Today’s lecture

• Domain Name System
 – Overview
 – The hierarchy of domain names
 – DNS records
 – The resolution process

Domain Name System Overview

• What are names used for in general?
 – identify objects
 – locate objects
 – define membership in a group
 – ...

• Basic Terminology
 – Name space
 • defines set of possible names
 • consists of a set of name to value bindings
 – Resolution mechanism
 • when invoked with a name returns corresponding value
DNS Properties

• Size of Internet demands robust naming mechanism
 – Specified in RFC 1034, 1035 (Mockapetris ‘87)
 – Scalability through caching and hierarchy
 – Reliability through caching and redundancy
• Names versus addresses
 – Human readable versus router readable
 – Location transparent versus location-dependent
• Hierarchical
 – Names are divided into components
• Global versus local
 – What is the scope of naming?

Examples of Mappings

• Hosts
 pluto.cs.wisc.edu → 192.12.69.17
 192.12.69.17 → 80:23:A8:33:5B:9F
• Files
 /usr/llp/tmp/foo → (server, fileid)
• Users
 Suman Banerjee → suman@cs.wisc.edu

Examples (cont)

• Mailboxes

• Services
 nearby ps printer with short queue and 2MB
Domain Naming System

- Hierarchical name space for Internet objects

- Names are read from right to left separated by periods
 - Each suffix in a domain name is a domain
 - wail.cs.wisc.edu, cs.wisc.edu, wisc.edu, edu

Name Servers

- Partition hierarchy into zones (administrative authorities)

- Each zone implemented by two or more authoritative name servers

Resource Records

- Each name server maintains a collection of resource records

 - (Name, Value, Type, Class, TTL)

 - Each record is a translation based on type

 - Name/Value: not necessarily host names to IP addresses

- Type (some examples)

 - A: Name = full domain name, Value = IP address

 - NS: Value gives domain name for host running name server that knows how to resolve names within specified domain.

 - CNAME: Value gives canonical name for particle host; used to define aliases.

 - MX: Value gives domain name for host running mail server that accepts messages for specified domain.

- Class: allow other entities (other than NIC) to define types

 - IN: is what is used by the Internet

- TTL: how long the resource record is valid
gTLD Name Server

May contain the following resource records:
(wisc.edu, dns.wisc.edu, NS, IN)
(dns.wisc.edu, 128.105.12.11, A, IN)

cisco.com, thumper.cisco.com, NS, IN,
(thumper.cisco.com, 128.96.32.20, A, IN)
...

Wisconsin Server

May contain the following resource records:
(cs.wisc.edu, dns.cs.wisc.edu, NS, IN)
(dns.cs.wisc.edu, 128.105.2.10, A, IN)

ece.wisc.edu, dns.ece.wisc.edu, NS, IN)
(dns.ece.wisc.edu, 128.105.40.12, A, IN)

(host1.cs.wisc.edu, 128.105.9.103, A, IN)
(host2.cs.wisc.edu, 128.105.9.13, A, IN)

CS Server

CS server may contain following resource records:
(cs.wisc.edu, norm.cs.wisc.edu, MX, IN)
(norm.cs.wisc.edu, 128.105.8.45, A, IN)
(n.cs.wisc.edu, norm.cs.wisc.edu, CNAME, IN)
(othello.cs.wisc.edu, 128.105.167.12, A, IN)
(o.cs.wisc.edu, othello.cs.wisc.edu, CNAME, IN)
Name Resolution

- Strategies
 - forward
 - iterative
 - recursive

- Local server
 - need to know root at only one place (not each host)
 - site-wide cache

DNS Issues

- Top level domain names are tightly controlled
- Before an institution is granted authority for a second-level domain, it must agree to operate a DNS server that meets Internet standards.
 - Eg. all DNS info must be replicated on separate systems
- DNS is very important in the Internet
 - Security of this system is strict
- DNS lookups can affect performance
- In practice DNS more complicated than you might think

PTR Record

- Used for IP to name resolution
- For IP address: a.b.c.d
 - PTR record stored at: d.c.b.a.in-addr.arpa.
- All PTR records are stored under in-addr.arpa. domain
- Consider the zone: 105.128.in-addr.arpa
 - This will typically be under control of CS dept of Wisconsin (since 128.105/16 belongs to the CS dept)
- PTR zone and the usual namespace zone may be inconsistent
Resilience of DNS to attacks

• January 2001 flooding attack against Microsoft’s name servers
 – Service went down because they were all on the same subnet
• October 2002 flooding attack on the 13 root name servers
 – 4 servers survived

Other Naming Protocols

• X.500
 – Naming system designed to identify people
 – Each person is defined by attributes
 • Name
 • Title
 • …
 – Too cumbersome
• Lightweight Directory Access Protocol (LDAP)
 – Evolved from X.500
 – System for learning about users