CS 640 Introduction to Computer Networks

Lecture 1

CS 640

Today's lecture

- Introduction to communication networks
 - Purpose
 - History
 - Underlying technologies
- Fundamental problems
 - Reliability
 - Resource sharing, cooperation and competition
 - Structure, growth and evolution

CS 640

Purpose of communication networks

- Carrying messages from sender to receiver
- Supporting conversations between people
- Enabling access to sources of information
- Dissemination of information
- Simulating user's presence at remote locations
- · Remote monitoring
- The list keeps evolving

•	
-	
•	

A brief history of the Internet

- Leonard Kleinrock published work in '61
 - Shows packet switching effective for bursty traffic
- DARPA contract for BBN to build switches
- First network had four nodes in '69
- · Email first application Ray Tomlinson, '72
- In '74 Vint Cerf and Robert Kahn developed open architecture for Internet (TCP and IP)
- By '79 the 200 nodes and by '89 over 100K!
 - Much growth fueled by connecting universities
 - Larry Landweber from UW had important role
- · In '89 Van Jacobson made MAJOR improvements to TCP
- · In '91 Tim Berners-Lee invented the Web
- · In '93 Marc Andreesen invented Mosaic

CS 640

Building Blocks

- Nodes: PC, special-purpose hardware...
 - hosts (PCs, cell phones, toasters, etc.)
 - routers (and switches, bridges, hubs, etc.)
- Links: coax cable, optical fiber, wireless ...

- point-to-point

- multiple access

--

Nodes and links form networks

- A network can be defined recursively as...
 - two or more nodes connected by a link,

- two or more networks connected by nodes

Today's lecture

- Introduction to communication networks
 - Purpose
 - History
 - Underlying technologies
- Fundamental problems
 - Reliability
 - Resource sharing, cooperation and competition
 - Structure, growth and evolution

CS 640

Reliability

- Links corrupt transmissions, nodes fail
- Information transmitted over the network usually has to arrive unaltered
- Basic techniques against data corruption
 - Error detection
 - Error correction
- Basic technique against equipment failures
 - Dynamic reconfiguration

CS 640

Error detection

- Underlying technology can sometimes indicate failure (e.g. signal too weak)
- Bits are grouped into packets (a.k.a. frames)
- Checksum added to the packet by sender
- Receiver verifies the checksum
 - If it matches, bits in packet assumed correct
 - Otherwise receiver assumes some bits corrupted

-	

Error correction

- Sender can retransmit corrupted packets
- Network discards some packets without notice
 - Timeouts at sender trigger retransmission
- Forward error correction: encode data redundantly – can recover from a few errors
- Some applications (voice) can tolerate loss or corruption of a few packets

CS 640

Dynamic reconfiguration

- Nodes keep gossiping about state of network
- Handle packets based on map learned this way
- When nodes or links fail, packets take detour
- Such dynamic reconfiguration is implemented by routing protocols and learning bridges
 - It's more complicated in practice

CS 640

Today's lecture

- Introduction to communication networks
 - Purpose
 - History
 - Underlying technologies
- Fundamental problems
 - Reliability
 - Resource sharing, cooperation and competition
 - Structure, growth and evolution

•	
-	
	· · · · · · · · · · · · · · · · · · ·
-	
_	

Sharing, cooperation and competition

- Multiplexing (methods for sharing)
- Medium access control (who's turn is it?)
- Congestion control (can have too much traffic)
- Quality of service (I want good service)
- Denial of service (you don't get any service)
- Cryptography privacy, authentication
- Pricing, accounting, incentives

CS 640

Multiplexing

- Frequency Division Multiplexing (FDM)
 - Each radio station uses a different frequency
- Synchronous Time Division Multiplexing
 - Each "user" gets a small time slot periodically
 - Works for phone calls (steady data)
 - Data communication very bursty

CS 640

Statistical multiplexing

- Whoever has data to send, sends
- Like CPU sharing among processes in OS

-	
-	

Who's turn is it to send?

- Scheduling at routers decide which packets to send, which ones to buffer, which ones to drop
- · Medium access control
 - If many hosts send at the same time, it gets garbled
 - Pick which host sends onto multiple-access link

Congestion

- There is more traffic than the network can take
- Solution 1: senders all slow down (TCP)
- Solution 2: drop packets of biggest senders
- Solution 3: build a faster network
- Solution 4: use pricing incentives
- What if the bad guys are congesting your network on purpose (a.k.a. DDoS)?

CS 640

Today's lecture

- Introduction to communication networks
 - Purpose
 - History
 - Underlying technologies
- Fundamental problems
 - Reliability
 - Resource sharing, cooperation and competition
 - Structure, growth and evolution

-	
	_

Structure, growth and evolution

- Protocols clear rules for interaction
- Modularization layered architecture
- Encapsulation
- Addressing and naming (IP, MAC, DNS)
- Caching better response times, lower traffic
- New/changing protocols and applications
 - Incremental deployment
 - Interoperability/backward compatibility

CS 640

Protocols

- Building blocks of a network architecture
- Each protocol object has two different interfaces
 - service interface:
 operations on this protocol
 - peer-to-peer interface: messages exchanged with peer (format of messages and behavior)

CS 640

Modularization: layering

- Use abstractions to hide complexity
- · Abstraction naturally lead to layering
- Alternative abstractions at each layer

Application programs		
Message stream channel		
Host-to-host connectivity		
Hardware		

ISO Architecture

Internet Architecture

- Defined by Internet Engineering Task Force (IETF)
 - Application: interacts with user to initiate data transfers (browser, media player, command line)
 - 2. Transport: TCP reliable, in-order delivery of data; UDP
 - 3. Network: addressing and routing (IP)
 - 4. Data Link: how hosts access physical media (Ethernet)
 - 5. Physical: how bits are represented on wire (Manchester)
- Information passed between layers encapsulation
 - Header information attached to data passed down layers
- Layers access other layers via API's (e.g. sockets)
- Communication at specific layer enabled by a proto.

CS 640

Hourglass Design

 Single protocol at network level ensures packets will get from source to destination while allowing for flexibility

