
1

HTTP

CS 640, Lecture 9

Lecture outline

Overview of http
Http message formats
Web caching

HyperText Transfer Protocol
The web’s application level protocol

HTTP 1.0 (RFC 1945), HTTP 1.1 (2068)
Runs on top of TCP, uses well-known port 80
Request-response interaction

Stateless: there is no per-session state at the
server (requests treated independently)
Protocols that maintain state are complex

Managing state adds complexity
If server/client crashes, their views of “state” may be
inconsistent, must be reconciled

2

http example

User enters URL www.someSchool.edu/someDept/index.html

1a. browser initiates TCP
connection to http server
(process) at port 80 of
www.someSchool.edu.

2. browser sends http
request message
(containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu
waiting for TCP connection
at port 80. “accepts”
connection, notifying client

3. http server receives request,
forms response message
with requested object
(someDepart/index.html),
sends message into socket

time

http example (cont.)

5. http client receives
response message
containing html file, displays
html. Parsing html file, finds
10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. http server closes TCP
connection.

time

HTTP/1.0 Network Interaction
Clients make requests to port 80 on servers

Uses DNS to resolve server name
Clients use separate TCP connection for each URL

Some browsers open multiple TCP connections
Netscape default = 4

Server returns HTML page
Many types of servers with a variety of implementations

Apache – open source
IIS (Internet Information Services) – Microsoft

Client parses page
Requests embedded objects

3

HTTP/1.1 Enhancements
HTTP/1.0 is a “stop and wait” protocol

Separate TCP connection for each file
Connect setup and tear down is incurred for each file
Inefficient use of packets
Server must maintain many connections in TIME_WAIT

Mogul and Padmanabhan studied these issues in ’95
Resulted in HTTP/1.1 specification focused on performance
enhancements

Persistent connections
Pipelining
Enhanced caching options
Support for compression

Lecture outline

Overview of http
Http message formats
Web caching

http message format: request
Two types of http messages: request, response
http request message:

ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

4

http message format: request

Sending data to server (forms)

As part of URL, using the GET command
File name followed by ?
Fields separated by &
= between each field and its value
URL-encoding: %3d for =, %26 for &, etc.
Should be used only when idempotent (causes no
persistent changes in application state at server)

Inside request body using POST
Can also be used for non-form data (e.g. XML)

http msg. format: response

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …
Content-Length: 6821
Content-Type: text/html

data data data data data …

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

5

http response status codes

200 OK
Request succeeded, requested object later in this message

301 Moved Permanently
Requested object moved, new location specified later in this
message (Location:)

400 Bad Request
Request message not understood by server

404 Not Found
Requested document not found on this server

Start of first line in response from server to client.

Try out http (client side)

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at www.cs.wisc.edu.
Anything typed in sent
to port 80 at www.cs.wisc.edu/

telnet www.cs.wisc.edu 80

2. Type in a GET http request:
GET /~estan/examples/ HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

User-server interaction: authentication
Authentication: control of
access to server content
Authorization credentials:
typically name, password
Http stateless – client must
present authorization
credentials in each request

Authorization: header
line in each request
If no Authorization:
header, server refuses
access, sends
WWW-Authenticate:
header line in response

client server

usual http request msg

401: authorization req.
WWW-Authenticate:

usual http request msg+
Authorization: cred.

usual http response msg

usual http request msg+
Authorization: cred.

usual http response msg

time

6

Cookies: keeping state
Server-generated string
later used for:

Authentication
Remembering user
preferences, previous
choices

Server sends “cookie” to
client in response
Client presents cookie in
later requests
Privacy concerns

client server
usual http request msg

usual http response +
Set-cookie: name=val

usual http request msg
Cookie: name=val

usual http response msg

usual http request msg
Cookie: name=val

usual http response msg

cookie-
spectific
action

cookie-
spectific
action

Lecture outline

Overview of http
Http message formats
Web caching

Conditional GET: client-side caching

Goal is not to send object
if client has up-to-date
cached version
Client specifies date of
cached copy in request
If-modified-since:
<date>

Server response contains
no object if cached copy is
up-to-date:
HTTP/1.0 304 Not
Modified

http request msg
If-modified-since: <date>

http response
HTTP/1.0 304 Not Modified

object
not

modified

http request msg
If-modified-since: <date>

http response
HTTP/1.1 200 OK
<data>

object
modified

7

Web Caches (proxy server)

User sets browser: Web
accesses via web cache

Client sends all http
requests to web cache

If object in web cache, it
is returned to client

Otherwise web cache
requests object from
origin server, then
returns object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http request

http response

http response

http request

http response

origin
server

origin
server

Why Web Caching?
Assuming cache close to client
Advantages

Smaller response time
Decrease traffic to distant servers
(uplink often bottleneck)

Disadvantages
Introduces new point of failure
Some overhead on misses
Does not work with dynamic
personalized content

Decreasing popularity

origin
servers

public
Internet

institutional
network 100 Mbps LAN

1.5 Mbps
access link

institutional
cache

Content Delivery Networks
e.g. Akamai, Digital Island, etc.
Has its own network of caches that replicates
some content of the customer (e.g. cnn.com)

Typically images, sometimes HTML also
In the index.html file all references of:
www.cnn.com/images/sports.gif re-mapped to
www.akamai.com/www.cnn.com/images/sports.gif

Server domain name: www.akamai.com
File: www.cnn.com/images/sports.gif

8

Content Delivery Networks
Client downloads www.cnn.com/index.html
Next tries to resolve www.akamai.com
When local nameserver of client tries to
resolve www.akamai.com

DNS server of Akamai will identify one of its
caches close to the local nameserver of client
Expectation is that the client is close to its local
nameserver

Client gets image from the nearby cache

