Router-Level Spam Filtering Using TCP Fingerprints: Architecture and Measurement-Based Evaluation

Holly Esquivel Aditya Akella Univ. Of Wisconsin-Madison Tatsuya Mori NTT

CEAS 2009 Mountain View, CA July 15-16, 2009

Why Router-Level Filtering?

- Scalability is a problem when it comes to spam filtering
- Large email services have 100s of millions of email accounts
- Email delivery delays can cause significant problems for businesses
- A light-weight technique is needed to help ease these problems – we use TCP fingerprints for this filtering mechanism

Example of email delivery delay seen by a Corporation in Japan in early Nov. 2007 because of an increase in spam messages.

Current Spam Filtering Techniques

- SMTP/End-Host
 - Blacklisting/Whitelisting
 - Greylisting
 - Authentication based
 - Content-based Filtering
- Router-level Mechanisms
 - Behavior based filters
 - Bayesian Classifiers applied to Bulk Email streams
 - Progressive Email Classifier
 - Commercial products
 - DPI-Based filters
 - Barracuda Spam Firewall

TCP Fingerprinting

- Also known as Passive OS fingerprinting
- A single TCP SYN packet is all that is needed
- Done without a suspect's knowledge
- Fingerprints can identify the OS genre and version
- Small number of legitimate fingerprints
- Tools: p0f, Ettercap, Siphon
 - Signature format: [W:T:D:S:O...:Q]
 - Example: [S4:64:1:60:M*,S,T,N,W5:.:] Linux 2.6

Our Approach

- Build a router-level architecture for spam filtering using TCP fingerprints
- Look beyond operating system genres
 - Use fine grain fingerprints
- Goals:
 - Light-weight and stateless in nature
 - Feedback based approach
 - Small amount of required memory
 - Supplement existing filters

Architecture

Pushing Signatures To Router

Week	Action
1	Turn off spam filters (first 2 days), gather signature history, push to router on day 3
2	Track Signatures
3	Track Signatures
4	Track Signatures
5	Push offending signatures to router – add to existing signatures
6	Track Signatures
7	Track Signatures
8	Track Signatures
9	Push offending signatures to router – add to existing signatures
10	Track Signatures
11	Track Signatures
12	Track Signatures
13	Turn off spam filters (first 2 days), add to tracked signature history, clear signatures from router, and push new list to router on day 3
	Repeat Week 2-13

Data

- Two sites: University of Wisconsin- Madison and a corporation in Toyko, Japan
- Tcpdump tracks all incoming TCP SYN connection packets
- SMTP logs tracks on packets which pass greylisting and SpamAssassin scores them
- Logs are correlated across time

Dataset	# senders	#delivered	#delivered	#delivered	#greylisted
		emails	spam	ham	
UW	7.4 Million	26.2 Million	13.3 Million	12.3 Million	87.8 Million
CORP	3.1 Million	2.0 Million	1.3 Million	.5 Million	18.8 Million ₈

Extracting Signatures

- Determine ham fraction threshold, θ ,
 - Number of ham emails/number of total emails on a per signature basis
 - Should be a balance between a good false positive ratio (FPR) and good false negative ratio (FNR)
- Determine the signatures covered by above θ
 - Too much/little coverage?

Our Signature Threshold

Graphs showing the performance of extracted signatures under various thresholds

10

10

 10^{-2}

10⁻⁻

10⁻⁵

10-6

False Negative Ratio – Fraction of missed spam messages over the total of spam messages $10^{-7} \underbrace{10^{-4}}_{10^{-4}} \underbrace{10^{-3}}_{10^{-3}} \underbrace{10^{-2}}_{\theta} \underbrace{10^{-1}}_{10^{-1}}$ False Positive Ratio – Fraction of misclassified ham messages over the total of ham messages

 $\theta = 0.004$

CORP

 10^{0}

UW

Results

UW-Top 10 Spam Sending Signatures

Signature	#Spam	#Ham	#Senders	OS Genre
[T16:128:0:44:M536:.]	14,495,869	2708	260,955	UNKNOWN/
				Srizbi
[16384:128:1:48:M1440,N,N,S:.]	1,562,732	123	20,308	Windows
[S45:128:1:48:M1440,N,N,S:.]	837,353	72	12,270	Windows
[65535:64:1:52:M1452,N,W2,N,N,S:.]	679,216	54	7,537	UNKNOWN
[65535:128:1:48:M1442,N,N,S:.]	468,074	14	8,328	Windows
[65535:128:1:48:M1352,N,N,S:.]	361,652	22	7,843	Windows
[65535:64:1:52:M1440,N,W2,N,N,S:.]	298,878	37	4,331	Windows
[T16:128:0:44:M1360:.]	262,077	21	3,147	UNKNOWN/
				Srizbi
[T16:128:0:44:M528:.]	223,246	3	2,662	UNKNOWN/
				Srizbi
[65535:128:1:52:M1460,N,W1,N,N,S:.]	210,267	45	3,261	Windows

Fine grain signatures can expose some near only spam-sending signatures

Performance of Signatures

The top-100 signatures from April 2008 applied to their respective data sets.

Set of Signatures	#Spam	%age Spam	#Ham	%age Ham	#Senders	%age Senders
UW	24,797,823	28.2	3,485	.03	403,568	5.5
CORP	11,249,690	59.8	243	.05	1,639,667	52.9

100 fingerprints can reduce the amount of spam by 28-59%

Signature Stability

Identified top-100 signatures from April 2008 and applied them to subsequent months.

UW

CORP

Month	Fraction of	Fraction of	Month	Fraction of	Fraction of
	connections	senders		connections	senders
Apr 2008	0.74	0.68	Apr 2008	0.65	0.52
Apr 2008	0.74	0.68	Apr 2008	0.68	0.51
May 2008	0.77	0.67	May 2008	0.71	0.53
June 2008	0.78	0.69	June 2008	0.53	0.41

Signatures were stable over four month period 14

Signature Accuracy

Performance of two signature sets:

Data Set: UW

CORP

Set of Signatures	#Spam	#Ham	#Senders
CORP Top 100	34,378,320	33,756	561,278
UW Top 100	24,797,823	3,485	403,568
INTERSECTION	21,329,958	3,211	360,627
UNION	37,846,185	34,030	604,219

Set of Signatures	#Spam	#Ham	#Senders
CORP Top 100	11,249,690	243	1,639,667
UW Top 100	8,676,986	443	1,361,959
INTERSECTION	8,383,147	89	1,316,314
UNION	11,543,529	597	1,685,312

Combining signature sets can increase accuracy and spam sender coverage

Signature X aka Srizbi

- [T16:128:0:44:M536:.] ~ [T16:128:0:44:M*:.]
- The top signature is in common among both data sets
 - Investigated separately because of the large amount of spam seen from this signature
 - Supported previous research that identified signature as part of the Srizbi botnet
 - Sends nearly all spam

Attacks on the System

- Spoofing Signatures
 - Random Signatures
 - would cause signature tracking on SMTP servers to have millions of entries
 - Legitimate Signatures
 - would cause emails to get passed our filtering mechanism

Related Work

- Ramachandran & Feamster
 - Uses TCP fingerprints to classify spam by OS
 - Studied spam from a sinkhole
- Beverly & Sollins
 - Used characteristics of SMTP flows

Conclusions

- We have presented an *architecture* and *evaluation* of a router-level spam filter
 - Utilized two data sets
 - Showed that fine grain TCP fingerprints can significantly reduce spam volumes
 - Discovered additional Srizbi signatures
- Future work
 - Exploring the Srizbi signature in detail
 - A longer-term study of TCP fingerprints
 - A prototype version of our system

Questions