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CS 640 Introduction to Computer 
Networks

Lecture 2
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Today’s lecture

• Application programming interface (sockets)
• Performance metrics
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Berkeley Sockets

• Networking protocols are implemented as part 
of the OS
– The networking API exported by most OS’s is the 

socket interface
– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point where an application attaches to the network
– Operations: creating connections, attaching to 

network, sending/receiving data, closing.
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Connection-oriented example (TCP)
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Connectionless example (UDP)
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Ports (multiplexing)

• How does the OS know whether one wants to 
connect to the web server or the email server?

• How does the OS know which process to 
deliver the data to?

• 16 bit port numbers are used
– Both source and destination have a port number
– Servers have well known port numbers <1024

• How can the OS tell TCP packets from UDP?
– Protocol number is part of IP header
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Socket call

• Means by which an application attached to the network
• int socket(int family, int type, int protocol)
• family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK
• type:  semantics of communication

– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• protocol:  Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol 

• Return value is a handle for new socket
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Bind call
• Binds a new socket to the specified address
• int bind(int socket, struct sockaddr *address, int

addr_len)
• socket:  newly created socket handle
• address: data structure with local address

– IP address and port number (demux keys)
• Can use well known port or unique port
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Listen call

• Connection-oriented servers use it to indicate 
they are willing to receive connections

• Int listen(int socket, int backlog)
• socket:  handle of newly creates socket
• backlog:  number of connection requests that 

can be queued by the system while waiting for 
server to execute accept call.



4

CS 640

Accept call
• After listen, the accept call performs a passive 

open (server prepared to accept connects).
• int accept(int socket, struct sockaddr *address, int

addr_len)
• It blocks until a remote client carries out a 

connection request
• When it does return, it returns with a new 

socket that corresponds with new connection 
and the address contains the clients address
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Connect call

• Client executes an active open of a connection
• Int connect(int socket, struct sockaddr *address, int

addr_len)
• Call does not return until the three-way TCP 

handshake is complete
• Address field has remote system’s address
• Client OS usually selects random, unused port
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send(to), recv(from)

• After connection has been made, application 
uses send/recv to data

• int send(int socket, char *message, int msg_len, int
flags)
– Send specified message using specified socket

• int recv(int scoket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified 

buffer
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Performance Metrics
• Bandwidth: physical property of link
• Throughput: actual data transmitted per time unit

– notation 
• KB = 210 bytes
• Mbps = 106 bits per second

• Latency (delay)
– time to send message from point A to point B
– one-way versus round-trip time (RTT)

Latency = Propagation + Transmit
Propagation = Distance / Speed (of light)
Transmit = Size / Bandwidth

• Delays on Internet much greater (queuing)
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Bandwidth versus Latency

• Relative importance
• Assume propagation delay is 100 ms
• Transfer 1 Kb, bw 1 Mbps

– Latency: 100 + 1 (transmission delay) = 101 ms

• Transfer 1 Mb
– Latency 100 + 1000 (transmission delay) = 1100 

ms


