Relational databases

Lecture 10
Based on slides by R. Ramakrishnan and J. Gehrke

CS 638 Web Programming

Lecture overview

- Introduction to databases
- Representing entities in a relational database
- Representing relationships between entities

Web programming & databases

- Three-tiered architecture for web applications
 - Presentation tier (HTML, CSS, client side programs)
 - Application or “Business logic” tier (server side programs)
 - Data tier (relational database with persistent data)
- Some advantages of databases
 - Simple and powerful data manipulation language
 - High throughput processing of large data sets
 - Concurrency (handle multiple user requests at same time)
 - Data consistency (administrator sets integrity constraints)
 - Reliability (graceful recovery from all types of failures – hardware problems, crashes of various computers, etc.)

Database topics

- Topics covered in this class
 - Basic concepts for representing information in databases
 - Common, simple database queries (reading data)
 - Simple updates to database (writing data)
- Database topics covered in CS564
 - Designing the structure of data in a database (schema) to correctly reflect the information you want to capture
 - Complete understanding of query language (SQL)
 - Database performance
 - Writing database software

What is a database?

- Database software running on a server
 - Relational databases by far most common today
 - Various vendors: IBM, Oracle, Microsoft, etc.
 - Can interact with both web applications and desktop applications
- The structure of the data in the database (schema)
 - The DBA (database administrator) designs it
- The actual data in the database (instance)
 - Read and written by application developer (you)
- The word “database” is used informally for all 3

Overview of database design

- Conceptual design using ER model
 - What are the entities and relationships to represent?
 - What information about these entities and relationships should we store in the database?
 - What are the integrity constraints or business rules?
 - A database “schema” in the ER model can be represented pictorially (ER diagrams).
 - ER design is subjective – there are often many ways to model a given scenario!
 - Can map an ER diagram to schema of relational database.
Overview of relational databases

- Relational database: a collection of relations (tables)
 - Tables are used for storing both entities and relationships
- Relation (table) consist of two parts
 - Instance: a table, with rows and columns
 - Schema: specifies name of relation, plus name and type of each column (e.g. Students(sid: string, name: string, login: string, age: integer, gpa: real))
 - Can think of schema as header of the table and of the instance as the body
- Each instance of a relation (table) is a set of rows
 - All rows (also called tuples) are distinct

Overview of query languages

- Allow manipulation & retrieval of data from database
- Relational model supports simple, powerful QLs:
 - Theoretical foundation: relational calculus
 - Strong formal foundation based on logic
 - Users describe what they want, rather than how to compute it (non-operational, declarative)
 - Allows for much optimization (transparent to user)
- Query Languages != programming languages!
 - QLs not expected to be “Turing complete”
 - QLs not intended to be used for complex calculations
 - QLs support easy, efficient access to large data sets

Lecture overview

- Introduction to databases
- Representing entities in a relational database
- Representing relationships between entities

Entities in the ER model

- Entity: Real-world object distinguishable from other objects
 - Described using a set of attributes.
 - Each attribute has a domain (e.g. 8-byte string, number from 0 to 99, etc.).
- Entity Set: Collection of similar entities
 - All entities in an entity set have the same attributes.
 - Each entity set has a key (similar to hash table keys)
 - The key is a subset of the attributes
 - The value of these attributes uniquely identifies entities within the set

Representing entities in a relational database

- A table (relation) corresponds to each entity-set
 - Entities will be rows (tuples) in the table

```
<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11123333</td>
<td>George</td>
<td>58</td>
</tr>
<tr>
<td>11134444</td>
<td>Sarah</td>
<td>25</td>
</tr>
<tr>
<td>22234444</td>
<td>Tom</td>
<td>38</td>
</tr>
</tbody>
</table>
```

Basic operations from relational algebra

- Some basic operations
 - Selection (σ) selects a subset of rows
 - Ex. 1: the employees younger than 40
 - Projection (π) omits unwanted columns
 - Example 2: the names of all employees
 - Can combine them
 - Ex. 3: names of employees younger than 40

```
<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11134444</td>
<td>Sarah</td>
<td>25</td>
</tr>
<tr>
<td>22234444</td>
<td>Tom</td>
<td>38</td>
</tr>
</tbody>
</table>
```
Lecture overview

- Introduction to databases
- Representing entities in a relational database
- Representing relationships between entities

Relationships in the ER model

- **Relationship**: Association among two or more entities. (e.g., Tom works in the human resources department)
- **Relationship set**: Collection of similar relationships.

Types of relationships

- Relationships between two entity sets can have one or more entities participate
- **Property of relationship set**: Multiple entity sets can participate in a relationship set – n-ary relations have n entity sets participate
- An entity set may participate many times with different roles

Representing relationships in a relational database

- A table corresponds to each relationship-set
- **This table refers to the entities in the relationship using foreign keys (keys from tables representing the entity sets)**
- **This table has one or more separate attributes for the key of each entity set participating**
- Attributes associated with relation also turned into fields

Useful operation from relational algebra

- The **join** operation is the most common way to combine information from two or more tables
- There are many types of joins, we will focus on equijoins
- Think about joins as substituting the foreign key in the table representing the relationship with all the attributes of the entity it points to
- Example: instead of ssn in Works_in we add ssn, name and age of employee
- Can combine with other operations (selection, projection) and can have multiple joins in one query
- Examples in next lecture which will be on SQL