Representing Uncertainty

Chapter 13

Slides courtesy of Chuck Dyer

Uncertainty in the World

- An agent can often be uncertain about the state of the world/domain since there is often ambiguity and uncertainty

- Plausible/probabilistic inference
 - I’ve got this evidence; what’s the chance that this conclusion is true?
 - I’ve got a sore neck; how likely am I to have meningitis?
 - A mammogram test is positive; what’s the probability that the patient has breast cancer?

Uncertainty in the World and our Models

- True uncertainty: rules are probabilistic in nature
 - quantum mechanics
 - rolling dice, flipping a coin

- Laziness: too hard to determine exception-less rules
 - takes too much work to determine all of the relevant factors
 - too hard to use the enormous rules that result

- Theoretical ignorance: don’t know all the rules
 - problem domain has no complete, consistent theory (e.g., medical diagnosis)

- Practical ignorance: do know all the rules BUT
 - haven’t collected all relevant information for a particular case

Uncertainty

- Say we have a rule:
 - if toothache then problem is cavity

- But not all patients have toothaches due to cavities, so we could set up rules like:
 - if toothache and ¬gum-disease and ¬filling and ... then problem = cavity

- This gets complicated; better method:
 - if toothache then problem is cavity with 0.8 probability
 - or $P(\text{cavity} \mid \text{toothache}) = 0.8$

 the probability of cavity is 0.8 given toothache is observed
Logics

Logics are characterized by what they commit to as “primitives”

<table>
<thead>
<tr>
<th>Logic</th>
<th>What Exists in World</th>
<th>Knowledge States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-Order</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability Theory</td>
<td>facts</td>
<td>degree of belief 0..1</td>
</tr>
<tr>
<td>Fuzzy</td>
<td>degree of truth</td>
<td>degree of belief 0..1</td>
</tr>
</tbody>
</table>

Probability Theory

- **Probability theory** serves as a formal means for
 - Representing and reasoning with uncertain knowledge
 - Modeling **degrees of belief** in a proposition (event, conclusion, diagnosis, etc.)

- **Probability is the “language” of uncertainty**
 - A key modeling method in modern AI

Sample Space

- A space of **events** in which we assign probabilities
- Events can be binary, multi-valued, or continuous
- Events are **mutually exclusive**
- Examples
 - Coin flip: {head, tail}
 - Die roll: {1,2,3,4,5,6}
 - English words: a dictionary
 - Temperature tomorrow: {-100, ..., 100}

Random Variable

- A variable, \(X \), whose domain is a sample space, and whose value is (somewhat) uncertain
- Examples:
 - \(X = \) coin flip outcome
 - \(X = \) first word in tomorrow’s NYT newspaper
 - \(X = \) tomorrow’s temperature
- For a given task, the user defines a set of random variables for describing the world
Random Variable

- **Random Variables (RV):**
 - are capitalized (usually) e.g., *Sky, Weather, Temperature*
 - refer to attributes of the world whose "status" is unknown
 - have one and only one value at a time
 - have a domain of values that are possible states of the world:
 - **Boolean:** domain = `<true, false>`
 - *Cavity = true* (often abbreviated as *cavity*)
 - *Cavity = false* (often abbreviated as ←←←←*cavity*)
 - **Discrete:** domain is countable (includes Boolean)
 - values are mutually exclusive and exhaustive
 - e.g. *Sky domain = <clear, partly_cloudy, overcast>*
 - *Sky = clear* abbreviated as *clear*
 - *Sky ≠ clear* also abbreviated as ¬*clear*
 - **Continuous:** domain is real numbers (beyond scope of CS 540)

Probability for Discrete Events

- An agent’s uncertainty is represented by
 - $P(A=a)$ or simply $P(a)$
 - the agent’s degree of belief that variable A takes on value a given no other information relating to A
 - a single probability called an unconditional or prior probability

Probability Table

- **Weather**
 - *sunny, cloudy, rainy*
 - $P(Weather = \text{sunny}) = P(\text{sunny}) = \frac{200}{365}$
 - $P(Weather = \text{cloudy}) = \frac{100}{365}$
 - $P(Weather = \text{rainy}) = \frac{65}{365}$
 - $P(Weather) = \langle \frac{200}{365}, \frac{100}{365}, \frac{65}{365} \rangle$

- For now we’ll be satisfied with obtaining the probabilities by counting frequencies from data
Probability for Discrete Events

• Probability for more complex events, A
 - $P(A = \text{“head or tail”}) = ?$ fair coin
 - $P(A = \text{“even number”}) = ?$ fair 6-sided die
 - $P(A = \text{“two dice rolls sum to 2”}) = ?$

Source of Probabilities

• Frequentists
 - probabilities come from experiments
 - if 10 of 100 people tested have a cavity, $P(cavity) = 0.1$
• Objectivists
 - probabilities are real aspects of the world
 - objects have a propensity to behave in certain ways
 - coin has propensity to come up heads with probability 0.5
• Subjectivists
 - probabilities characterize an agent’s belief
 - have no external physical significance

Probability Distributions

Given A is a RV taking values in $\langle a_1, a_2, \ldots, a_n \rangle$
e.g., if A is Sky, then a is one of $\langle \text{clear, partly_cloudy, overcast} \rangle$

• $P(a)$ represents a single probability where $A=a$
e.g., if A is Sky, then $P(a)$ means any one of $P(\text{clear}), P(\text{partly_cloudy}), P(\text{overcast})$

• $P(A)$ represents a probability distribution
 - the set of values: $\langle P(a_1), P(a_2), \ldots, P(a_n) \rangle$
 - if A takes n values, then $P(A)$ is a set of n probabilities
 e.g., if A is Sky, then $P(Sky)$ is the set of probabilities:
 $\langle P(\text{clear}), P(\text{partly_cloudy}), P(\text{overcast}) \rangle$
 - Property: $\sum P(a_i) = P(a_1) + P(a_2) + \ldots + P(a_n) = 1$
 • sum over all values in the domain of variable A is 1 because
 domain is mutually exclusive and exhaustive

Probability for Discrete Events

• Probability for more complex events, A
 - $P(A = \text{“head or tail”}) = 0.5 + 0.5 = 1$ fair coin
 - $P(A = \text{“even number”}) = 1/6 + 1/6 + 1/6 = 0.5$ fair 6-sided die
 - $P(A = \text{“two dice rolls sum to 2”}) = 1/6 \times 1/6 = 1/36$
The Axioms of Probability

1. \(0 \leq P(A) \leq 1\)
2. \(P(\text{true}) = 1, \ P(\text{false}) = 0\)
3. \(P(A \lor B) = P(A) + P(B) - P(A \land B)\)

Note: Here
\(P(A)\) means \(P(A=a)\) for some value \(a\)
and \(P(A \lor B)\) means \(P(A=a \lor B=b)\)
The Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P(\text{true}) = 1$, $P(\text{false}) = 0$
- $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Some Theorems Derived from the Axioms

- $P(\neg A) = 1 - P(A)$
- If A can take k different values a_1, \ldots, a_k:
 $P(A=a_1) + \ldots + P(A=a_k) = 1$
- $P(B) = P(B \land \neg A) + P(B \land A)$, if A is a binary event
- $P(B) = \sum_{i=1}^{k} P(B \land A=a_i)$, if A can take k values

Called Addition or Conditioning rule

Joint Probability

- The joint probability $P(A=a, B=b)$ is shorthand for $P(A=a \land B=b)$, i.e., the probability of both $A=a$ and $B=b$ happening
- $P(A=a)$, e.g., $P(1\text{st \ word on a random page }= \text{“San”}) = 0.001$
 (possibly: San Francisco, San Diego, …)
- $P(B=b)$, e.g., $P(2\text{nd \ word }= \text{“Francisco”}) = 0.0008$
 (possibly: San Francisco, Don Francisco, Pablo Francisco …)
- $P(A=a, B=b)$, e.g., $P(1\text{st }= \text{“San”, 2nd }= \text{“Francisco”}) = 0.0007$
Full Joint Probability Distribution

\[
\begin{array}{ccc}
\text{Weather} & \text{sunny} & \text{cloudy} & \text{rainy} \\
\text{Temp} & \text{hot} & 150/365 & 40/365 & 5/365 \\
& \text{cold} & 50/365 & 60/365 & 60/365 \\
\end{array}
\]

- \(P(\text{Temp}=\text{hot}, \text{Weather}=\text{rainy}) = P(\text{hot, rainy}) = \frac{5}{365} = 0.014\)
- The full joint probability distribution table for \(n\) random variables, each taking \(k\) values, has \(k^n\) entries

Computing from the FJPD

- **Marginal Probabilities**
 - \(P(\text{Bird}=T) = P(\text{bird}) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25\)
 - \(P(\text{bird}, \neg \text{flier}) = 0.04 + 0.01 = 0.05\)
 - \(P(\text{bird} \lor \text{flier}) = 0.0 + 0.2 + 0.04 + 0.01 + 0.01 + 0.01 = 0.27\)
 - Sum over all other variables
- “**Summing Out**”
- “**Marginalization**”

Unconditional / Prior Probability

- One’s uncertainty or original assumption about an event prior to having any data about it or anything else in the domain
- \(P(\text{Coin} = \text{heads}) = 0.5\)
- \(P(\text{Bird} = T) = 0.0 + 0.2 + 0.04 + 0.01 = 0.22\)
- Compute from the FJPD by marginalization
Marginal Probability

The name comes from the old days when the sums were written in the margin of a page.

<table>
<thead>
<tr>
<th>Weather</th>
<th>sunny</th>
<th>cloudy</th>
<th>rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
<tr>
<td>Σ</td>
<td>200/365</td>
<td>100/365</td>
<td>65/365</td>
</tr>
</tbody>
</table>

\[P(\text{Weather}) = \langle 200/365, 100/365, 65/365 \rangle \]

The probability distribution for r.v. Weather.

Conditional Probability

- **Conditional probabilities**
 - formalizes the process of accumulating evidence and updating probabilities based on new evidence
 - specifies the belief in a proposition (event, conclusion, diagnosis, etc.) that is **conditioned on** a proposition (evidence, feature, symptom, etc.) being true
- \(P(a \mid e) \): **conditional probability** of \(A=a \) given \(E=e \) evidence is all that is known true
 - \(P(a \mid e) = P(a \land e) / P(e) = P(a, e) / P(e) \)
 - conditional probability can viewed as the joint probability \(P(a, e) \) normalized by the prior probability, \(P(e) \)

Conditional Probability

Conditional probabilities behave exactly like standard probabilities; for example:

\[0 \leq P(a \mid e) \leq 1 \]

conditional probabilities are between 0 and 1 inclusive

\[P(a_1 \mid e) + P(a_2 \mid e) + \ldots + P(a_k \mid e) = 1 \]

conditional probabilities sum to 1 where \(a_1, \ldots, a_k \) are all values in the domain of random variable \(A \)

\[P(\neg a \mid e) = 1 - P(a \mid e) \]

negation for conditional probabilities
Conditional Probability

- \(P(\text{conjunction of events} \mid e) \)
 \[P(a \land b \land c \mid e) \]
 or as \(P(a, b, c \mid e) \)
 is the agent’s belief in the sentence \(a \land b \land c \)
 conditioned on \(e \) being true

- \(P(a \mid \text{conjunction of evidence}) \)
 \[P(a \mid e \land f \land g) \]
 or as \(P(a \mid e, f, g) \)
 is the agent’s belief in the sentence \(a \)
 conditioned on \(e \land f \land g \) being true

Full Joint Probability Distribution

<table>
<thead>
<tr>
<th>Bird</th>
<th>Flier</th>
<th>Young</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.04</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.23</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3 Boolean random variables ⇒ \(2^3 - 1 = 7 \)
“degrees of freedom” or “independent values”

Conditional Probability

- The conditional probability \(P(A=a \mid B=b) \) is the fraction of time \(A=a \), within the region where \(B=b \)
 \[P(A=a), \text{ e.g. } P(1^{\text{st}} \text{ word on a random page } = \text{“San”}) = 0.001 \]

\[P(B=b), \text{ e.g. } P(2^{\text{nd}} \text{ word } = \text{“Francisco”}) = 0.0008 \]

\[P(A=a \mid B=b), \text{ e.g. } P(1^{\text{st}}=\text{“San”} \mid 2^{\text{nd}}=\text{“Francisco”}) = 0.875 \]

(possibly: San, Don, Pablo …)

Although “San” is rare and “Francisco” is rare, given “Francisco” then “San” is quite likely!

Conditional Probability

- \(P(\text{san} \mid \text{francisco}) \)
 \[P(B=b), \text{ e.g. } P(2^{\text{nd}} \text{ word } = \text{“Francisco”}) = 0.0008 \]

\[P(A=a \mid B=b), \text{ e.g. } P(1^{\text{st}}=\text{“San”} \mid 2^{\text{nd}}=\text{“Francisco”}) = 0.875 \]

(possibly: San, Don, Pablo …)

\[P(s)=0.001 \]
\[P(f)=0.0008 \]
\[P(s,f)=0.0007 \]

\[P(B=b), \text{ e.g. } P(2^{\text{nd}} \text{ word } = \text{“Francisco”}) = 0.0008 \]

\[P(A=a \mid B=b), \text{ e.g. } P(1^{\text{st}}=\text{“San”} \mid 2^{\text{nd}}=\text{“Francisco”}) = 0.875 \]

(possibly: San, Don, Pablo …)

\[P(s)=0.001 \]
\[P(f)=0.0008 \]
\[P(s,f)=0.0007 \]

\[P(B=b), \text{ e.g. } P(2^{\text{nd}} \text{ word } = \text{“Francisco”}) = 0.0008 \]

\[P(A=a \mid B=b), \text{ e.g. } P(1^{\text{st}}=\text{“San”} \mid 2^{\text{nd}}=\text{“Francisco”}) = 0.875 \]

(possibly: San, Don, Pablo …)

\[P(s)=0.001 \]
\[P(f)=0.0008 \]
\[P(s,f)=0.0007 \]
Computing Conditional Probability

\[P(\neg B \mid F) = ? \]
\[P(F) = ? \]

Note: \(P(\neg B \mid F) \) means \(P(B=\text{false} \mid F=\text{true}) \) and \(P(F) \) means \(P(F=\text{true}) \)

Computing Conditional Probability

\[P(\neg B \mid F) = \frac{P(\neg B, F)}{P(F)} \]
\[= \frac{(P(\neg B, F, Y) + P(\neg B, F, \neg Y))/P(F)}{P(F)} \]
\[= \frac{(0.01 + 0.01)/P(F)}{P(F)} \]
\[= \frac{0.02}{P(F)} \]
\[= 0.22 \]

Computing Conditional Probability

• Instead of using Marginalization to compute \(P(F) \), can alternatively use “Normalization”:
 • \(P(B \mid F) = P(B,F)/P(F) = (0.0 + 0.2)/P(F) \)
 • \(P(\neg B \mid F) + P(B \mid F) = 1 \)
 • So, \(0.2/P(F) + 0.02/P(F) = 1 \)
 • Hence, \(P(F) = 0.22 \)

Normalization

• In general, \(P(A \mid B) = \alpha P(A, B) \)
 where \(\alpha = 1/P(B) = 1/(P(A, B) + P(\neg A, B)) \)

• \(P(Q \mid E_1, ..., E_k) = \alpha P(Q, E_1, ..., E_k) \)
 \[= \alpha \sum_{Y} P(Q, E_1, ..., E_k, Y) \]
Conditional Probability with Multiple Evidence

- \(P(\neg B \mid F, \neg Y) = P(\neg B, F, \neg Y) / P(F, \neg Y) \)
 = \(P(\neg B, F, \neg Y) / (P(\neg B, F, \neg Y) + P(B, F, \neg Y)) \)
 = \(.01 / (.01 + .2) \)
 = 0.048

Conditional Probability

- In general, the conditional probability is
 \[P(A = a \mid B) = \frac{P(A = a, B)}{P(B)} = \frac{P(A = a, B)}{\sum_{a_i} P(A = a_i, B)} \]

- We can have everything conditioned on some other event(s), \(C \), to get a conditionalized version of conditional probability:
 \[P(A \mid B, C) = \frac{P(A, B \mid C)}{P(B \mid C)} \]

Conditional Probability

- \(P(X_1 = x_1, ..., X_k = x_k \mid X_{k+1} = x_{k+1}, ..., X_n = x_n) = \)

 \[
 \sum_{\text{of all entries in FJPD where } X_1 = x_1, ..., X_n = x_n} \]
 divided by sum of all entries where \(X_{k+1} = x_{k+1} \), ..., \(X_n = x_n \)

- But this means in general we need the entire FJPD table, requiring an exponential number of values to do probabilistic inference (i.e., compute conditional probabilities)

The Chain Rule

- From the definition of conditional probability we have the chain rule:
 \[P(A, B) = P(B) \cdot P(A \mid B) = P(A \mid B) \cdot P(B) \]
- It also works the other way around:
 \(P(A, B) = P(A) \cdot P(B \mid A) = P(B \mid A) \cdot P(A) \)
- It works with more than 2 events too:
 \[P(A_1, A_2, ..., A_n) = \]
 \[
 P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1, A_2) \cdot \ldots \]
 \[
 \cdot P(A_n \mid A_1, A_2, ..., A_{n-1})
 \]

Called “Product Rule”
Probabilistic Reasoning

How do we use probabilities in AI?
• You wake up with a headache
• Do you have the flu?
• $H =$ headache, $F =$ flu

Logical Inference: if H then F
(but the world is often not this clear cut)

Statistical Inference: compute the probability of a query/diagnosis/decision given (conditioned on) evidence/symptom/observation, i.e., $P(F \mid H)$

Inference with Bayes’s Rule: Example 1

Statistical Inference: Compute the probability of a diagnosis, F, given symptom, H, where $H =$ “has a headache” and $F =$ “has flu”
That is, compute $P(F \mid H)$

You know that
• $P(H) = 0.1$ “one in ten people has a headache”
• $P(F) = 0.01$ “one in 100 people has flu”
• $P(H \mid F) = 0.9$ “90% of people who have flu have a headache”

Inference with Bayes’s Rule

Inference with Bayes’s Rule: Example 1

Bayes’s Rule

• Bayes’s Rule is the basis for probabilistic reasoning given a prior model of the world, $P(Q)$, and a new piece of evidence, E, Bayes’s rule says how this piece of evidence decreases our ignorance about the world
• Initially, know $P(Q)$ (“prior“)
• Update after knowing E (“posterior“):

$$P(Q \mid E) = P(Q \frac{P(Q) \mid E}{P(Q) \mid F})$$
Inference with Bayes’s Rule

- $P(A | B) = P(B | A)P(A) / P(B)$
 Bayes’s rule

- Why do we make things this complicated?
 - Often $P(B | A)$, $P(A)$, $P(B)$ are easier to get
 - Some names:
 - Prior $P(A)$: probability of A before any evidence
 - Likelihood $P(B | A)$: assuming A, how likely is the evidence
 - Posterior $P(A | B)$: probability of A after knowing evidence B
 - (Deductive) Inference: deriving an unknown probability from known ones

- If we have the full joint probability table, we can simply compute $P(A | B) = P(A, B) / P(B)$

Bayes’s Rule in Practice

Summary of Important Rules

- Conditional Probability: $P(A | B) = P(A, B) / P(B)$
- Product rule: $P(A, B) = P(A | B)P(B)$
- Conditionalized version of Chain rule:
 $P(A | B, C) = P(A | B, C)P(B | C)$
- Bayes’s rule: $P(A | B) = P(B | A)P(A) / P(B)$
- Conditionalized version of Bayes’s rule:
 $P(A | B, C) = P(B | A, C)P(A | C) / P(B | C)$
- Addition / Conditioning rule: $P(A) = P(A | B) + P(A | \neg B)$
 $P(A) = P(A | B)P(B) + P(A | \neg B)P(\neg B)$
Common Mistake

- $P(A) = 0.3$ so $P(\neg A) = 1 - P(A) = 0.7$
- $P(A|B) = 0.4$ so $P(\neg A|B) = 1 - P(A|B) = 0.6$
 because $P(A|B) + P(\neg A|B) = 1$

 but $P(A|\neg B) \neq 0.6$ (in general)
 because $P(A|B) + P(A|\neg B) \neq 1$ in general

Quiz

- A doctor performs a test that has 99% reliability, i.e., 99% of people who are sick test positive, and 99% of people who are healthy test negative. The doctor estimates that 1% of the population is sick.
- Question: A patient tests positive. What is the chance that the patient is sick?
- 0-25%, 25-75%, 75-95%, or 95-100%?
- Given:

 $P(TP | S) = 0.99$
 $P(\neg TP | \neg S) = 0.99$
 $P(S) = 0.01$

Query:

$P(S | TP) =$?

Common answer: 99%; Correct answer: 50%
\[
P(\text{TP} | \text{S}) = 0.99 \\
P(\neg \text{TP} | \neg \text{S}) = 0.99 \\
P(\text{S}) = 0.01 \\
P(\text{S} | \text{TP}) = \frac{P(\text{TP} | \text{S}) \cdot P(\text{S})}{P(\text{TP})} = \frac{(0.99) \cdot (0.01)}{P(\text{TP})} = \frac{0.0099}{P(\text{TP})} \\
P(\neg \text{S} | \text{TP}) = \frac{P(\text{TP} | \neg \text{S}) \cdot P(\neg \text{S})}{P(\text{TP})} = \frac{(1-0.99)(1-0.01)}{P(\text{TP})} = \frac{0.0099}{P(\text{TP})} \\
0.0099/P(\text{TP}) + 0.0099/P(\text{TP}) = 1, \text{ so } P(\text{TP}) = 0.0198 \\
So, P(\text{S} | \text{TP}) = 0.0099 / 0.0198 = 0.5
\]

Inference with Bayes’s Rule: Example 2

- In a bag there are two envelopes
 - one has a red ball (worth $100) and a black ball
 - one has two black balls. Black balls are worth nothing

[Diagram of envelopes]

- You randomly grab an envelope, and randomly take out one ball – it’s black
- At this point you’re given the option to switch envelopes. To switch or not to switch?

Similar to the “Monty Hall Problem”

Example 3

- 1% of women over 40 who are tested have breast cancer. 85% of women who really do have breast cancer have a positive mammography test (true positive rate). 8% who do not have cancer will have a positive mammography (false positive rate).

• Question: A patient gets a positive mammography test. What is the chance she has breast cancer?
• Let Boolean random variable M mean “positive mammography test”
• Let Boolean random variable C mean “has breast cancer”
• Given:
 \[P(C) = 0.01 \]
 \[P(M|C) = 0.85 \]
 \[P(M|\neg C) = 0.08 \]

• Compute the posterior probability: \[P(C|M) \]

\[
P(C|M) = \frac{P(M|C)P(C)}{P(M)} \\
= \frac{(.85)(.01)}{P(M)} \\
P(M) = P(M|C)P(C) + P(M|\neg C)P(\neg C) \\
\text{by the Addition rule} \\
So, P(C|M) = \frac{.0085}{(.85)(.01) + (.08)(1-.01)} \\
= 0.097 \\
So, there is (only) a 9.7% chance that if you have a positive test you really have cancer!

Bayes with Multiple Evidence
• Say the same patient goes back and gets a second mammography and it too is positive. Now, what is the chance she has cancer?
• Let M_1, M_2 be the 2 positive tests
• Compute posterior: \[P(C|M_1, M_2) \]
Bayes with Multiple Evidence

- \(P(C|M_1, M_2) = \frac{P(M_1, M_2|C)P(C)}{P(M_1, M_2)} \)
 by Bayes’s rule
 \(= \frac{P(M_1|M_2, C)P(M_2|C)P(C)}{P(M_1, M_2)} \)

Assuming \textbf{M1 and M2 are independent} means

- \(P(M_1, M_2) = P(M_1)P(M_2) \) and
- \(P(M_1|M_2, C) = P(M_1|C) \)

- From before, \(P(M_1) = P(M_2) = 0.0877 \)
- So, \(P(C|M_1, M_2) = \frac{(0.85)(0.85)(0.01)}{(0.0877)(0.0877)} = 0.9395 \) or 93.95%

Inference Ignorance

- “Inferences about Testosterone Abuse Among Athletes,” 2004
 – Mary Decker Slaney doping case

- “Justice Flunks Math,” 2013
 – Amanda Knox trial in Italy

Independence

- Two events \(A, B \) are \textbf{independent} if the following hold:
 - \(P(A, B) = P(A) \times P(B) \)
 - \(P(A, \neg B) = P(A) \times P(\neg B) \)
 - ...
 - \(P(A | B) = P(A) \)
 - \(P(B | A) = P(B) \)
 - \(P(A | \neg B) = P(A) \)
 - ...

Independence

- Independence is a kind of domain knowledge
 – Needs an understanding of \textit{causation}
 – Very strong assumption

- Example: \(P(\text{burglary}) = 0.001, P(\text{earthquake}) = 0.002 \). Let’s say they are independent. The full joint probability table = ?
Independence

• Given: \(P(B) = 0.001, P(E) = 0.002, P(B | E) = P(B) \)
• The full joint probability distribution table is:

<table>
<thead>
<tr>
<th>Burglary</th>
<th>Earthquake</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>¬E</td>
<td></td>
</tr>
<tr>
<td>¬B</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>¬B</td>
<td>¬E</td>
<td></td>
</tr>
</tbody>
</table>

• Need only 2 numbers to fill in entire table
• Now we can do anything, since we have the joint

Conditional Independence

• Random variables can be dependent, but **conditionally independent**
• Example: Your house has an alarm
 – Neighbor John will call when he hears the alarm
 – Neighbor Mary will call when she hears the alarm
 – Assume John and Mary don’t talk to each other
• Is JohnCall independent of MaryCall?
 – **No** – If John called, it is likely the alarm went off, which increases the probability of Mary calling
 – \(P(\text{MaryCall} | \text{JohnCall}) \neq P(\text{MaryCall}) \)

Independence

• Given \(n \) independent, Boolean random variables, the joint has \(2^n \) entries, but only need \(n \) numbers (degrees of freedom) to fill in entire table
• Given \(n \) independent random variables, where each can take \(k \) values, the joint probability table has:
 – \(k^n \) entries
 – Only \(n(k-1) \) numbers needed

Conditional Independence

• But, if we know the status of the alarm, JohnCall will **not** affect whether or not Mary calls
 \(P(\text{MaryCall} | \text{Alarm, JohnCall}) = P(\text{MaryCall} | \text{Alarm}) \)
• We say JohnCall and MaryCall are **conditionally independent** given Alarm
• In general, “A and B are conditionally independent given C” means:
 \[
 P(A | B, C) = P(A | C) \\
 P(B | A, C) = P(B | C) \\
 P(A, B | C) = P(A | C) P(B | C)
 \]
Independence vs. Conditional Independence

- Say Alice and Bob each toss separate coins. A represents “Alice’s coin toss is heads” and B represents “Bob’s coin toss is heads”
- A and B are independent
- Now suppose Alice and Bob toss the same coin. Are A and B independent?
 - No. Say the coin may be biased towards heads. If A is heads, it will lead us to increase our belief in B being heads. That is, $P(B|A) > P(A)$

Say we add a new variable, C: “the coin is biased towards heads”
- The values of A and B are dependent on C
- But if we know for certain the value of C (true or false), then any evidence about A cannot change our belief about B
- That is, $P(B|C) = P(B|A, C)$
- A and B are conditionally independent given C

Revisiting Example 3

- Let Boolean random variable M mean “positive mammography test”
- Let Boolean random variable C mean “has breast cancer”
- Given:
 - $P(C) = 0.01$
 - $P(M|C) = 0.85$
 - $P(M|\neg C) = 0.08$

Bayes’s Rule with Multiple Evidence

- $P(C|M_1, M_2) = P(M_1, M_2|C)P(C)/P(M_1, M_2)$ by Bayes’s rule
 - $= P(M_1|M_2, C)P(M_2|C)P(C)/P(M_1, M_2)$ by Conditionalized Chain rule
 - $P(M_1, M_2) = P(M_1, M_2|C)P(C) + P(M_1, M_2|\neg C)P(\neg C)$ by Addition rule
 - $= P(M_1|M_2, C)P(M_2|C)P(C) + P(M_1|M_2, \neg C)P(M_2|\neg C)P(\neg C)$ by Conditionalized Chain rule
Cancer “causes” a positive test, so M_1 and M_2 are conditionally independent given C, so

- $P(M_1 | M_2, C) = P(M_1 | C) = 0.85$
- $P(M_1, M_2) = P(M_1 | M_2, C)P(M_2 | C)P(C) + P(M_1 | M_2, \neg C)P(M_2 | \neg C)P(\neg C)$
 \begin{align*}
 &= P(M_1 | C)P(M_2 | C)P(C) + P(M_1 | \neg C)P(M_2 | \neg C)P(\neg C) \\
 &= (0.85)(0.85)(0.01) + (0.08)(0.08)(1-0.01) \\
 &= 0.01356
 \end{align*}

So, $P(C | M_1, M_2) = (0.85)(0.85)(0.01) / 0.01356$

= 0.533 or 53.3%

Example 3

- Prior probability of having breast cancer: $P(C) = 0.01$
- Posterior probability of having breast cancer after 1 positive mammography: $P(C | M_1) = 0.097$
- Posterior probability of having breast cancer after 2 positive mammographies (and cond. independence assumption): $P(C | M_1, M_2) = 0.533$

Bayes with Multiple Evidence

- Say the same patient goes back and gets a second mammography and it is negative. Now, what is the chance she has cancer?
- Let M_1 be the positive test and $\neg M_2$ be the negative test
- Compute posterior: $P(C | M_1, \neg M_2)$

Bayes’s Rule with Multiple Evidence

- $P(C | M_1, \neg M_2) = P(M_1, \neg M_2 | C)P(C) / P(M_1, \neg M_2)$
 by Bayes’s rule
 \begin{align*}
 &= P(M_1 | C)P(\neg M_2 | C)P(C) / P(M_1, \neg M_2) \\
 &= (0.85)(1-0.85)(0.01) / P(M_1, \neg M_2) \\
 &= (0.85)(0.15)(0.01) / P(M_1, \neg M_2)
 \end{align*}

- $P(M_1, \neg M_2) = P(M_1, \neg M_2 | C)P(C) + P(M_1, \neg M_2 | \neg C)P(\neg C)$
 by Addition rule
 \begin{align*}
 &= P(M_1 | \neg M_2, C)P(\neg M_2 | C)P(C) + P(M_1 | \neg M_2, \neg C)P(\neg M_2 | \neg C)P(\neg C) \\
 &\text{by Conditionalized Chain rule}
 \end{align*}
Cancer “causes” a positive test, so \(M_1\) and \(M_2\) are conditionally independent given \(C\), so
\[
P(M_1 \mid \neg M_2, C)P(\neg M_2 \mid C)P(C) = P(M_1 \mid C)P(\neg M_2 \mid C)P(C)
\]
\[
= P(M_1 \mid C)P(\neg M_2 \mid C)P(C) + P(M_1 \mid \neg C)P(\neg M_2 \mid \neg C)P(\neg C)
\]
\[
= (.85)(1 - .85)(.01) + (1 - .08)(.08)(1 - .01)
\]
\[
= 0.066219 = P(M_1, \neg M_2)
\]
So, \(P(C \mid M_1, \neg M_2) = (.85)(1 - .85)(.01)/.066219 = 0.019\) or 1.9%

Bayes’s Rule with Multiple Evidence and Conditional Independence

- Assume all evidence variables, \(B, C\) and \(D\), are conditionally independent given the diagnosis variable, \(A\)
- \(P(A \mid B, C, D) = P(B, C, D \mid A)P(A)/P(B, C, D)\)
- \(= P(B \mid A)P(C \mid A)P(D \mid A)P(A)/P(D \mid B, C)P(C \mid B)P(B)\)

\[
= P(A) \frac{P(B \mid A)P(C \mid A)P(D \mid A)}{P(B)P(C \mid B)P(D \mid B, C)}
\]

Naïve Bayes Classifier

- Say we have one class/diagnosis/decision variable, \(A\)
- Goal is to find the value of \(A\) that is most likely given evidence \(B, C, D, \ldots\):

\[
\arg\max_a P(A = a)P(B \mid A = a)P(C \mid A = a)P(D \mid A = a)/P(B, C, D)
\]

But \(P(B, C, D)\) is a constant here for all \(a\), so instead compute:

\[
\arg\max_a P(A = a)P(B \mid A = a)P(C \mid A = a)P(D \mid A = a)
\]

Naïve Bayes Classifier

- Find \(\nu = \arg\max_{\nu} P(Y = \nu) \prod_{i=1}^n P(X_i = u_i \mid Y = \nu)\)

- Assumes all evidence variables are conditionally independent of each other given the class variable
- Robust since it gives the right answer as long as the correct class is more likely than all others
Naïve Bayes Classifier

• Assume k classes and n evidence variables, each with r possible values
• $k-1$ values needed for computing $P(Y=v)$
• rk values needed for computing $P(X_i=u_i \mid Y=v)$ for each evidence variable X_i
• So, $(k-1)+nrk$ values needed instead of exponential size FJPD table

Naïve Bayes Classifier

• Conditional probabilities can be very, very small, so instead use logarithms to avoid underflow:

$$\text{argmax}_v \log P(Y = v) + \sum_{i=1}^{r} \log P(X_i = u_i \mid Y = v)$$

Summary of Important Rules

• Conditional Probability: $P(A \mid B) = \frac{P(A, B)}{P(B)}$
• Product rule: $P(A,B) = P(A \mid B)P(B)$
• Chain rule: $P(A,B,C,D) = P(A \mid B,C,D)P(B \mid C,D)P(C \mid D)P(D)$
• Conditionalized version of Chain rule:
 $P(A,B \mid C) = P(A \mid B,C)P(B \mid C)$
• Bayes’s rule: $P(A \mid B) = P(B \mid A)P(A)/P(B)$
• Conditionalized version of Bayes’s rule:
 $P(A \mid B,C) = P(B \mid A,C)P(A \mid C)/P(B \mid C)$
• Addition / Conditioning rule: $P(A) = P(A,B) + P(A, \neg B)$
 $P(A) = P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B)$