
1

C# in 75 Minutes

Perry Kivolowitz

Launching / Start Page

Recent
Projects

Open / Create
Projects

New console application Intellisense

Intellisense Intellisense

2

Hello World Hello World

Breakpoints / single stepping

• F9 toggles
breakpoints

• F5 start debugging
• F10 step over
• F11 step into
• Shift F5 kills

debugging

Watching / rerunning

Breakpoint indicator
Indicates next line to be executed

Hovering over variable
shows its value

Types

• object ALL types derive from object
– int int i = 0;
– string string s = “hello world”;
– char char c = ‘A’;
– float float f = 3.0f;
– bool bool b = true;
– enums eg: DayOfWeek.Friday
– user defined classes and structs
– many more

Object: base class of all types

• Even value types like int and float derive
from Object:
– int x = 1;

x.ToString() “1”
1.ToString() “1”

• Object implements other methods like:
– object.Equals(other)
– object.GetType()
– Not used in this course

3

Strong typing

• Pro
– Catch / prevent errors at compile time

• Con
– Verbosity

Strong typing

Type conversion

• Implicit
– Obvious relationship exists
– No loss of information

• Explicit
– Like a cast in C or C++

• Type conversion
– System.Convert.To_________()
– Use this extensively for ADO.NET work.

Strings

• string s = “some string”;
• string s += “ and some other string”;
• s.Length – read only attribute
• s.Trim() – returns string without leading /

trailing white space
• Many other members to the string class

– Split(), SubString(), etc.

Strings

• Can be indexed: char c = s[2];
• Usual escape sequences

– \” \n \\ etc.
• Precede with @ to make a literal string

– @”C:\temp\foo” is the same as
– “C:\\temp\\foo”

• Well defined logical operators like =, >,
etc.

• See also StringBuilder class

Equivalent of (s)printf

• string System.Format()
• Uses positional notation:

– System.Format(“Hi {0} {1},”, fName, lName);
• Formatting for specific types available

– Left for the reader

4

Arrays, ArrayLists, Generics

• Arrays: strongly typed, fixed length
– int[] i = { 1, 2, 4 };
– int[] i = int[3];

• ArrayList: loosely typed, variable length
– Recommend use of Generics instead

• Generics: strongly typed, variable length
– Like C++ templates

Generics

• Strongly typed collections
• Variable length
• Includes List<>, LinkedList<>,

Queue<>, etc.
• Enable by

“using System.Collections.Generic;”

Generics Classes

• Analogs in the real world
• At the heart of OOP
• An encapsulation of related functions

and data
• A class is a blueprint for all things of

that type
• Instance of a class is a thing, an

object

Classes Classes

• Have members:
– Methods – functions in other languages
– Data

• Variables – member data as in other languages
• Attributes – functions that behave like data

• Members have protection levels
– Public – visible outside class
– Private – hidden outside class
– Protected – visible inside “derived” classes

only

5

Constructors

• Constructors are special methods
– same name as class
– no return type
– used for initialization of a class instance
– may be “overloaded”

Constructors

Uses Default Constructor
• Members get their default or otherwise initialized values

Constructors Methods

• Must exist in a surrounding class or struct
• “Global” methods can be fudged
• Return values:

– void for no return value
public void foo() { }

– Specify type to return a specific type
public int foo(){ }

Parameters

• All parameters passed by value by default
• To pass by reference use ref keyword

(demo)
• To return more than one result, use out

keyword
(demo)

• Keywords must be present in both method
definition and invocation

Member variables

• Typically are not “public”
• Public variables

– break “data encapsulation”
– cause loss of “control” of the class
– easier for the lazy or hurried

• Use attributes for public faces to internal
variables

6

Member attributes

• “Functions” that behave like variables
• Use to provide controlled access to

variables
• Can be used to make read-only variables
• Implemented via get and set syntax

Member attributes

Static versus instance

• All individuals of a class (instances) share
certain traits – but have individual copies
– Rexx and Fido are Dogs but have different

names
– Name is a trait shared by all instances of the

class Dog but each instance of Dog has its
own copy

– This is the “default”
• To have all instances share the same

member, make it “static”

Static versus instance

Static versus instance

• A trait that is present in all instances of a
class and physically shared by all
instances is called a static trait
– Can be methods or variables
– Must be fully named using enclosing class

Other qualifiers

• const
– Compile time constant

• readonly
– May be initialized at compile time or in a

constructor
• Neither can be changed after its value has

been initialized

7

Control structures

• Same as other languages such as C, C++
– if, then, else
– while
– do
– conditional operator
– for
– switch
– continue, break

• foreach not found in C or C++

Operators

• All the usual operators are provided
• The usual order of precedence holds

Enums

• Strongly typed enumerations
– Not interchangeable with integers as in C,

C++
– Intellisense makes good use of them

• Makes code more readable and
maintainable

Enums

Back to classes

• You have seen “this”
– Reference members of the current instance
– Cannot be used to reference static members

• Use class name instead
– Typically used for disambiguating a member

variable from a method parameter of the same
name

Classes

8

Overloading methods

• Used to provide alternate method
signatures with the same name
– Which method is called depends upon

parameters
– Assisted by Intellisense

Overloading methods

Operator overloading

• Operators are implemented as methods
• Since methods can be overloaded, it

follows that operators can be overloaded
• Particularly useful for user defined types

such as classes
• (demo)

Inheritance

• Some “classes” in the real world are
specializations of other “classes”

• All dogs are mammals
• All cats are mammals too
• Dogs and cats share certain traits, these

could be implemented in the mammal
class

• Dogs and cats derive from mammals
• They “inherit” common traits and

“specialize” from there

Inheritance

• Creates specializations of a class
• The “is a” relationship (versus “has a”)

– Dog “is a” mammal
– Cat “is a” mammal
– Dog “has a” name

• C# supports single inheritance
• Multiple “interfaces” can be inherited

– Interfaces not covered in this course

Inheritance

9

Virtual methods

• Mark method you wish to be able to override
with the keyword “virtual”

• Mark overriding methods with keyword
“override”

• If you want to specifically hide a super classes
method or variable, mark the subclass’ attribute
with keyword “new”

• Use “base.method()” syntax to call the named
method in the base class

• Demo

Polymorphism

• A subclass can be used anywhere a super
class is expected because the subclass
has everything the super class (plus some
other stuff)

• If Bichon is a Dog and Dog is a Mammal,
then Bichon is a Mammal

• If a subclass specializes a method present
in the super class, which method is called
when? (demo)

Abstract Methods / Classes

• Makes a contract for the API but does not
provide implementation

• Use keyword “abstract” to mark a method
you will force a subclass to implement

• If any method in class is “abstract” then
class must be “abstract”

• Abstract classes cannot be instantiated
• Demo

Strings

• A vital type in web application
development

• All strings are Unicode (multibyte)
• Can be compared with logical operators
• Have many methods for handling
• Use StringBuilder if a lot of concatenation

is to be performed
• (demo)

Exceptions

• Greatly simplifies code by allowing an
assumption of success

• Provides uniform structure to error
handling

• All exceptions derive from
System.Exception

• Implemented with
– try, catch, throw, and finally.

Exceptions

• try { } encloses section of code where a
particular exception could occur

• catch (type ex) { } catches an exception of
the type specified and handles it

• Catch most specific to most general
• finally { } encloses code you want run no

matter what happens (exception or not).
Good for clean up

10

Exceptions

• throw causes an exception to be raised
with the specified type and contents

• If throw called with no type, then
previously thrown exception is re-thrown

Exceptions

• All exceptions derive from
System.Exception

• Unhandled exceptions percolate upward
until they are caught or the program dies

• (demo)

