C# in 75 Minutes

Perry Kivolowitz

Launching / Start Page

Recent -
Projects\'?-‘

Open / Create
Projects

New console application

2
T Tl il
By 13 I — =
et o
oot i gt

E—

Intellisense

static wvoid Mainiscring[] args)

i
Con
} 2] class ;I
% CLSCompliankattribute
¢ Comparer<> el

4 Comparison< =

lclass System. Consale
Represents the standard input, oukput, and &

“ CorsoleCancelEventirgs
i ConsoleCancelEventHandler
=7 ConsoleColor

=7 Consalekey

G ConsoleKeyInfa ;I

Intellisense

static void Main(string[] args)
{
Console,Wri

U & SetWindowFostion 4
@ SetWindowSize
= Title
7 TreatControlCAsInput
5 windowHeight:
= windowLeft
= WindowTop

2 windowwidth
© Write
4 || [void Cansole. writeLine(string format, params

Wirites the text representation of the specifiec

Exceptions:
System.FormatException
System.10.I0Exception
System.ArgumentiulException

Intellisense

static wvoid Main(string[] args)
i
Console.WritelLine ("Hello World

i allof 19% woid Console. Writeline (string value)
value: The value to write,




Hello World

Husing System;
[usmg System.Collections.Generic:
uzing System.Text;

[ namespace HelloWorld
{

class Program

{
static void Main(string[] args)
{

Console,WritelLine ("Hello World®);

i

Hello World

Breakpoints / single stepping

s

breakpoints b 2o
F5 start debugging
F10 step over
F11 step into

Shift F5 kills
debugging

F9 toggles Pt B | Dot [ Daty Pk Wik :,--u.__

Watching / rerunning

Breakpoint indicator
Indicates next line to be executed

\ Hovering over variable

shows its value

Types
object ALL types derive from object
—int inti=0;
— string string s = “hello world”;
— char char c ="A’;
— float float f = 3.0f;
— bool bool b = true;

— enums eg: DayOfWeek.Friday
— user defined classes and structs
— many more

Object: base class of all types

» Even value types like int and float derive
from Obiject:
—intx=1,
x.ToString() > “1”
1.ToString() > “1”
» Object implements other methods like:
— object.Equals(other)
— object.GetType()
— Not used in this course




Strong typing

Pro

— Catch / prevent errors at compile time
Con

— Verbosity

Strong typing

Type conversion

Implicit

— Obvious relationship exists

— No loss of information

Explicit

— Like a castin C or C++

Type conversion

— System.Convert.To 0

— Use this extensively for ADO.NET work.

Strings

string s = “some string”;

string s += “ and some other string”;
s.Length — read only attribute

s.Trim() — returns string without leading /
trailing white space

Many other members to the string class
— Split(), SubString(), etc.

Strings

Can be indexed: char ¢ = s[2];

Usual escape sequences

—\" \n\\ etc.

Precede with @ to make a literal string
— @"C:\temp\foo” is the same as

— “C:\\temp\\foo”

Well defined logical operators like =, >,
etc.

See also StringBuilder class

Equivalent of (s)printf

string System.Format()

Uses positional notation:

— System.Format(“Hi {0} {1},”, fName, IName);
Formatting for specific types available

— Left for the reader




Arrays, ArrayLists, Generics

Arrays: strongly typed, fixed length
—int[]i={1,2,4}

—int[Ji=int[37];

ArrayList: loosely typed, variable length
— Recommend use of Generics instead
Generics: strongly typed, variable length
— Like C++ templates

Generics

Strongly typed collections
Variable length

Includes List<>, LinkedList<>,
Queue<>, etc.

Enable by
“using System.Collections.Generic;”

Generics

publif void fum()

{

List<atring> Flavors = new List<strings>():
Flavors.Add ("Vanilla™);
Flavors. Add ("Chocolate™)

if (Flawvors.Count > 0) { }

if (Flawors.Contains ("Chocolate™)) { 3
Flavors.Insert (0, "Itrawkerry™);

Flewors. Addil):

Classes

Analogs in the real world

At the heart of OOP

An encapsulation of related functions
and data

A class is a blueprint for all things of
that type

Instance of a class is a thing, an
object

Classes

public class LClass
{
i

L lass allass = new LClass()!

Classes

Have members:

— Methods — functions in other languages

— Data
» Variables — member data as in other languages
« Attributes — functions that behave like data

Members have protection levels

— Public — visible outside class

— Private — hidden outside class

— Protected — visible inside “derived” classes
only




Constructors

 Constructors are special methods
— same name as class
— no return type
— used for initialization of a class instance
— may be “overloaded”

Constructors

public class LAClass
i
}

Uses Default Constructor

* Members get their default or otherwise initialized values

Constructors

publhc class LClass
{
private int count = 0;:

AClass(int newlount)
{

Count = newCount;
H

Methods

» Must exist in a surrounding class or struct
 “Global” methods can be fudged
* Return values:
— void for no return value
public void foo() { }

— Specify type to return a specific type
public int foo(){ }

Parameters

* All parameters passed by value by default

» To pass by reference use ref keyword
(demo)

» To return more than one result, use out
keyword
(demo)

» Keywords must be present in both method
definition and invocation

Member variables

 Typically are not “public”

* Public variables
— break “data encapsulation”
— cause loss of “control” of the class
— easier for the lazy or hurried

» Use attributes for public faces to internal
variables




Member attributes

“Functions” that behave like variables

Use to provide controlled access to
variables

Can be used to make read-only variables
Implemented via get and set syntax

Member attributes

class Program
{
private int accessCounter = 0:
private int updateCounter = 0;
private int thing
{
get

acoessCounter++;
return thing;

updateCounter++;
thing = wvalue;

Static versus instance

All individuals of a class (instances) share
certain traits — but have individual copies

— Rexx and Fido are Dogs but have different
names

— Name is a trait shared by all instances of the
class Dog but each instance of Dog has its
own copy

— This is the “default”
To have all instances share the same
member, make it “static”

Static versus instance

public class Mamma
(
protected string name = =

public Mammal(string name)
t
thiz.name = name:

public class
0
public Doglstring name) @ base [name]
0
)

public class
0
public Dog Fido = mev Dog(®
public Rexx = nev (&
)

Static versus instance

A trait that is present in all instances of a
class and physically shared by all
instances is called a static trait

— Can be methods or variables

— Must be fully named using enclosing class

Other qualifiers

e const
— Compile time constant
* readonly

— May be initialized at compile time or in a
constructor

» Neither can be changed after its value has

been initialized




Control structures

» Same as other languages such as C, C++
— if, then, else
— while
— do
— conditional operator
— for
— switch
— continue, break
« foreach not found in C or C++

Operators

« All the usual operators are provided
» The usual order of precedence holds

Enums

 Strongly typed enumerations

— Not interchangeable with integers as in C,
C++

— Intellisense makes good use of them

* Makes code more readable and
maintainable

Enums

private enws Delstelftercopy
[

Yes,

Mo
3

private void Copy(string from, string to, bool deleteifterCopy
[
3

private void Copy(string from, string to, Deleteliftercopy deleteiftercopy:
¢
}

private void foo()
i

Copy("a", "h", true);

Copy("a", ™", DeletelfrerCopy.¥es):
H

Back to classes

* You have seen “this”
— Reference members of the current instance
— Cannot be used to reference static members
« Use class name instead

— Typically used for disambiguating a member
variable from a method parameter of the same
name

Classes

public class Mammal
{
public string nsgee = "7
static public readonly string status = "OE";

public Mameal (string name)
{

this.name = name;
}




Overloading methods

Used to provide alternate method
signatures with the same name

— Which method is called depends upon
parameters

— Assisted by Intellisense

Overloading methods

elass Program

{

static void Main(string[] args)
<
LooklUpPerson ||

Y. [®1cf2% void Frogram.LookLipPerson (string socialSecurityNumber)]

static private void LookUpPerson(string firstMName, string lastName)
{

Console.WriteLine ("Looking up by first and last name.”);
¥

static private void LookUpPerson{string socialSecurityNumber)
<

Console.WriteLine ("Looking up by social security mmber.”):
+

Operator overloading

Operators are implemented as methods

Since methods can be overloaded, it
follows that operators can be overloaded

Particularly useful for user defined types
such as classes

(demo)

Inheritance

Some “classes” in the real world are
specializations of other “classes”

All dogs are mammals

All cats are mammals too

Dogs and cats share certain traits, these
could be implemented in the mammal
class

Dogs and cats derive from mammals
They “inherit” common traits and
“specialize” from there

Inheritance

Creates specializations of a class

The “is a” relationship (versus “has a”)
— Dog “is a” mammal

— Cat “is @” mammal

— Dog “has a” name

C# supports single inheritance
Multiple “interfaces” can be inherited
— Interfaces not covered in this course

Inheritance

public class Marmal

{

H

public string name = "'
static public readonly string status = "OE";

public Mammal (string name)
{

this.name = nawe;
}

public class Dog @ Mawwosl

{

public Dogistring name)
{
i

i hase (name)




Virtual methods

Mark method you wish to be able to override
with the keyword “virtual”

Mark overriding methods with keyword
“override”

If you want to specifically hide a super classes
method or variable, mark the subclass’ attribute
with keyword “new”

Use “base.method()” syntax to call the named
method in the base class

Demo

Polymorphism

A subclass can be used anywhere a super

class is expected because the subclass
has everything the super class (plus some
other stuff)

If Bichon is a Dog and Dog is a Mammal,
then Bichon is a Mammal

If a subclass specializes a method present
in the super class, which method is called
when? (demo)

Abstract Methods / Classes

Makes a contract for the API but does not
provide implementation

Use keyword “abstract” to mark a method
you will force a subclass to implement

If any method in class is “abstract” then
class must be “abstract”

Abstract classes cannot be instantiated
Demo

Strings

A vital type in web application
development

All strings are Unicode (multibyte)
Can be compared with logical operators
Have many methods for handling

Use StringBuilder if a lot of concatenation
is to be performed

(demo)

Exceptions

Greatly simplifies code by allowing an
assumption of success

Provides uniform structure to error
handling

All exceptions derive from
System.Exception

Implemented with
— try, catch, throw, and finally.

Exceptions

try { } encloses section of code where a
particular exception could occur

catch (type ex) { } catches an exception of
the type specified and handles it

Catch most specific to most general
finally { } encloses code you want run no
matter what happens (exception or not).
Good for clean up




Exceptions

« throw causes an exception to be raised
with the specified type and contents

« If throw called with no type, then
previously thrown exception is re-thrown

Exceptions

« All exceptions derive from
System.Exception

» Unhandled exceptions percolate upward
until they are caught or the program dies

e (demo)

10



