
1

CS 640

CS 640 Introduction to Computer
Networks

Lecture 2

CS 640

Today’s lecture

• Application programming interface (sockets)
• Performance metrics

CS 640

Berkeley Sockets

• Networking protocols are implemented as part
of the OS
– The networking API exported by most OS’s is the

socket interface
– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point where an application attaches to the network
– Operations: creating connections, attaching to

network, sending/receiving data, closing.

2

CS 640

Connection-oriented example (TCP)
Server

socket()

bind()

Client

socket()
listen()

accept()

recv()

send()

connect()

send()

recv()

Block until
connect

Process
request

Connection Establishment.

Data (request)

Data (reply)

CS 640

Connectionless example (UDP)
Server

socket()

bind()
Client

socket()
recvfrom()

sendto()

bind()

sendto()

recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

CS 640

Ports (multiplexing)

• How does the OS know whether one wants to
connect to the web server or the email server?

• How does the OS know which process to
deliver the data to?

• 16 bit port numbers are used
– Both source and destination have a port number
– Servers have well known port numbers <1024

• How can the OS tell TCP packets from UDP?
– Protocol number is part of IP header

3

CS 640

Socket call

• Means by which an application attached to the network
• int socket(int family, int type, int protocol)
• family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK
• type: semantics of communication

– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• protocol: Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol

• Return value is a handle for new socket

CS 640

Bind call
• Binds a new socket to the specified address
• int bind(int socket, struct sockaddr *address, int

addr_len)
• socket: newly created socket handle
• address: data structure with local address

– IP address and port number (demux keys)
• Can use well known port or unique port

CS 640

Listen call

• Connection-oriented servers use it to indicate
they are willing to receive connections

• Int listen(int socket, int backlog)
• socket: handle of newly creates socket
• backlog: number of connection requests that

can be queued by the system while waiting for
server to execute accept call.

4

CS 640

Accept call
• After listen, the accept call performs a passive

open (server prepared to accept connects).
• int accept(int socket, struct sockaddr *address, int

addr_len)
• It blocks until a remote client carries out a

connection request
• When it does return, it returns with a new

socket that corresponds with new connection
and the address contains the clients address

CS 640

Connect call

• Client executes an active open of a connection
• Int connect(int socket, struct sockaddr *address, int

addr_len)
• Call does not return until the three-way TCP

handshake is complete
• Address field has remote system’s address
• Client OS usually selects random, unused port

CS 640

send(to), recv(from)

• After connection has been made, application
uses send/recv to data

• int send(int socket, char *message, int msg_len, int
flags)
– Send specified message using specified socket

• int recv(int scoket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified

buffer

5

CS 640

Performance Metrics
• Bandwidth: physical property of link
• Throughput: actual data transmitted per time unit

– notation
• KB = 210 bytes
• Mbps = 106 bits per second

• Latency (delay)
– time to send message from point A to point B
– one-way versus round-trip time (RTT)

Latency = Propagation + Transmit
Propagation = Distance / Speed (of light)
Transmit = Size / Bandwidth

• Delays on Internet much greater (queuing)

CS 640

Bandwidth versus Latency

• Relative importance
• Assume propagation delay is 100 ms
• Transfer 1 Kb, bw 1 Mbps

– Latency: 100 + 1 (transmission delay) = 101 ms

• Transfer 1 Mb
– Latency 100 + 1000 (transmission delay) = 1100

ms

