-step 〈a,Bb, c〉 but not an internal-step 〈a,B¬b, d〉, Gπ

has an internal-transition (qa, B¬b,TS).
– For each internal-step 〈a,BT , c〉, where B is an indirect branch, Gπ has an

internal-transition (qa, BT ,TS).
9. For each call-step 〈ac, call, ae〉 where call is an indirect call, Gπ has a call-

transition (qac , call,TS).
10. If PC[|w| + 1] 6= HALT, Gπ has an internal-transition (qPC[|w|], I,TS), where

“I” stands for whatever instruction instance was used in step |w| of π. (We
assume that an uncompleted trace never stops just before a call or ret.)

11. If PC[|w| + 1] = HALT, Gπ has an internal-transition (qPC[|w|], I,Exit), where
“I” stands for whatever instruction instance was used in step |w| of π and Exit
is a distinguished non-accepting state.

Fig. 5. Definition of the trace-folding operation π/[PC].

3.2 Speculative Trace Refinement

Motivated by the observation that DPG is able to avoid exhaustive loop un-
rolling if it discovers the right loop invariant, we developed mechanisms to dis-
cover candidate invariants from a folded trace, which are then incorporated into
the abstract graph via NWA intersection. Although they are only candidate in-
variants, they are introduced into the abstract graph in the hope that they are
invariants for the full program. The basic idea is to apply dataflow analysis to
a graph obtained from the folded trace Gπ. The recovery of invariants from Gπ
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Algorithm 1 Basic MCVETO algorithm (including trace-based disassembly)

1: π := nested-word prefix for an execution run on a random initial state
2: T := {π}; Gπ := π/[PC]; G := (NWA from Fig. 3) ∩ Gπ

3: loop

4: if target has a witness in T then return “reachable”
5: Find a path τ in G from start to target
6: if no path exists then return “not reachable”
7: Find a frontier (n, I,m) in G, where concrete state σ witnesses n
8: Perform symbolic execution of the instructions of the concrete trace that reaches

σ, and then of instruction I ; conjoin to the path constraint the formula obtained
by evaluating m’s predicate ψ with respect to the symbolic map; let S be the
path constraint so obtained

9: if S is feasible, with satisfying assignment A then

10: π := nested-word prefix for an execution run on A
11: T := T ∪ {π}; Gπ := π/[PC]; G := G ∩Gπ

12: else

13: Refine G along frontier (n, I,m) (see Fig. 1)

is similar in spirit to the computation of invariants from traces in Daikon [15],
but in MCVETO they are computed ex post facto by dataflow analysis on the
folded trace. While any kind of dataflow analysis could be used in this fashion,
MCVETO currently uses two analyses:

– Affine-relation analysis [30] is used to obtain linear equalities over registers
and a set of memory locations, V . V is computed by running aggregate struc-
ture identification [32] on Gπ to obtain a set of inferred memory variables
M , then selecting V ⊆M as the most frequently accessed locations in π.

– An analysis based on strided-interval arithmetic [33] is used to discover range
and congruence constraints on the values of individual registers and memory
locations.

The candidate invariants are used to create predicates for the nodes of Gπ.
Because an analysis may not account for the full effects of indirect memory
references on the inferred variables, to incorporate a discovered candidate in-
variant ϕ for node n into Gπ safely, we split n on ϕ and ¬ϕ. Again we have two
overapproximations: Gπ, from the folded trace, augmented with the candidate
invariants, and the original abstract graph G. To incorporate the candidate in-
variants into G, we perform G := G∩Gπ ; the ∩ operation labels a product state
〈q1, q2〉 with the conjunction of the predicates on states q1 of G and q2 of Gπ.

Fig. 6 shows how the candidate affine relation ϕ
def

= x + y = 500 would be
introduced at the loop-head of adjust in the generalized traces from Figs. 4(a)
and (b). (Relation ϕ does, in fact, hold for the portions of the state space explored
by Figs. 4(a) and (b).) With this enhancement, subsequent steps of DPG will be
able to show that the dotted loop-heads (labeled with ¬ϕ) can never be reached
from start. In addition, the predicate ϕ on the solid loop-heads enables DPG
to avoid exhaustive loop unrolling to show that the true branch of y!=500 can
never be taken.
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Fig. 6. Fig. 4(a) and (b) with the loop-head in adjust split with respect to the candi-

date invariant ϕ
def

= x+ y = 500.

int y;

void baz(){
y=0;

y++;

y--;

}

void lotsaBaz(int a){
y=0;

if(a>0) baz();

if(a>1) baz();

if(a>2) baz();

if(a>3) baz();

if(y!=0)

ERR: return;

}

int bar1() {
int i,r = 0;

for(i=0;i<100;i++){
complicated(); r++;

}
return r;

}

int bar2(){ return 10; }

void foo(int x){
int y;

if(x == 0) y = bar2();

else y = bar1();

if(y == 10)

ERR: return;

}

(a) (b)

Fig. 7. Programs that illustrate the benefit of using a conceptually infinite abstract
graph.

3.3 Symbolic Methods for Interprocedural DPG

In other DPG systems [21, 6, 20], interprocedural DPG is performed by invoking
intraprocedural DPG as a subroutine. In contrast, MCVETO analyzes a repre-
sentation of the entire program (refined on-the-fly), which allows it to reuse all
information from previous refinement steps. For instance, in the program shown
in Fig. 7(a), procedure lotsaBaz makes several calls to baz. By invoking analysis
once for each call site on baz, a tool such as DASH has to re-learn that y is set to
0. In contrast, MCVETO only needs to learn this once and gets automatic reuse
at all call sites. Note that such reuse is achieved in a different way in SMASH

[20], which makes use of explicit procedure summaries. However, because the
split between local and global variables is not known when analyzing machine
code, it is not clear to us how MCVETO could generate such explicit summaries.

Furthermore, SMASH is still restricted to invoking intraprocedural analysis
as a subroutine, whereas MCVETO is not limited to considering frontiers in just
a single procedure: at each stage, it is free to choose a frontier in any procedure.
To see why such freedom can be important, consider the source-code example
in Fig. 7(b) (where target is ERR). DASH might proceed as follows. The initial
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test uses [x 7→ 42], which goes through bar1, but does not reach target. After a
few iterations, the frontier is the call to bar1, at which point DASH is invoked
on bar1 to prove that the return value is not 10. The subproof takes a long
time because of the complicated loop in bar1. In essence, DASH gets stuck in
bar1 without recourse to an easier way to reach target. MCVETO can make the
same choices, and would start to prove the same property for the return value
of bar1. However, refinements inside of bar1 cause the abstract graph to grow,
and at some point, if the policy is to pick a frontier closest to target, the frontier
switches to one in main that is closer to target—in particular, the true branch of
the if-condition x==0. MCVETO will be able to extend that frontier by running
a test with [x 7→ 0], which will go through bar2 and reach target. The chal-
lenge that we face to support such flexibility is how to select the frontier while
accounting for paths that reflect the nesting structure of calls and returns. As
discussed below, by doing computations via automata, transducers, and push-
down systems, MCVETO can find the set of all frontiers, as well as identify the
k closest frontiers.

Symbolic Methods to Find All Frontiers and Closest Frontiers. The
first step is to convert the abstract graph from an NWA to a PDS to be able to
use standard symbolic reachability queries on the PDS [8, 16].

Definition 2. A pushdown system (PDS) is a four-tuple P = (P,Act , Γ,∆),
where P is a finite set of control locations, Act is a finite set of actions,
Γ is a finite set of stack symbols, and ∆ ⊆ P × Γ × Act × P × Γ ∗ is a
finite set of rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and
u ∈ Γ ∗. A rule r ∈ ∆ is written as 〈p, γ〉 σ↪−→ 〈p′, u〉, where p, p′ ∈ P , σ ∈ Act,
γ ∈ Γ , and u ∈ Γ ∗. For σ ∈ Act, the rules define a collection of transition

relations
σ=⇒ on configurations of P as follows: If r = 〈p, γ〉 σ↪−→ 〈p′, u′〉, then

〈p, γu〉 σ=⇒ 〈p′, u′u〉 for all u ∈ Γ ∗. For a word σ1 . . . σn ∈ Act∗, the relation
σ1...σn=====⇒ is defined in the obvious way.

To convert an NWA to a PDS, each NWA transition is converted to one or
more PDS rules:

– For each transition (q, σ, q′) ∈ δi, the PDS has a rule 〈p, q〉
σ
↪−→ 〈p, q′〉.

– For each transition (qc, σ, qe) ∈ δc, the PDS has a rule 〈p, qc〉
σ
↪−→ 〈p, qe qc〉.

– For each transition (qx, qc, σ, qr) ∈ δr, the PDS has two rules, 〈p, qx〉
ε↪−→

〈px, ε〉 and 〈px, qc〉
σ
↪−→ 〈p, qr〉.

We often work with abstractions of PDSs in which action symbols are

dropped: ⇒
def

=
⋃

σ∈Act

σ=⇒. Let ⇒∗ denote the reflexive transitive closure of

⇒. For a set of configurations C, pre∗(C)
def

= {c′ | ∃c ∈ C : c′ ⇒∗ c} and

post∗(C)
def

= {c′ | ∃c ∈ C : c ⇒∗ c′}—i.e., backward and forward reachability,
respectively, with respect to transition relation ⇒. When C is a regular lan-
guage of configurations, automata for the configuration languages pre∗(C) and
post∗(C) can be computed in polynomial time. Using the PDS constructed from
the NWA-based abstract graph, line [1] of Alg. 1 can be performed by testing
whether start ∈ pre∗(target).
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Given the set of all 〈PC, stack〉 configurations for concrete states that occur
in some execution trace, let X be the corresponding set of configurations in
P × Γ ∗ for the PDS of the abstract graph. It is straightforward to build an
automaton that recognizes X because we can recover 〈PC, stack〉 information
during a traversal of an NWPrefix. (Henceforth, the automaton is referred to as
X , as well.) We also create an automaton InChopButNotExecuted for the part
of the chop between start and target that has not been reached during a concrete
execution:

InChopButNotExecuted = post∗(start) ∩ pre∗(target) ∩ ¬X.

Given an automaton A for a language L(A), let ID[A] be the transducer for the
projection of the identity relation on L(A): {(a, a) | a ∈ L(A)}. It is straight-
forward to create a transducer for the post relation on PDS configurations: e.g.,
〈p, qc〉 ↪→ 〈p, qe qc〉 contributes the fragment

→ •
p/p
−−−→ •

ε/qe−−−→ •
qc/qc−−−−→ } 	 q/q, q ∈ Σ

to the transducer. (Note that the transducer encodes post , not post∗.) Now we
put these together to find all frontiers:

Frontiers = ID[X ] ◦ post ◦ ID[InChopButNotExecuted],

where ◦ denotes transducer composition. In English, what this does is the fol-
lowing: Frontiers identifies—as a relation between configuration pairs of the form
(x, icbne)—all edges in the infinite transition relation of the abstract graph in
which
1. x is reached during concrete execution (ID[X ])
2. one can go from x to icbne in one step (post)
3. icbne is on a path from start to target in the infinite transition relation of

the abstract graphs PDS, but was not reached during a concrete execution
(ID[InChopButNotExecuted])

The composition with the two projection functions, “ID[X ] ◦ . . .” and “. . . ◦
ID[InChopButNotExecuted]”, serves to specialize post to just the edges in the
infinite transition relation of the abstract graph that run between a configuration
in X and a configuration in InChopButNotExecuted.

We can obtain “closest frontiers” by using weighted PDSs [34, 9] and adding
shortest-distance weights to either pre∗(target) (to obtain frontiers that are clos-
est to target) or to post∗(start) (to obtain frontiers that are closest to start), and
then carrying the weights through the transducer-composition operations.

3.4 A Language-Independent Approach to Aliasing Relevant to a
Property

This section describes how MCVETO identifies—in a language-independent way
suitable for use with machine code—the aliasing condition relevant to a property
in a given state. Lim et al. showed how to generate a Pre primitive for machine
code [26]; however, repeated application of Pre causes refinement predicates to
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explode. We now present a language-independent algorithm for obtaining an
aliasing condition α that is suitable for use in machine-code analysis. From α,
one immediately obtains Preα. There are two challenges to defining an appro-
priate notion of aliasing condition for use with machine code: (i) int-valued and
address-valued quantities are indistinguishable at runtime, and (ii) arithmetic
on addresses is used extensively.

Suppose that the frontier is (n, I,m), ψ is the formula on m, and Sn is the
symbolic state obtained via symbolic execution of a concrete trace that reaches n.
For source code, Beckman et al. [6] identify aliasing condition α by looking at the
relationship, in Sn, between the addresses written to by I and the ones used in ψ.
However, their algorithm for computing α is language-dependent : their algorithm
has the semantics of C implicitly encoded in its search for “the addresses written
to by I”. In contrast, as explained below, we developed an alternative, language-
independent approach, both to identifying α and computing Preα.

For the moment, to simplify the discussion, suppose that a concrete machine-
code state is represented using two maps M : INT→ INT and R : REG→ INT.
Map M represents memory, and map R represents the values of machine reg-
isters. (A more realistic definition of memory is considered later in this sec-
tion.) We use the standard theory of arrays to describe (functional) updates
and accesses on maps, e.g., update(m, k, d) denotes the map m with index k
updated with the value d, and access(m, k) is the value stored at index k
in m. (We use the notation m(r) as a shorthand for access(m, r).) We also
use the standard axiom from the theory of arrays: (update(m, k1, d))(k2) =
ite(k1 = k2, d,m(k2)), where ite is an if-then-else term. Suppose that I is “mov
[eax],5” (which corresponds to *eax = 5 in source-code notation) and that ψ
is (M(R(ebp) − 8) + M(R(ebp) − 12) = 10).6 First, we symbolically execute
I starting from the identity symbolic state Sid = [M 7→ M,R 7→ R] to obtain
the symbolic state S′ = [M 7→ update(M,R(eax), 5), R 7→ R]. Next, we evalu-
ate ψ under S′—i.e., perform the substitution ψ[M ← S′(M), R ← S′(R)]. For
instance, the term M(R(ebp) − 8), which denotes the contents of memory at
address R(ebp)− 8, evaluates to (update(M,R(eax), 5))(R(ebp)− 8). From the
axiom for arrays, this simplifies to ite(R(eax) = R(ebp)− 8, 5,M(R(ebp)− 8)).
Thus, the evaluation of ψ under S′ yields

(

ite(R(eax) = R(ebp) − 8, 5,M(R(ebp) − 8))
+ ite(R(eax) = R(ebp) − 12, 5,M(R(ebp) − 12))

)

= 10 (1)

This formula equals Pre(I, ψ) [26].
The process described above illustrates a general property: for any instruction

I and formula ψ, Pre(I, ψ) = ψ[M ← S′(M), R← S′(R)], where S′ = SEJIKSid

and SEJ·K denotes symbolic execution [26].
The next steps are to identify α and to create a simplified formula ψ′ that

weakens Pre(I, ψ). These are carried out simultaneously during a traversal of
Pre(I, ψ) that makes use of the symbolic state Sn at node n. We illustrate this

6 In x86, ebp is the frame pointer, so if program variable x is at offset –8 and y is at
offset –12, ψ corresponds to x + y = 10.
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on the example discussed above for a case in which Sn(R) = [eax 7→ R(ebp)−8]
(i.e., continuing the scenario from footnote 6, eax holds &x). Because the ite-
terms in Eqn. (1) were generated from array accesses, ite-conditions represent
possible constituents of aliasing conditions. We initialize α to true and traverse
Eqn. (1). For each subterm t of the form ite(ϕ, t1, t2) where ϕ definitely holds
in symbolic state Sn, t is simplified to t1 and ϕ is conjoined to α. If ϕ can never
hold in Sn, t is simplified to t2 and ¬ϕ is conjoined to α. If ϕ can sometimes
hold and sometimes fail to hold in Sn, t and α are left unchanged.

In our example, R(eax) equals R(ebp) − 8 in symbolic state Sn; hence, ap-
plying the process described above to Eqn. (1) yields

ψ′ = (5 +M(R(ebp) − 12) = 10)
α = (R(eax) = R(ebp) − 8) ∧ (R(eax) 6= R(ebp) − 12)

(2)

The formula α⇒ ψ′ is the desired refinement predicate Preα(I, ψ).
In practice, we found it beneficial to use an alternative approach, which is

to perform the same process of evaluating conditions of ite terms in Pre(I, ψ),
but to use one of the concrete witness states Wn of frontier node n in place of
symbolic state Sn. The latter method is less expensive (it uses formula-evaluation
steps in place of SMT solver calls), but generates an aliasing condition specific
to Wn rather than one that covers all concrete states described by Sn.

Both approaches are language-independent because they isolate where the
instruction-set semantics comes into play in Pre(I, ψ) to the computation of S′ =
SEJIKSid; all remaining steps involve only purely logical primitives. Although
our algorithm computes Pre(I, ψ) explicitly, that step alone does not cause an
explosion in formula size; explosion is due to repeated application of Pre. In our
approach, the formula obtained via Pre(I, ψ) is immediately simplified to create
first ψ′, and then α⇒ ψ′.
Byte-Addressable Memory. We assumed above that the memory map has
type INT → INT. When memory is byte-addressable, the actual memory-map
type is INT32 → INT8. This complicates matters because accessing (updat-
ing) a 32-bit quantity in memory translates into four contiguous 8-bit accesses
(updates). For instance, a 32-bit little-endian access can be expressed as follows:

access 32 8 LE 32(m, a) = let v4 = 224 ∗ Int8To32ZE(m(a+ 3))
v3 = 216 ∗ Int8To32ZE(m(a+ 2))
v2 = 28 ∗ Int8To32ZE(m(a+ 1))
v1 = Int8To32ZE(m(a))

in (v4 | v3 | v2 | v1)

(3)

where Int8To32ZE converts an INT8 to an INT32 by padding the high-order
bits with zeros, and “|” denotes bitwise-or.

Let update 32 8 LE 32 denote the similar operation for updating a map of
type INT32→ INT8 under the little-endian storage convention. Note that when
1 ≤ |k1 −INT32 k2| ≤ 3, we no longer have the property

access 32 8 LE 32(update 32 8 LE 32(M,k1, d), k2) = access 32 8 LE 32(M,k2).
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224 ∗ Int8To32ZE(ite(x + 3 = p + 3, 0, ite(x + 3 = p + 2, 0, ite(x + 3 = p + 1, 0, ite(x + 3 = p, 5, ∗(x + 3))))))
| 216 ∗ Int8To32ZE(ite(x + 2 = p + 3, 0, ite(x + 2 = p + 2, 0, ite(x + 2 = p + 1, 0, ite(x + 2 = p, 5, ∗(x + 2))))))
| 28 ∗ Int8To32ZE(ite(x + 1 = p + 3, 0, ite(x + 1 = p + 2, 0, ite(x + 1 = p + 1, 0, ite(x + 1 = p, 5, ∗(x + 1))))))
| Int8To32ZE(ite(x = p + 3, 0, ite(x = p + 2, 0, ite(x = p + 1, 0, ite(x = p, 5, ∗x)))))









+









224 ∗ Int8To32ZE(ite(y + 3 = p + 3, 0, ite(y + 3 = p + 2, 0, ite(y + 3 = p + 1, 0, ite(y + 3 = p, 5, ∗(y + 3))))))
| 216 ∗ Int8To32ZE(ite(y + 2 = p + 3, 0, ite(y + 2 = p + 2, 0, ite(y + 2 = p + 1, 0, ite(y + 2 = p, 5, ∗(y + 2))))))
| 28 ∗ Int8To32ZE(ite(y + 1 = p + 3, 0, ite(y + 1 = p + 2, 0, ite(y + 1 = p + 1, 0, ite(y + 1 = p, 5, ∗(y + 1))))))
| Int8To32ZE(ite(y = p + 3, 0, ite(y = p + 2, 0, ite(y = p + 1, 0, ite(y = p, 5, ∗y)))))









= 10

Fig. 8. The formula for Pre(I, ψ), where ψ is update 32 8 LE 32(M,R(ebp) − 8) +
update 32 8 LE 32(M,R(ebp) − 12) = 10, obtained by evaluating ψ on the symbolic
state S′ = [M 7→ update 32 8 LE 32(M,R(eax), 5), R 7→ R]. For brevity, the following
notational shorthands are used in the formula: p = R(eax), x = R(ebp) − 8, y =
R(ebp) − 12, ∗x = M(R(ebp) − 8), ∗y = M(R(ebp) − 12), etc.

and hence it is invalid to simplify formulas by the rule

access 32 8 LE 32(update 32 8 LE 32(M,k1, d), k2)
⇒ ite(k1 = k2, d, access 32 8 LE 32(M,k2)).

However, the four single-byte accesses onm in Eqn. (3) (m(a),m(a+1),m(a+2),
and m(a + 3)) are access operations for which it is valid to apply the standard
axiom of arrays (i.e., (m[k1 7→ d])(k2) = ite(k1 = k2, d,m(k2))).

Returning to the example discussed above, in which R(eax) equals R(ebp)−8
in symbolic state Sn, we perform the same steps as before. First, the symbolic
execution of I = mov [eax],5 starting from the identity symbolic state Sid =
[M 7→M,R 7→ R] results in the symbolic state

S′ = [M 7→ update 32 8 LE 32(M,R(eax), 5), R 7→ R].

The formula ψ is now written as follows:

access 32 8 LE 32(M,R(ebp)− 8) + access 32 8 LE 32(M,R(ebp)− 12) = 10.

To obtain Pre(I, ψ), we evaluate ψ under S′, which yields the formula shown in
Fig. 8.

The formula shown in Fig. 8 is the analog of Eqn. (1).
The step that uses symbolic state Sn to identify α and create a simplified

formula ψ′ that weakens Pre(I, ψ) is now applied to the formula shown in Fig. 8
and produces

ψ′ def

= 5 +









224 ∗ Int8To32ZE(∗(y + 3))
| 216 ∗ Int8To32ZE(∗(y + 2))
| 28 ∗ Int8To32ZE(∗(y + 1))
| Int8To32ZE(∗y)









= 10.

The α that is the analog of Eqn. (2) is the conjunction of the disequalities
collected from the formula shown in Fig. 8:

α
def

= x+ 3 6= p+ 3 ∧ . . . x+ 3 6= p ∧ . . . x 6= p+ 3 ∧ . . . x 6= p
∧ y + 3 6= p+ 3 ∧ . . . y + 3 6= p ∧ . . . y 6= p+ 3 ∧ . . . y 6= p.

As before, the formula α⇒ ψ′ is the desired refinement predicate Preα(I, ψ).
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3.5 Soundness Guarantee

void bar() {
ERR: // address here is 0x10

}

void foo() {
int b = MakeChoice() & 1;

int r = b*0x68 + (1-b)*0x10;

*(&r+2) = r;

return;

}

int main() {
foo();

// address here is 0x68

}

Fig. 9. ERR is reachable, but only
along a path in which a ret instruc-
tion serves to perform a call.

The soundness argument for MCVETO is
more subtle than it otherwise might appear
because of examples like the one shown in
Fig. 9. The statement *(&r+2) = r; over-
writes foo’s return address, and MakeChoice

returns a random 32-bit number. At the end
of foo, half the runs return normally to main.
For the other half, the ret instruction at
the end of foo serves to call bar. The prob-
lem is that for a run that returns normally
to main after trace generalization and inter-
section with G0, there is no frontier. Conse-
quently, half of the runs of MCVETO, on av-
erage, would erroneously report that location
ERR is unreachable.

MCVETO uses the following policy P for
classifying execution steps: (a) the position
of any form of call instruction is a call-position; (b) the position of any form of
ret instruction is a return-position. Our goals are (i) to define a property Q that
is compatible with P in the sense that MCVETO can check for violations of Q
while checking only NWPrefix paths (App. A), and (ii) to establish a soundness
guarantee: either MCVETO reports that Q is violated (along with an input that
demonstrates it), or it reports that target is reachable (again with an input
that demonstrates it), or it correctly reports that Q is invariant and target is
unreachable. To define Q, we augment the instruction-set semantics with an
auxiliary stack. Initially, the auxiliary stack is empty; at each call, a copy of
the return address pushed on the processor stack is also pushed on the auxiliary
stack; at each ret, the auxiliary stack is popped.

Definition 3. An acceptable execution (AE) under the instrumented seman-
tics is one in which at each ret instruction (i) the auxiliary stack is non-empty,
and (ii) the address popped from the processor stack matches the address popped
from the auxiliary stack.

In the instrumented semantics, a flag V is set whenever the program performs
an execution step that violates either condition (i) or (ii) of Defn. 3. Instead of
the initial NWA shown in Fig. 3, we use a similar two-state NWA that has
states q1: PC 6= target ∧ ¬V and q2: PC = target ∨ V, where q1 is non-accepting
and q2 is accepting. In addition, we add one more rule to the trace-generalization
construction for Gπ from Fig. 5:

12. For each return-step 〈ax, ret, ar〉, Gπ has an internal-transition
(qax , ret,TS).

As shown below, these modifications cause the DPG algorithm to also search for
traces that are AE violations.
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Theorem 1 (Soundness of MCVETO).

1. If MCVETO reports “AE violation” (together with an input S), execution of
S performs an execution that is not an AE.

2. If MCVETO reports “bug found” (together with an input S), execution of S
performs an AE to target.

3. If MCVETO reports “OK”, then (a) the program performs only AEs, and (b)
target cannot be reached during any AE.

Sketch of Proof: If a program has a concrete execution trace that is not AE, there
must exist a shortest non-AE prefix, which has the form “NWPrefix ret” where
either (i) the auxiliary stack is empty, or (ii) the return address used by ret from
the processor stack fails to match the return address on the auxiliary stack. At
each stage, the abstract graph used by MCVETO accepts an overapproximation of
the program’s shortest non-AE execution-trace prefixes. This is true of the initial
graph G0 because internal transitions have wild-card symbols. Moreover, each
folded trace Gπ = π/[PC] accepts traces of the form “NWPrefix ret” due to the
addition of internal transitions to TS for each ret instruction (item 12 above).
NWA intersection of two sound overapproximations leads to a refined sound
overapproximation. Therefore, when MCVETO has shown that no accepting state
is reachable, it has also proved that the program has no AE violations.

For an example like Fig. 9, MCVETO reports “AE violation”.

In cases when MCVETO reports “AE violation”, it can indicate a stack-
smashing attack. If one wishes to find out more information when there is an
AE violation, one can run a purely intraprocedural version of MCVETO that
does not give special treatment to call and ret instructions. This is potentially
more expensive than running the interprocedural version of MCVETO, but can
find out additional information about executions that are not AE.

4 Implementation

The MCVETO implementation incorporates all of the techniques described in §3.
The implementation uses only language-independent techniques; consequently,
MCVETO can be easily retargeted to different languages. The main components
of MCVETO are language-independent in two different dimensions:

1. The MCVETO DPG driver is structured so that one only needs to provide
implementations of primitives for concrete and symbolic execution of a lan-
guage’s constructs, plus a handful of other primitives (e.g., Preα). Conse-
quently, this component can be used for both source-level languages and
machine-code languages.

2. For machine-code languages, we used two tools that generate the required
implementations of the primitives for concrete and symbolic execution from
descriptions of the syntax and concrete operational semantics of an instruc-
tion set. The abstract syntax and concrete semantics are specified using TSL

(Transformer Specification Language) [27]. Translation of binary-encoded
instructions to abstract syntax trees is specified using a tool called ISAL
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(Instruction Set Architecture Language).7 The relationship between ISAL

and TSL is similar to the relationship between Flex and Bison—i.e., a Flex-
generated lexer passes tokens to a Bison-generated parser. In our case,
the TSL-defined abstract syntax serves as the formalism for communicat-
ing values—namely, instructions’ abstract syntax trees—between the two
tools.

In addition, we developed language-independent solutions to each of the issues
in MCVETO, such as identifying the aliasing condition relevant to a specific
property in a given state (§3.4). Consequently, our implementation acts as a
Yacc-like tool for creating versions of MCVETO for different languages: given a
description of language L, a version of MCVETO for L is generated automat-
ically. We created two specific instantiations of MCVETO from descriptions of
the Intel x86 and PowerPC instruction sets. To perform symbolic queries on the
conceptually-infinite abstract graph (§3.3), the implementation uses OpenFst [1]
(for transducers) and WALi [24] (for WPDSs).

5 Experiments

Our experiments (see Fig. 10) were run on a single core of a single-processor
quad-core 3.0 GHz Xeon computer running Windows XP, configured so that a
user process has 4 GB of memory. They were designed to test various aspects of
a DPG algorithm and to handle various intricacies that arise in machine code
(some of which are not visible in source code). We compiled the programs with
Visual Studio 8.0, and ran MCVETO on the resulting object files (without using
symbol-table information).8

The examples ex5, ex6, and ex8 are from the NECLA Static Analysis Bench-
marks.9 The examples barber, berkeley, cars, efm are multi-procedure versions
of the larger examples on which SYNERGY [21] was tested. (SYNERGY was tested
using single-procedure versions only.10) Instraliasing illustrates the ability to
handle instruction aliasing. (The instruction count for this example was obtained
via static disassembly, and hence is only approximate.) Smc1 illustrates the abil-
ity of MCVETO to handle self-modifying code. Underflow is taken from a DHS
tutorial on security vulnerabilities. It illustrates a strncpy vulnerability.

The examples are small, but challenging. They demonstrate MCVETO’s abil-
ity to reason automatically about low-level details of machine code using a se-
quence of sound abstractions. The question of whether the cost of soundness is
inherent, or whether there is some way that the well-behavedness of (most) code
could be exploited to make the analysis scale better is left for future research.
7 ISAL also handles other kinds of concrete syntactic issues, including (a) encoding (ab-

stract syntax trees to binary-encoded instructions), (b) parsing assembly (assembly
code to abstract syntax trees), and (c) assembly pretty-printing (abstract syntax
trees to assembly code).

8 The examples are available at www.cs.wisc.edu/wpis/examples/McVeto.
9 www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php

10 www.cse.iitb.ac.in/∼bhargav/synergy
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Program MCVETO performance (x86)
Name Outcome #Instrs CE SE Ref time

blast2/blast2 timeout 98 ** ** ** **
fib/fib–REACH-0 timeout 49 ** ** ** **
fib/fib–REACH-1 counterex. 49 1 0 0 0.125
slam1/slam1 proof 84 15 129 307 203
smc1/smc1–REACH-0* proof 21 1 60 188 959
smc1/smc1–REACH-1* counterex. 21 1 0 0 0.016
ex5/ex counterex. 48 2 10 38 3.05
doubleloopdep/count–COUNT-6 counterex. 31 7 11 13 11.5
doubleloopdep/count–COUNT-7 counterex. 31 7 11 13 11.6
doubleloopdep/count–COUNT-8 counterex. 31 7 11 13 11.6
doubleloopdep/count–COUNT-9 counterex. 31 7 11 13 11.7
inter.synergy/barber timeout 253 ** ** ** **
inter.synergy/berkeley counterex. 104 5 13 16 3.95
inter.synergy/cars proof 196 11 118 349 188
inter.synergy/efm timeout 188 ** ** ** **
share/share–CASE-0 proof 50 3 24 75 8.5
cert/underflow counterex. 120 2 6 12 9.55
instraliasing/instraliasing–REACH-0 proof 46 2 36 126 15.0
instraliasing/instraliasing–REACH-1 counterex. 46 2 17 55 5.86
longjmp/jmp AE viol. 74 1 0 0 0.015
overview0/overview proof 49 2 31 91 54.9
small static bench/ex5 proof 33 3 7 13 2.27
small static bench/ex6 proof 30 1 55 146 153
small static bench/ex8 proof 89 4 17 46 6.31
verisec-gxine/simp bad counterex. 1067 1 0 0 0.094
verisec-gxine/simp ok proof 1068 ** ** ** **
clobber ret addr/clobber–CASE-4 AE viol. 43 4 9 18 2.13
clobber ret addr/clobber–CASE-8 AE viol. 35 2 2 5 0.625
clobber ret addr/clobber–CASE-9 proof 35 1 5 21 1.44

Fig. 10. MCVETO experiments. The columns show whether MCVETO returned a proof,
counterexample, or an AE violation (Outcome); the number of instructions (#Instrs);
the number of concrete executions (CE); the number of symbolic executions (SE), which
also equals the number of calls to the YICES solver; the number of refinements (Ref),
which also equals the number of Preα computations; and the total time (in seconds).
*SMC test case. **Exceeded twenty-minute time limit.

6 Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities. A sub-
stantial amount of work exists on techniques to detect security vulnerabilities
by analyzing source code for a variety of languages [38, 29, 39]. Less work ex-
ists on vulnerability detection for machine code. Kruegel et al. [25] developed a
system for automating mimicry attacks; it uses symbolic execution to discover
attacks that can give up and regain execution control by modifying the contents
of the data, heap, or stack so that the application is forced to return control to
injected attack code at some point after the execution of a system call. Cova et
al. [14] used that platform to detect security vulnerabilities in x86 executables
via symbolic execution.

Prior work exists on directed test generation for machine code [19, 10]. Di-
rected test generation combines concrete execution and symbolic execution to
find inputs that increase test coverage. An SMT solver is used to obtain in-
puts that force previously unexplored branch directions to be taken. In contrast,
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MCVETO implements directed proof generation. Unlike directed-test-generation
tools, MCVETO is goal-directed, and works by trying to refute the claim “no
path exists that connects program entry to a given goal state”.

Machine-Code Model Checkers. SYNERGY applies to an x86 executable for
a “single-procedure C program with only [int-valued] variables” [21] (i.e., no
pointers). It uses debugging information to obtain information about variables
and types, and uses Vulcan [37] to obtain a CFG. It uses integer arithmetic—not
bit-vector arithmetic—in its solver. Quoting A. Nori, “[[21] handles] the com-
plexities of binaries via its front-end Vulcan and not via its property-checking
engine” [31]. In contrast, MCVETO addresses the challenges of checking proper-
ties of stripped executables articulated in §1.

AIR (“Assembly Iterative Refinement”) [13] is a model checker for PowerPC.
AIR decompiles an assembly program to C, and then checks if the resulting C
program satisfies the desired property by applying COPPER [12], a predicate-
abstraction-based model checker for C source code. They state that the choice
of COPPER is not essential, and that any other C model checker, such as SLAM

[5] or BLAST [23] would be satisfactory. However, the C programs that result
from their translation step use pointer arithmetic and pointer dereferencing,
whereas—as mentioned in §1—many C model checkers, including SLAM and
BLAST, make unsound assumptions about pointer arithmetic.

[MC]SQUARE [35] is a model checker for microcontroller assembly code. It uses
explicit-state model-checking techniques (combined with a degree of abstraction)
to check CTL properties.

Our group developed two prior machine-code model checkers,
CodeSurfer/x86 [4] and DDA/x86 [3]. Neither system uses either under-
approximation or symbolic execution. For overapproximation, both use numeric
static analysis and a different form of abstraction refinement.

Self-Modifying Code. The work on MCVETO addresses a problem that has
been almost entirely ignored by the PL research community. There is a paper on
SMC by Gerth [17], and a recent paper by Cai et al. [11]. However, both of the
papers concern proof systems for reasoning about SMC. In contrast, MCVETO

can verify (or detect flaws in) SMC automatically. As far as we know, MCVETO

is the first model checker to address verifying (or detecting flaws in) SMC.

Trace Generalization. The trace-generalization technique of §3.1 has both
similarities to and differences from the path programs of Beyer et al. [7] and the
trace-refinement technique of Heizmann et al. [22]. All three techniques refine
an overapproximation to eliminate families of infeasible concrete traces. How-
ever, trace generalization obtains the desired outcome in a substantially different
way. Beyer et al. analyze refuted abstract traces to obtain new predicates to re-
fine the predicate abstraction in use. The subsequent refinement step requires
possibly expensive calls on an SMT solver to compute new abstract transform-
ers. Heizmann et al. adopt a language-theoretic viewpoint: once a refutation
automaton is constructed—which involves calling an SMT solver and an inter-
polant generator—refinement is performed by automaton complementation fol-
lowed by automaton intersection. In contrast, our generalized traces are created
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by generalizing a feasible concrete trace to create directly a representation that
overapproximates the set of minimal traces that reach target. Consequently, re-
finement by trace generalization involves no calls on an SMT solver, and avoids
the potentially expensive step of automaton complementation.

7 Conclusion

MCVETO resolves many issues that have been unsoundly ignored in previous
work on software model checking. MCVETO addresses the challenge of estab-
lishing properties of the machine code that actually executes, and thus pro-
vides one approach to checking the effects of compilation and optimization on
correctness. The contributions of the paper lie in the insights that went into
defining the innovations in dynamic and symbolic analysis used in MCVETO:
(i) sound disassembly and sound construction of an overapproximation (even
in the presence of instruction aliasing and self-modifying code) (§3.1), (ii) a
new method to eliminate families of infeasible traces (§3.1), (iii) a method to
speculatively, but soundly, elaborate the abstraction in use (§3.2), (iv) new sym-
bolic methods to query the (conceptually infinite) abstract graph (§3.3), and (v)
a language-independent approach to Preα (§3.4). Not only are our techniques
language-independent, the implementation is parameterized by specifications of
an instruction set’s semantics. By this means, MCVETO has been instantiated
for both x86 and PowerPC.
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A Nested Words and Nested Word Automata

Definition 4 ([2]). A nested word (w, ) over alphabet Σ is an ordinary word
w ∈ Σ∗, together with a nesting relation  of length |w|.  is a collection
of edges (over the positions in w) that do not cross. A nesting relation of length
l ≥ 0 is a subset of {−∞, 1, 2, . . . , l} × {1, 2, . . . , l,+∞} such that
– Nesting edges only go forwards: if i j then i < j.
– No two edges share a position: for 1 ≤ i ≤ l, |{j | i j}| ≤ 1 and |{j | j  
i}| ≤ 1.

– Edges do not cross: if i j and i′  j′, then one cannot have i < i′ ≤ j < j′.
When i  j holds, for 1 ≤ i ≤ l, i is called a call position; if i  +∞, then
i is a pending call; otherwise i is a matched call, and the unique position j
such that i  j is called its return successor. Similarly, when i  j holds,
for 1 ≤ j ≤ l, j is a return position; if −∞ j, then j is a pending return,
otherwise j is a matched return, and the unique position i such that i j is
called its call predecessor. A position 1 ≤ i ≤ l that is neither a call nor a
return is an internal position.

MatchedNW denotes the set of nested words that have no pending calls
or returns. NWPrefix denotes the set of nested words that have no pending
returns.

A nested word automaton (NWA) A is a 5-tuple (Q,Σ, q0, δ, F ), where Q
is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is a set of final states, and δ is a transition relation. The transition relation δ
consists of three components, (δc, δi, δr), where
– δi ⊆ Q×Σ ×Q is the transition relation for internal positions.
– δc ⊆ Q×Σ ×Q is the transition relation for call positions.
– δr ⊆ Q×Q×Σ ×Q is the transition relation for return positions.

Starting from q0, an NWA A reads a nested word nw = (w, ) from left to
right, and performs transitions (possibly non-deterministically) according to the
input symbol and  . If A is in state q when reading input symbol σ at position
i in w, and i is an internal or call position, A makes a transition to q′ using
(q, σ, q′) ∈ δi or (q, σ, q′) ∈ δc, respectively. If i is a return position, let k be the
call predecessor of i, and qc be the state A was in just before the transition it
made on the kth symbol; A uses (q, qc, σ, q

′) ∈ δr to make a transition to q′. If,
after reading nw, A is in a state q ∈ F , then A accepts nw.
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